Skip to main content

Plasmonics Studies for Molecular Scale Optoelectronics

  • Chapter
  • First Online:
Recent Advances in Plasmonic Probes

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 33))

  • 823 Accesses

Abstract

Molecular scale plasmonics (MSP) is associated with the area of molecular electronics (ME) where the electronic property of molecules is exploited to generate or modulate plasmons at sub-wavelength confinement. The MSP and ME both occur at diffraction-limited regimes which gives an advantage of understanding both optical and quantum mechanical properties simultaneously. Thus, this emerging field could promise prospective applications in the field of ultrafast information processing, computation, nonlinear and ultrahigh-resolution electronic display, optoelectronic devices, etc. The combination of ME and MSP opens a window to understand the interaction of electromagnetic waves at metal-molecule interface with the help of recently emerging molecular electronic characterization tools in sub-wavelength range. Here, we discuss molecular scale plasmonics with the enunciation of a basic understanding of plasmonics. In addition to these, we systematically discuss various methods of plasmon excitation and detection, using the quantum mechanical models, because classical electrodynamics fails to illustrate the electromagnetic coupling in the sub-nanogaps formed by molecular junctions. Also, we have showcased numerous examples of recent advances in molecular electronic plasmonic including sub-nanometer air/vacuum and molecular gap quantum plasmonic systems. Finally, we conclude this chapter by mentioning the prospects and various challenges in terms of making efficient characterization techniques or better models to explain MSP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. H. Choi, C.C.M. Mody, The long history of molecular electronics: Microelectronics origins of nanotechnology. Soc. Stud. Sci. 39, 11–50 (2009)

    Article  Google Scholar 

  2. S. Furber, Microprocessors: The engines of the digital age. Proc. R. Soc. A Math. Phys. Eng. Sci. 473, 1–12 (2017)

    Google Scholar 

  3. G. Moor, Cramming more components onto integrated circuits. Proc. IEEE 86, 82–84 (1998)

    Article  Google Scholar 

  4. N. Xin, J. Guan, C. Zhou, X. Chen, C. Gu, Y. Li, M.A. Ratner, A. Nitzan, J.F. Stoddart, X. Guo, Concepts in the design and engineering of single-molecule electronic devices. Nat. Rev. Phys. 1, 211–230 (2019)

    Article  Google Scholar 

  5. Y. Liu, X. Qiu, S. Soni, R.C. Chiechi, Charge transport through molecular ensembles: Recent progress in molecular electronics. Chem. Phys. Rev. 2, 021303 (2021)

    Article  Google Scholar 

  6. T. Wang, C.A. Nijhuis, Molecular electronic plasmonics. Appl. Mater. Today 3, 73–86 (2016)

    Article  Google Scholar 

  7. A. Agrawal, R.W. Johns, D.J. Milliron, Control of localized surface plasmon resonances in metal oxide nanocrystals. Annu. Rev. Mater. Res. 47, 1–31 (2017)

    Article  Google Scholar 

  8. D. Xiang, X. Wang, C. Jia, T. Lee, X. Guo, Molecular-scale electronics: From concept to function. Chem. Rev. 116, 4318–4440 (2016)

    Article  Google Scholar 

  9. Z. Jacob, Quantum plasmonics. MRS Bull. 37, 761–767 (2012)

    Article  Google Scholar 

  10. P.T. Mathew, F. Fang, Advances in molecular electronics: A brief review. Engineering 4, 760–771 (2018)

    Article  Google Scholar 

  11. K. Wang, E. Meyhofer, P. Reddy, Thermal and thermoelectric properties of molecular junctions. Adv. Funct. Mater. 30, 1–29 (2020)

    Google Scholar 

  12. L. Rincón-García, C. Evangeli, G. Rubio-Bollinger, N. Agraït, Thermopower measurements in molecular junctions. Chem. Soc. Rev. 45, 4285–4306 (2016)

    Article  Google Scholar 

  13. Y. Kim, W. Jeong, K. Kim, W. Lee, P. Reddy, Electrostatic control of thermoelectricity in molecular junctions. Nat. Nanotechnol. 9, 881–885 (2014)

    Article  ADS  Google Scholar 

  14. J.R. Winkler, A.J. Di Bilio, N.A. Farrow, J.H. Richards, H.B. Gray, Electron tunneling in biological molecules. Pure Appl. Chem. 71, 1753–1764 (1999)

    Article  Google Scholar 

  15. D. Wang, D. Fracasso, A. Nurbawono, H.V. Annadata, C.S.S. Sangeeth, L. Yuan, C.A. Nijhuis, Tuning the tunneling rate and dielectric response of SAM-based junctions via a single polarizable atom. Adv. Mater. 27, 6689–6695 (2015)

    Article  Google Scholar 

  16. E.G. Petrov, Y.V. Shevchenko, V. Snitsarev, V.V. Gorbach, A.V. Ragulya, S. Lyubchik, Features of superexchange nonresonant tunneling conductance in anchored molecular wires, AIP Advances 9, 115120 (2019)

    Google Scholar 

  17. J. Liu, X. Zhao, J. Zheng, X. Huang, Y. Tang, F. Wang, R. Li, J. Pi, C. Huang, L. Wang, Y. Yang, J. Shi, B.W. Mao, Z.Q. Tian, M.R. Bryce, W. Hong, Transition from tunneling leakage current to molecular tunneling in single-molecule junctions. Chem 5, 390–401 (2019)

    Article  Google Scholar 

  18. F. Gajdos, H. Oberhofer, M. Dupuis, J. Blumberger, On the inapplicability of electron-hopping models for the organic semiconductor phenyl-C61-butyric acid methyl ester (PCBM). J. Phys. Chem. Lett. 4, 1012–1017 (2013)

    Article  Google Scholar 

  19. N. Amdursky, D. Marchak, L. Sepunaru, I. Pecht, M. Sheves, D. Cahen, Electronic transport via proteins. Adv. Mater. 26, 7142–7161 (2014)

    Article  Google Scholar 

  20. Y.A. Berlin, G.R. Hutchison, P. Rempala, M.A. Ratner, J. Michl, Charge hopping in molecular wires as a sequence of electron-transfer reactions. J. Phys. Chem. A 107, 3970–3980 (2003)

    Article  Google Scholar 

  21. M.A. al-Badri, E. Linscott, A. Georges, D.J. Cole, C. Weber, Superexchange mechanism and quantum many body excitations in the archetypal di-Cu oxo-bridge. Commun. Phys. 3, 2–9 (2020)

    Article  Google Scholar 

  22. E.G. Petrov, Y.V. Shevchenko, V. Snitsarev, V.V. Gorbach, A.V. Ragulya, S. Lyubchik, Features of superexchange nonresonant tunneling conductance in anchored molecular wires. AIP Adv. 9, 115120 (2019)

    Article  ADS  Google Scholar 

  23. R. Péchou, S. Jia, J. Rigor, O. Guillermet, G. Seine, J. Lou, N. Large, A. Mlayah, R. Coratger, Plasmonic-induced luminescence of MoSe2 monolayers in a scanning tunneling microscope. ACS Photon. 7, 3061–3070 (2020)

    Article  Google Scholar 

  24. V. Kalathingal, P. Dawson, J. Mitra, Scanning tunneling microscope light emission: Effect of the strong dc field on junction plasmons. Phys. Rev. B 94, 1–9 (2016)

    Article  Google Scholar 

  25. T.W. Kelley, E.L. Granstrom, C. Daniel Frisbie, Conducting probe atomic force microscopy: A characterization tool for molecular electronics. Adv. Mater. 11, 261–264 (1999)

    Article  Google Scholar 

  26. D.J. Wold, C.D. Frisbie, Fabrication and characterization of metal-molecule-metal junctions by conducting probe atomic force microscopy. J. Am. Chem. Soc. 123, 5549–5556 (2001)

    Article  Google Scholar 

  27. D. Xiang, H. Jeong, T. Lee, D. Mayer, Mechanically controllable break junctions for molecular electronics. Adv. Mater. 25, 4845–4867 (2013)

    Article  Google Scholar 

  28. C. Huang, A.V. Rudnev, W. Hong, T. Wandlowski, Break junction under electrochemical gating: Testbed for single-molecule electronics. Chem. Soc. Rev. 44, 889–901 (2015)

    Article  Google Scholar 

  29. K. Slowinski, H.K.Y. Fong, M. Majda, Mercury-mercury tunneling junctions. 1. Electron tunneling across symmetric and asymmetric alkanethiolate bilayers. J. Am. Chem. Soc. 121, 7257–7261 (1999)

    Article  Google Scholar 

  30. C.A. Nijhuis, W.F. Reus, G.M. Whitesides, Molecular rectification in metal-SAM-metal oxide-metal junctions. J. Am. Chem. Soc. 131, 17814–17827 (2009)

    Article  Google Scholar 

  31. M. Laurans, K. Dalla Francesca, F. Volatron, G. Izzet, D. Guerin, D. Vuillaume, S. Lenfant, A. Proust, Molecular signature of polyoxometalates in electron transport of silicon-based molecular junctions. Nanoscale 10, 17156–17165 (2018)

    Article  Google Scholar 

  32. J. Park, L. Belding, L. Yuan, M.P.S. Mousavi, S.E. Root, H.J. Yoon, G.M. Whitesides, Rectification in molecular tunneling junctions based on alkanethiolates with bipyridine-metal complexes. J. Am. Chem. Soc. 143, 2156–2163 (2021)

    Article  Google Scholar 

  33. Y.L. Loo, D.V. Lang, J.A. Rogers, J.W.P. Hsu, Electrical contacts to molecular layers by nanotransfer printing. Nano Lett. 3, 913–917 (2003)

    Article  ADS  Google Scholar 

  34. S. Strobel, S. Harrer, G.P. Blanco, G. Scarpa, G. Abstreiter, P. Lugli, M. Tornow, Planar nanogap electrodes by direct nanotransfer printing. Small 5, 579–582 (2009)

    Article  Google Scholar 

  35. J.R. Niskala, W.C. Rice, R.C. Bruce, T.J. Merkel, F. Tsui, W. You, Tunneling characteristics of Au-alkanedithiol-Au junctions formed via nanotransfer printing (nTP). J. Am. Chem. Soc. 134, 12072–12082 (2012)

    Article  Google Scholar 

  36. C.A. Nijhuis, W.F. Reus, J.R. Barber, M.D. Dickey, G.M. Whitesides, Charge transport and rectification in arrays of SAM-based tunneling junctions. Nano Lett. 10, 3611–3619 (2010)

    Article  ADS  Google Scholar 

  37. Y. Ye, L. Chen, X. Liu, U.J. Krull, DNA and microfluidics: Building molecular electronics systems. Anal. Chim. Acta 568, 138–145 (2006)

    Article  Google Scholar 

  38. A.S. Blum, J.G. Kushmerick, S.K. Pollack, J.C. Yang, M. Moore, J. Naciri, R. Shashidhar, B.R. Ratna, Charge transport and scaling in molecular wires. J. Phys. Chem. B 108, 18124–18128 (2004)

    Article  Google Scholar 

  39. J.G. Kushmerick, J. Naciri, J.C. Yang, R. Shashidhar, Conductance scaling of molecular wires in parallel. Nano Lett. 3, 897–900 (2003)

    Article  ADS  Google Scholar 

  40. S.H.M. Jafri, T. Blom, K. Leifer, M. Strømme, H. Löfås, A. Grigoriev, R. Ahuja, K. Welch, Assessment of a nanoparticle bridge platform for molecular electronics measurements. Nanotechnology 21, 435204 (2010)

    Article  ADS  Google Scholar 

  41. J. Lawrence, J.T. Pham, D.Y. Lee, Y. Liu, A.J. Crosby, T. Emrick, Highly conductive ribbons prepared by stick-slip assembly of organosoluble gold nanoparticles. ACS Nano 8, 1173–1179 (2014)

    Article  Google Scholar 

  42. S.H.M. Jafri, H. Löfås, T. Blom, A. Wallner, A. Grigoriev, R. Ahuja, H. Ottosson, K. Leifer, Nano-fabrication of molecular electronic junctions by targeted modification of metal-molecule bonds. Sci. Rep. 5, 1–11 (2015)

    Article  Google Scholar 

  43. G. Wang, Y. Kim, M. Choe, T.W. Kim, T. Lee, A new approach for molecular electronic junctions with a multilayer graphene electrode. Adv. Mater. 23, 755–760 (2011)

    Article  Google Scholar 

  44. A. Aviram, M.A. Ratner, Molecular rectifiers. Chem. Phys. Lett. 29, 277–283 (1974)

    Article  ADS  Google Scholar 

  45. G. Binnig, H. Rohrer, Scanning tunneling microscopy. IBM J. Res. Dev. 30, 355–369 (1986)

    Google Scholar 

  46. A. Aviram, C. Joachim, M. Pomerantz, Evidence of switching and rectification by a single molecule effected with a scanning tunneling microscope. Chem. Phys. Lett. 146, 490–495 (1988)

    Article  ADS  Google Scholar 

  47. G. Durardin, E. Walkup, P. Avouris, Dissociation of individual molecules with electrons from the tip of a scanning tunneling microscope. Science 255, 1232–1235 (1992)

    Article  ADS  Google Scholar 

  48. D.K. James, J.M. Tour, Electrical measurements in molecular electronics. Chem. Mater. 16, 4423–4435 (2004)

    Article  Google Scholar 

  49. A. Vilan, D. Aswal, D. Cahen, Large-area, ensemble molecular electronics: Motivation and challenges. Chem. Rev. 117, 4248–4286 (2017)

    Article  Google Scholar 

  50. D. Vuillaume, Molecular electronics: From single-molecule to large-area devices. ChemPlusChem 84, 1215–1221 (2019)

    Article  Google Scholar 

  51. P. Tyagi, Multilayer edge molecular electronics devices: A review. J. Mater. Chem. 21, 4733–4742 (2011)

    Article  Google Scholar 

  52. N.S. Hush, An overview of the first half-century of molecular electronics. Ann. N. Y. Acad. Sci. 1006, 1–20 (2003)

    Article  ADS  Google Scholar 

  53. A.H. Flood, J.F. Stoddart, D.W. Steuernnan, J.R. Heath, Whence molecular electronics? Science 306, 2055–2056 (2004)

    Article  Google Scholar 

  54. M.A. Reed, Molecular-scale electronics. Proc. IEEE 87, 652–658 (1999)

    Article  Google Scholar 

  55. B. Capozzi, J. Xia, O. Adak, E.J. Dell, Z.F. Liu, J.C. Taylor, J.B. Neaton, L.M. Campos, L. Venkataraman, Single-molecule diodes with high rectification ratios through environmental control. Nat. Nanotechnol. 10, 522–527 (2015)

    Article  ADS  Google Scholar 

  56. H. Reddy, K. Wang, Z. Kudyshev, L. Zhu, S. Yan, A. Vezzoli, S.J. Higgins, V. Gavini, A. Boltasseva, P. Reddy, V.M. Shalaev, E. Meyhofer, Determining plasmonic hot-carrier energy distributions via single-molecule transport measurements. Science 369, 423–426 (2020)

    Article  ADS  Google Scholar 

  57. R.M. Metzger, Rectification by a single molecule. Synth. Met. 124, 107–112 (2001)

    Article  Google Scholar 

  58. R. Härtle, M. Thoss, Resonant electron transport in single-molecule junctions: Vibrational excitation, rectification, negative differential resistance, and local cooling. Phys. Rev. B Condens. Matter Mater. Phys. 83, 1–19 (2011)

    Google Scholar 

  59. R.M. Metzger, Electrical rectification by a molecule: The advent of unimolecular electronic devices. Acc. Chem. Res. 32, 950–957 (1999)

    Article  Google Scholar 

  60. X. Chen, M. Roemer, L. Yuan, W. Du, D. Thompson, E. Del Barco, C.A. Nijhuis, Molecular diodes with rectification ratios exceeding 105 driven by electrostatic interactions. Nat. Nanotechnol. 12, 797–803 (2017)

    Article  Google Scholar 

  61. D. Rakhmilevitch, S. Sarkar, O. Bitton, L. Kronik, O. Tal, Enhanced magnetoresistance in molecular junctions by geometrical optimization of spin-selective orbital hybridization. Nano Lett. 16, 1741–1745 (2016)

    Article  ADS  Google Scholar 

  62. R. Hayakawa, M.A. Karimi, J. Wolf, T. Huhn, M.S. Zöllner, C. Herrmann, E. Scheer, Large magnetoresistance in single-radical molecular junctions. Nano Lett. 16, 4960–4967 (2016)

    Article  ADS  Google Scholar 

  63. K. Yang, H. Chen, T. Pope, Y. Hu, L. Liu, D. Wang, L. Tao, W. Xiao, X. Fei, Y.Y. Zhang, H.G. Luo, S. Du, T. Xiang, W.A. Hofer, H.J. Gao, Tunable giant magnetoresistance in a single-molecule junction. Nat. Commun. 10, 1–7 (2019)

    Google Scholar 

  64. W.Y. Kim, K.S. Kim, Tuning molecular orbitals in molecular electronics and spintronics. Acc. Chem. Res. 43, 111–120 (2010)

    Article  Google Scholar 

  65. C.R. Arroyo, S. Tarkuc, R. Frisenda, J.S. Seldenthuis, C.H.M. Woerde, R. Eelkema, F.C. Grozema, H.S.J. Van Der Zant, Signatures of quantum interference effects on charge transport through a single benzene ring. Angew. Chem. Int. Ed. 52, 3152–3155 (2013)

    Article  Google Scholar 

  66. S. Naghibi, A.K. Ismael, A. Vezzoli, M.K. Al-Khaykanee, X. Zheng, I.M. Grace, D. Bethell, S.J. Higgins, C.J. Lambert, R.J. Nichols, Synthetic control of quantum interference by regulating charge on a single atom in heteroaromatic molecular junctions. J. Phys. Chem. Lett. 10, 6419–6424 (2019)

    Article  Google Scholar 

  67. R. Baer, D. Neuhauser, Phase coherent electronics: A molecular switch based on quantum interference. J. Am. Chem. Soc. 124, 4200–4201 (2002)

    Article  Google Scholar 

  68. S.-H. Ke, W. Yang, H.U. Baranger, Quantum-interference-controlled molecular electronics. Nano Lett. 8, 3257–3261 (2008)

    Article  ADS  Google Scholar 

  69. Y.S. Liu, Y.R. Chen, Y.C. Chen, Thermoelectric efficiency in nanojunctions: A comparison between atomic junctions and molecular junctions. ACS Nano 3, 3497–3504 (2009)

    Article  ADS  Google Scholar 

  70. M. Paulsson, S. Datta, Thermoelectric effect in molecular electronics. Phys. Rev. B Condens. Matter Mater. Phys. 67, 1–4 (2003)

    Article  Google Scholar 

  71. R. Esteban, A.G. Borisov, P. Nordlander, J. Aizpurua, Bridging quantum and classical plasmonics with a quantum-corrected model. Nat. Commun. 3, 825–829 (2012)

    Article  ADS  Google Scholar 

  72. D. Punj, R. Regmi, A. Devilez, R. Plauchu, S.B. Moparthi, B. Stout, N. Bonod, H. Rigneault, J. Wenger, Self-assembled nanoparticle dimer antennas for plasmonic-enhanced single-molecule fluorescence detection at micromolar concentrations. ACS Photon. 2, 1099–1107 (2015)

    Article  Google Scholar 

  73. T.V. Teperik, P. Nordlander, J. Aizpurua, A.G. Borisov, Robust subnanometric plasmon ruler by rescaling of the nonlocal optical response. Phys. Rev. Lett. 110, 1–5 (2013)

    Article  Google Scholar 

  74. A.S. Blum, J.G. Kushmerick, D.P. Long, C.H. Patterson, J.C. Yang, J.C. Henderson, Y. Yao, J.M. Tour, R. Shashidhar, B.R. Ratna, Molecularly inherent voltage-controlled conductance switching. Nat. Mater. 4, 167–172 (2005)

    Article  ADS  Google Scholar 

  75. P. Liljeroth, J. Repp, G. Meyer, Current-induced hydrogen tautomerization and conductance switching of naphthalocyanine molecules. Science 317, 1203–1206 (2007)

    Article  ADS  Google Scholar 

  76. S.Y. Quek, M. Kamenetska, M.L. Steigerwald, H.J. Choi, S.G. Louie, M.S. Hybertsen, J.B. Neaton, L. Venkataraman, Mechanically controlled binary conductance switching of a single-molecule junction. Nat. Nanotechnol. 4, 230–234 (2009)

    Article  ADS  Google Scholar 

  77. F. Schwarz, G. Kastlunger, F. Lissel, C. Egler-Lucas, S.N. Semenov, K. Venkatesan, H. Berke, R. Stadler, E. Lörtscher, Field-induced conductance switching by charge-state alternation in organometallic single-molecule junctions. Nat. Nanotechnol. 11, 170–176 (2016)

    Article  ADS  Google Scholar 

  78. C. Jia, J. Wang, C. Yao, Y. Cao, Y. Zhong, Z. Liu, Z. Liu, X. Guo, Conductance switching and mechanisms in single-molecule junctions. Angew. Chem. Int. Ed. 52, 8666–8670 (2013)

    Article  Google Scholar 

  79. C.M. Ramsey, E. Del Barco, S. Hill, S.J. Shah, C.C. Beedle, D.N. Hendrickson, Quantum interference of tunnel trajectories between states of different spin length in a dimeric molecular nanomagnet. Nat. Phys. 4, 277–281 (2008)

    Article  Google Scholar 

  80. S. Schmaus, A. Bagrets, Y. Nahas, T.K. Yamada, A. Bork, M. Bowen, E. Beaurepaire, F. Evers, W. Wulfhekel, Giant magnetoresistance through a single molecule. Nat. Nanotechnol. 6, 185–189 (2011)

    Article  ADS  Google Scholar 

  81. E. Burzurí, A.S. Zyazin, A. Cornia, H.S.J. Van Der Zant, Direct observation of magnetic anisotropy in an individual Fe 4 single-molecule magnet. Phys. Rev. Lett. 109, 1–5 (2012)

    Article  Google Scholar 

  82. B. Warner, F. El Hallak, H. Prüser, J. Sharp, M. Persson, A.J. Fisher, C.F. Hirjibehedin, Tunable magnetoresistance in an asymmetrically coupled single-molecule junction. Nat. Nanotechnol. 10, 259–263 (2015)

    Article  ADS  Google Scholar 

  83. A.C. Aragonès, D. Aravena, J.I. Cerdá, Z. Acís-Castillo, H. Li, J.A. Real, F. Sanz, J. Hihath, E. Ruiz, I. Díez-Pérez, Large conductance switching in a single-molecule device through room temperature spin-dependent transport. Nano Lett. 16, 218–226 (2016)

    Article  ADS  Google Scholar 

  84. T. Shamai, Y. Selzer, Spectroscopy of molecular junctions. Chem. Soc. Rev. 40, 2293–2305 (2011)

    Article  Google Scholar 

  85. M. Galperin, A. Nitzan, Molecular optoelectronics: The interaction of molecular conduction junctions with light. Phys. Chem. Chem. Phys. 14, 9421–9438 (2012)

    Article  Google Scholar 

  86. S.V. Aradhya, L. Venkataraman, Single-molecule junctions beyond electronic transport. Nat. Nanotechnol. 8, 399–410 (2013)

    Article  ADS  Google Scholar 

  87. S. Battacharyya, A. Kibel, G. Kodis, P.A. Liddell, M. Gervaldo, D. Gust, S. Lindsay, Optical modulation of molecular conductance. Nano Lett. 11, 2709–2714 (2011)

    Article  ADS  Google Scholar 

  88. J.A. Fereiro, R.L. McCreery, A.J. Bergren, Direct optical determination of interfacial transport barriers in molecular tunnel junctions. J. Am. Chem. Soc. 135, 9584–9587 (2013)

    Article  Google Scholar 

  89. J. He, S.M. Lindsay, On the mechanism of negative differential resistance in ferrocenylundecanethiol self-assembled monolayers. J. Am. Chem. Soc. 127, 11932–11933 (2005)

    Article  Google Scholar 

  90. X.W. Tu, G. Mikaelian, W. Ho, Controlling single-molecule negative differential resistance in a double-barrier tunnel junction. Phys. Rev. Lett. 100, 2–5 (2008)

    Article  Google Scholar 

  91. M.L. Perrin, R. Frisenda, M. Koole, J.S. Seldenthuis, J.A.C. Gil, H. Valkenier, J.C. Hummelen, N. Renaud, F.C. Grozema, J.M. Thijssen, D. Dulić, H.S.J. Van Der Zant, Large negative differential conductance in single-molecule break junctions. Nat. Nanotechnol. 9, 830–834 (2014)

    Article  ADS  Google Scholar 

  92. J.A. Scholl, A. García-Etxarri, A.L. Koh, J.A. Dionne, Observation of quantum tunneling between two plasmonic nanoparticles. Nano Lett. 13, 564–569 (2013)

    Article  ADS  Google Scholar 

  93. H. Duan, A.I. Fernández-Domínguez, M. Bosman, S.A. Maier, J.K.W. Yang, Nanoplasmonics: Classical down to the nanometer scale. Nano Lett. 12, 1683–1689 (2012)

    Article  ADS  Google Scholar 

  94. S.F. Tan, L. Wu, J.K.W. Yang, P. Bai, M. Bosman, C.A. Nijhuis, Quantum plasmon resonances controlled by molecular tunnel junctions. Science 343, 1496–1499 (2014)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  95. J.B. Lassiter, J. Aizpurua, L.I. Hernandez, D.W. Brandl, I. Romero, S. Lal, J.H. Hafner, P. Nordlander, N.R. Hales, Close encounters between two nanoshells. Nano Lett. 8, 1212–1218 (2008)

    Article  ADS  Google Scholar 

  96. J. Zuloaga, E. Prodan, P. Nordlander, Quantum description of the plasmon resonances of a nanoparticle dimer. Nano Lett. 9, 887–891 (2009)

    Article  ADS  Google Scholar 

  97. O. Pérez-González, N. Zabala, A.G. Borisov, N.J. Halas, P. Nordlander, J. Aizpurua, Optical spectroscopy of conductive junctions in plasmonic cavities. Nano Lett. 10, 3090–3095 (2010)

    Article  ADS  Google Scholar 

  98. D.C. Marinica, A.K. Kazansky, P. Nordlander, J. Aizpurua, A.G. Borisov, Quantum plasmonics: Nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer. Nano Lett. 12, 1333–1339 (2012)

    Article  ADS  Google Scholar 

  99. L. Wu, H. Duan, P. Bai, M. Bosman, J.K.W. Yang, E. Li, Fowler-Nordheim tunneling induced charge transfer plasmons between nearly touching nanoparticles. ACS Nano 7, 707–716 (2013)

    Article  Google Scholar 

  100. R. Esteban, G. Aguirregabiria, A.G. Borisov, Y.M. Wang, P. Nordlander, G.W. Bryant, J. Aizpurua, The morphology of narrow gaps modifies the plasmonic response. ACS Photon. 2, 295–305 (2015)

    Article  Google Scholar 

  101. N. Jiang, Q. Ruan, F. Qin, J. Wang, H.-Q. Lin, Switching plasmon coupling through the formation of dimers from polyaniline-coated gold nanospheres. Nanoscale 7, 12516–12526 (2015)

    Article  ADS  Google Scholar 

  102. F. Wen, Y. Zhang, S. Gottheim, N.S. King, Y. Zhang, P. Nordlander, N.J. Halas, Charge transfer plasmons: Optical frequency conductances and tunable infrared resonances. ACS Nano 9, 6428–6435 (2015)

    Article  Google Scholar 

  103. U. Hohenester, Quantum corrected model for plasmonic nanoparticles: A boundary element method implementation. Phys. Rev. B Condens. Matter Mater. Phys. 91, 1–5 (2015)

    Article  Google Scholar 

  104. K.J. Savage, M.M. Hawkeye, R. Esteban, A.G. Borisov, J. Aizpurua, J.J. Baumberg, Revealing the quantum regime in tunnelling plasmonics. Nature 491, 574–577 (2012)

    Article  ADS  Google Scholar 

  105. N. Large, M. Abb, J. Aizpurua, O.L. Muskens, Photoconductively loaded plasmonic nanoantenna as building block for ultracompact optical switches. Nano Lett. 10, 1741–1746 (2010)

    Article  ADS  Google Scholar 

  106. J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S.A. Maier, Z. Tian, A.K. Azad, H.T. Chen, A.J. Taylor, J. Han, W. Zhang, Active control of electromagnetically induced transparency analogue in terahertz metamaterials. Nat. Commun. 3, 1151 (2012)

    Article  ADS  Google Scholar 

  107. J. Fontana, B.R. Ratna, Highly tunable gold nanorod dimer resonances mediated through conductive junctions. Appl. Phys. Lett. 105, 4–7 (2014)

    Article  Google Scholar 

  108. M.R. Gonçalves, H. Minassian, A. Melikyan, Plasmonic resonators: Fundamental properties and applications. J. Phys. D Appl. Phys. 53, 443002 (2020)

    Article  ADS  Google Scholar 

  109. A.V. Zayats, I.I. Smolyaninov, A.A. Maradudin, Nano-optics of surface plasmon polaritons. Phys. Rep. 408, 131–314 (2005)

    Article  ADS  Google Scholar 

  110. R.H. Ritchie, Plasma losses by fast electrons in thin films. Phys. Rev. 106(5), 8 (1956)

    MathSciNet  Google Scholar 

  111. E.J.R. Vesseur, R. De Waele, M. Kuttge, A. Polman, Direct observation of plasmonic modes in Au nanowires using high-resolution cathodoluminescence spectroscopy. Nano Lett. 7, 2843–2846 (2007)

    Article  ADS  Google Scholar 

  112. M. Sun, F. Xiaoqi, K. Chen, H. Wang, Dual-plasmonic gold@copper sulfide core-shell nanoparticles. ACS Appl. Mater. Interfaces 12, 46146–46161 (2020)

    Article  Google Scholar 

  113. P.K. Jain, X. Huang, I.H. El-Sayed, M.A. El-Sayed, Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics 2, 107–118 (2007)

    Article  Google Scholar 

  114. H. Shen, G. Lu, T. Zhang, J. Liu, Y. Gu, P. Perriat, M. Martini, O. Tillement, Q. Gong, Shape effect on a single-nanoparticle-based plasmonic nanosensor. Nanotechnology 24, 285502 (2013)

    Article  Google Scholar 

  115. E. Ringe, Shapes, plasmonic properties, and reactivity of magnesium nanoparticles. J. Phys. Chem. C 124, 15665–15679 (2020)

    Article  Google Scholar 

  116. F. Laible, K. Braun, O. Hauler, M. Eberle, D.P. Kern, A.J. Meixner, M. Fleischer, A flexible platform for controlled optical and electrical effects in tailored plasmonic break junctions. Nanophotonics 9, 1391–1400 (2020)

    Article  Google Scholar 

  117. J. Lee, D.J. Jeon, J.S. Yeo, Quantum plasmonics: Energy transport through plasmonic gap. Adv. Mater. 33, 2006606 (2021)

    Article  Google Scholar 

  118. W. Zhang, H. Liu, J. Lu, L. Ni, H. Liu, Q. Li, M. Qiu, B. Xu, T. Lee, Z. Zhao, X. Wang, M. Wang, T. Wang, A. Offenhäusser, D. Mayer, W.-T. Hwang, D. Xiang, Atomic switches of metallic point contacts by plasmonic heating. Light Sci. Appl. 8, 34 (2019)

    Article  ADS  Google Scholar 

  119. J.G. Simmons, Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film. J. Appl. Phys. 34, 1793–1803 (1963)

    Article  ADS  Google Scholar 

  120. C. Joachim, J.K. Gimzewski, A. Aviram, Electronics using hybrid-molecular and mono-molecular devices. Nature 408, 541–548 (2000)

    Article  ADS  Google Scholar 

  121. A. Nitzan, M.A. Ratner, Electron transport in molecular wire junctions. Science 300, 1384–1389 (2003)

    Article  ADS  Google Scholar 

  122. N.J. Tao, Electron transport in molecular junctions. Nat. Nanotechnol. 1, 173–181 (2006)

    Article  ADS  Google Scholar 

  123. H. Haick, D. Cahen, Contacting organic molecules by soft methods: Towards molecule-based electronic devices. Acc. Chem. Res. 41, 359–366 (2008)

    Article  Google Scholar 

  124. M. Ratner, A brief history of molecular electronics. Nat. Nanotechnol. 8, 378–381 (2013)

    Article  ADS  Google Scholar 

  125. L. Sun, Y.A. Diaz-Fernandez, T.A. Gschneidtner, F. Westerlund, S. Lara-Avila, K. Moth-Poulsen, Single-molecule electronics: From chemical design to functional devices. Chem. Soc. Rev. 43, 7378–7411 (2014)

    Article  Google Scholar 

  126. Y. Zhang, Z. Zhao, D. Fracasso, R.C. Chiechi, Bottom-up molecular tunneling junctions formed by self-assembly. Isr. J. Chem. 54, 513–533 (2014)

    Article  Google Scholar 

  127. A. Honciuc, R.M. Metzger, A. Gong, C.W. Spangler, Elastic and inelastic electron tunneling spectroscopy of a new rectifying monolayer. J. Am. Chem. Soc. 129, 8310–8319 (2007)

    Article  Google Scholar 

  128. F. Weigend, M. Elbing, R. Ochs, M. Koentopp, M. Fischer, C. Von Ha, F. Evers, H.B. Weber, M. Mayor, A single-molecule diode. Proc. Natl. Acad. Sci. USA 102, 8815–8820 (2005)

    Article  ADS  Google Scholar 

  129. I. Díez-Pérez, J. Hihath, Y. Lee, L. Yu, L. Adamska, M.A. Kozhushner, I.I. Oleynik, N. Tao, Rectification and stability of a single molecular diode with controlled orientation. Nat. Chem. 1, 635–641 (2009)

    Article  Google Scholar 

  130. N. Nerngchamnong, L. Yuan, D.C. Qi, J. Li, D. Thompson, C.A. Nijhuis, The role of van der Waals forces in the performance of molecular diodes. Nat. Nanotechnol. 8, 113–118 (2013)

    Article  ADS  Google Scholar 

  131. H.J. Yoon, K.C. Liao, M.R. Lockett, S.W. Kwok, M. Baghbanzadeh, G.M. Whitesides, Rectification in tunneling junctions: 2,2′-bipyridyl-terminated n-alkanethiolates. J. Am. Chem. Soc. 136, 17155–17162 (2014)

    Article  Google Scholar 

  132. D. Fracasso, H. Valkenier, J.C. Hummelen, G.C. Solomon, R.C. Chiechi, Evidence for quantum interference in sams of arylethynylene thiolates in tunneling junctions with eutectic Ga-In (EGaIn) top-contacts. J. Am. Chem. Soc. 133, 9556–9563 (2011)

    Article  Google Scholar 

  133. L. Yuan, N. Nerngchamnong, L. Cao, H. Hamoudi, E. Del Barco, M. Roemer, R.K. Sriramula, D. Thompson, C.A. Nijhuis, Controlling the direction of rectification in a molecular diode. Nat. Commun. 6, 6324 (2015)

    Article  ADS  Google Scholar 

  134. C.M. Guédon, H. Valkenier, T. Markussen, K.S. Thygesen, J.C. Hummelen, S.J. Van Der Molen, Observation of quantum interference in molecular charge transport. Nat. Nanotechnol. 7, 305–309 (2012)

    Article  ADS  Google Scholar 

  135. H. Vazquez, R. Skouta, S. Schneebeli, M. Kamenetska, R. Breslow, L. Venkataraman, M.S. Hybertsen, Probing the conductance superposition law in single-molecule circuits with parallel paths. Nat. Nanotechnol. 7, 663–667 (2012)

    Article  ADS  Google Scholar 

  136. S. Kahle, Z. Deng, N. Malinowski, C. Tonnoir, A. Forment-Aliaga, N. Thontasen, G. Rinke, D. Le, V. Turkowski, T.S. Rahman, S. Rauschenbach, M. Ternes, K. Kern, The quantum magnetism of individual manganese-12-acetate molecular magnets anchored at surfaces. Nano Lett. 12, 518–521 (2012)

    Article  ADS  Google Scholar 

  137. M.S. Tame, K.R. McEnery, Ş.K. Özdemir, J. Lee, S.A. Maier, M.S. Kim, Quantum plasmonics. Nat. Phys. 9, 329–340 (2013)

    Article  Google Scholar 

  138. S.I. Bozhevolnyi, J.B. Khurgin, The case for quantum plasmonics. Nat. Photonics 11, 398–400 (2017)

    Article  ADS  Google Scholar 

  139. S.I. Bozhevolnyi, N.A. Mortensen, Plasmonics for emerging quantum technologies. Nanophotonics 6, 1185–1188 (2017)

    Article  Google Scholar 

  140. N.P. De Leon, M.D. Lukin, H. Park, Quantum plasmonic circuits. IEEE J. Sel. Top. Quant. Electron. 18, 1781–1791 (2012)

    Article  ADS  Google Scholar 

  141. M. Heo, H. Cho, J.W. Jung, J.R. Jeong, S. Park, J.Y. Kim, High-performance organic optoelectronic devices enhanced by surface plasmon resonance. Adv. Mater. 23, 5689–5693 (2011)

    Article  Google Scholar 

  142. S.J. Ko, H. Choi, W. Lee, T. Kim, B.R. Lee, J.W. Jung, J.R. Jeong, M.H. Song, J.C. Lee, H.Y. Woo, J.Y. Kim, Highly efficient plasmonic organic optoelectronic devices based on a conducting polymer electrode incorporated with silver nanoparticles. Energy Environ. Sci. 6, 1949–1955 (2013)

    Article  Google Scholar 

  143. O. Ostroverkhova, Organic optoelectronic materials: Mechanisms and applications. Chem. Rev. 116, 13279–13412 (2016)

    Article  Google Scholar 

  144. Z. Cheng, N. Javed, D.M. Ocarroll, Optical and electrical properties of organic semiconductor thin films on aperiodic plasmonic metasurfaces. ACS Appl. Mater. Interfaces 12, 35579–35587 (2020)

    Article  Google Scholar 

  145. W. Nie, Q. Wang, L. Zou, Y. Zheng, X. Liu, X. Yang, K. Wang, Low-fouling surface plasmon resonance sensor for highly sensitive detection of MicroRNA in a complex matrix based on the DNA tetrahedron. Anal. Chem. 90, 12584–12591 (2018)

    Article  Google Scholar 

  146. D.R. Shankaran, K.V. Gobi, T. Sakai, K. Matsumoto, K. Toko, N. Miura, Surface plasmon resonance immunosensor for highly sensitive detection of 2,4,6-trinitrotoluene. Biosens. Bioelectron. 20, 1750–1756 (2005)

    Article  Google Scholar 

  147. M. Steiner, A. Hartschuh, R. Korlacki, A.J. Meixner, Highly efficient, tunable single photon source based on single molecules. Appl. Phys. Lett. 90, 2005–2008 (2007)

    Article  Google Scholar 

  148. M. Pelton, Modified spontaneous emission in nanophotonic structures. Nat. Photonics 9, 427–435 (2015)

    Article  ADS  Google Scholar 

  149. H. Xu, E.J. Bjerneld, M. Käll, L. Börjesson, Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys. Rev. Lett. 83, 4357–4360 (1999)

    Article  ADS  Google Scholar 

  150. C. Sönnichsen, B.M. Reinhard, J. Liphardt, A.P. Alivisatos, A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat. Biotechnol. 23, 741–745 (2005)

    Article  Google Scholar 

  151. C.E. Talley, J.B. Jackson, C. Oubre, N.K. Grady, C.W. Hollars, S.M. Lane, T.R. Huser, P. Nordlander, N.J. Halas, Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates. Nano Lett. 5, 1569–1574 (2005)

    Article  ADS  Google Scholar 

  152. D.R. Ward, N.K. Grady, C.S. Levin, N.J. Halas, Y. Wu, P. Nordlander, D. Natelson, Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy. Nano Lett. 7, 1396–1400 (2007)

    Article  ADS  Google Scholar 

  153. P.K. Jain, W. Huang, M.A. El-Sayed, On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: A plasmon ruler equation. Nano Lett. 7, 2080–2088 (2007)

    Article  ADS  Google Scholar 

  154. M. Danckwerts, L. Novotny, Optical frequency mixing at coupled gold nanoparticles. Phys. Rev. Lett. 98, 1–4 (2007)

    Article  Google Scholar 

  155. A.M. Funston, C. Novo, T.J. Davis, P. Mulvaney, Plasmon coupling of gold nanorods at short distances and in different geometries. Nano Lett. 9, 1651–1658 (2009)

    Article  ADS  Google Scholar 

  156. S.S. Aćimović, M.P. Kreuzer, M.U. González, R. Quidant, Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing. ACS Nano 3, 1231–1237 (2009)

    Article  Google Scholar 

  157. A.L. Koh, K. Bao, I. Khan, W.E. Smith, G. Kothleitner, P. Nordlander, S.A. Maier, D.W. Mccomb, Electron energy-loss spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimers: Influence of beam damage and mapping of dark modes. ACS Nano 3, 3015–3022 (2009)

    Article  Google Scholar 

  158. F. Huang, J.J. Baumberg, Actively tuned plasmons on elastomerically driven Au nanoparticle dimers. Nano Lett. 10, 1787–1792 (2010)

    Article  ADS  Google Scholar 

  159. K.L. Wustholz, A.I. Henry, J.M. McMahon, R.G. Freeman, N. Valley, M.E. Piotti, M.J. Natan, G.C. Schatz, R.P.V. Duyne, Structure-activity relationships in gold nanoparticle dimers and trimers for surface-enhanced Raman spectroscopy. J. Am. Chem. Soc. 132, 10903–10910 (2010)

    Article  Google Scholar 

  160. N.J. Halas, S. Lal, W. Chang, S. Link, P. Nordlander, Plasmons in strongly coupled metallic nanostructures. Chem. Rev. 111, 3913–3961 (2011)

    Article  Google Scholar 

  161. J.M. Romo-Herrera, R.A. Alvarez-Puebla, L.M. Liz-Marzán, Controlled assembly of plasmonic colloidal nanoparticle clusters. Nanoscale 3, 1304–1315 (2011)

    Article  ADS  Google Scholar 

  162. P. Nordlander, C. Oubre, E. Prodan, K. Li, M.I. Stockman, Plasmon hybridization in nanoparticle. Nano Lett. 4, 899–903 (2004)

    Article  ADS  Google Scholar 

  163. I. Romero, J. Aizpurua, G.W. Bryant, F.J. García De Abajo, Plasmons in nearly touching metallic nanoparticles: Singular response in the limit of touching dimers. Opt. Express 14, 9988 (2006)

    Article  ADS  Google Scholar 

  164. J. Aizpurua, G.W. Bryant, L.J. Richter, F.J. García De Abajo, B.K. Kelley, T. Mallouk, Optical properties of coupled metallic nanorods for field-enhanced spectroscopy. Phys. Rev. B Condens. Matter Mater. Phys. 71, 1–13 (2005)

    Article  Google Scholar 

  165. P. Nordlander, C. Oubre, E. Prodan, K. Li, M.I. Stockman, J. Aizpurua, G.W. Bryant, L.J. Richter, F.J. García De Abajo, B.K. Kelley, T. Mallouk, Plasmon hybridization in nanoparticle dimers. Nano Lett. 4, 1–13 (2005)

    Google Scholar 

  166. F.J. García de Abajo, Nonlocal effects in the plasmons of strongly interacting nanoparticles, dimers, and waveguides. J. Phys. Chem. C 112, 17983–17987 (2008)

    Article  Google Scholar 

  167. C. David, F.J. García De Abajo, Spatial nonlocality in the optical response of metal nanoparticles. J. Phys. Chem. C 115, 19470–19475 (2011)

    Article  Google Scholar 

  168. C. Ciracì, R.T. Hill, J.J. Mock, Y. Urzhumov, A.I. Fernández-Domínguez, S.A. Maier, J.B. Pendry, A. Chilkoti, D.R. Smith, Probing the ultimate limits of plasmonic enhancement. Science 337, 1072–1074 (2012)

    Article  ADS  Google Scholar 

  169. C. David, F.J. García de Abajo, Surface plasmon dependence on the electron density profile at metal surfaces. ACS Nano 8, 9558–9566 (2014)

    Article  Google Scholar 

  170. N.A. Mortensen, S. Raza, M. Wubs, T. Søndergaard, S.I. Bozhevolnyi, A generalized non-local optical response theory for plasmonic nanostructures. Nat. Commun. 5, 3809 (2014)

    Article  ADS  Google Scholar 

  171. G. Toscano, J. Straubel, A. Kwiatkowski, C. Rockstuhl, F. Evers, H. Xu, N. Asger Mortensen, M. Wubs, Resonance shifts and spill-out effects in self-consistent hydrodynamic nanoplasmonics. Nat. Commun. 6, 7132 (2015)

    Article  ADS  Google Scholar 

  172. J.F. Mercier, M.L. Cordero, S. Félix, A. Ourir, A. Maurel, Classical homogenization to analyse the dispersion relations of spoof plasmons with geometrical and compositional effects. Proc. R. Soc. A Math. Phys. Eng. Sci. 471, 1–20 (2015)

    MathSciNet  MATH  Google Scholar 

  173. S. Raza, N. Stenger, S. Kadkhodazadeh, S.V. Fischer, N. Kostesha, A.P. Jauho, A. Burrows, M. Wubs, N.A. Mortensen, Blueshift of the surface plasmon resonance in silver nanoparticles studied with EELS. Nanophotonics 2, 131–138 (2013)

    Article  ADS  Google Scholar 

  174. J.M. Pitarke, V.M. Silkin, E.V. Chulkov, P.M. Echenique, Theory of surface plasmons and surface-plasmon polaritons. Rep. Prog. Phys. 70, 1–87 (2007)

    Article  ADS  Google Scholar 

  175. R. Esteban, A. Zugarramurdi, P. Zhang, P. Nordlander, F.J. García-Vidal, A.G. Borisov, J. Aizpurua, A classical treatment of optical tunneling in plasmonic gaps: Extending the quantum corrected model to practical situations. Faraday Discuss. 178, 151–183 (2015)

    Article  ADS  Google Scholar 

  176. Y. Luo, A.I. Fernandez-Dominguez, A. Wiener, S.A. Maier, J.B. Pendry, Surface plasmons and nonlocality: A simple model. Phys. Rev. Lett. 111, 1–5 (2013)

    Article  Google Scholar 

  177. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, W.E. Moerner, Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat. Photonics 3, 654–657 (2009)

    Article  ADS  Google Scholar 

  178. P.J. Schuck, D.P. Fromm, A. Sundaramurthy, G.S. Kino, W.E. Moerner, Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. Phys. Rev. Lett. 94, 017402-14–017402-17 (2005)

    Article  ADS  Google Scholar 

  179. J.N. Farahani, H.J. Eisler, D.W. Pohl, M. Pavius, P. Flückiger, P. Gasser, B. Hecht, Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy. Nanotechnology 18, 125506 (2007)

    Article  ADS  Google Scholar 

  180. H. Cha, J.H. Yoon, S. Yoon, Probing quantum plasmon coupling using gold nanoparticle dimers with tunable interparticle distances down to the subnanometer range. ACS Nano 8, 8554–8563 (2014)

    Article  Google Scholar 

  181. F. Benz, C. Tserkezis, L.O. Herrmann, B. De Nijs, A. Sanders, D.O. Sigle, L. Pukenas, S.D. Evans, J. Aizpurua, J.J. Baumberg, Nanooptics of molecular-shunted plasmonic nanojunctions. Nano Lett. 15, 669–674 (2015)

    Article  ADS  Google Scholar 

  182. A.S. Fedorov, P.O. Krasnov, M.A. Visotin, F.N. Tomilin, S.P. Polyutov, H. Ã…gren, Charge-transfer plasmons with narrow conductive molecular bridges: A quantum-classical theory. J. Chem. Phys. 151, 244125 (2019)

    Article  ADS  Google Scholar 

  183. P. Bléteau, M. Bastide, S. Gam-Derouich, P. Martin, R. Bonnet, J.C. Lacroix, Plasmon-induced grafting in the gap of gold nanoparticle dimers for plasmonic molecular junctions. ACS Appl. Nano Mater. 3, 7789–7794 (2020)

    Article  Google Scholar 

  184. N. Jiang, X. Zhuo, J. Wang, Active plasmonics: Principles, structures, and applications. Chem. Rev. 118, 3054–3099 (2018)

    Article  Google Scholar 

  185. L. Chen, A. Feng, M. Wang, J. Liu, W. Hong, X. Guo, D. Xiang, Towards single-molecule optoelectronic devices. Sci. China Chem. 61, 1368–1384 (2018)

    Article  Google Scholar 

  186. T.W. Odom, G.C. Schatz, Introduction to plasmonics. Chem. Rev. 111, 3667–3668 (2011)

    Article  Google Scholar 

  187. W.L. Barnes, A. Dereux, T.W. Ebbesen, Surface plasmon subwavelength optics. Nature 424, 824–830 (2003)

    Article  ADS  Google Scholar 

  188. Z. Zhao, R. Liu, D. Mayer, M. Coppola, L. Sun, Y. Kim, C. Wang, L. Ni, X. Chen, M. Wang, Z. Li, T. Lee, D. Xiang, Shaping the atomic-scale geometries of electrodes to control optical and electrical performance of molecular devices. Small 14, 1703815 (2018)

    Article  Google Scholar 

  189. G. Noy, A. Ophir, Y. Selzer, Response of molecular junctions to surface plasmon polaritons. Angew. Chem. 122, 5870–5872 (2010)

    Article  ADS  Google Scholar 

  190. A. Ahmadivand, B. Gerislioglu, R. Ahuja, Y. Kumar Mishra, Terahertz plasmonics: The rise of toroidal metadevices towards immunobiosensings. Mater. Today 32, 108–130 (2020)

    Article  Google Scholar 

  191. K. Garg, C. Majumder, S.K. Nayak, D.K. Aswal, S.K. Gupta, S. Chattopadhyay, Silicon-pyrene/perylene hybrids as molecular rectifiers. Phys. Chem. Chem. Phys. 17, 1891–1899 (2015)

    Article  Google Scholar 

  192. S.K. Yee, J. Sun, P. Darancet, T.D. Tilley, A. Majumdar, J.B. Neaton, R.A. Segalman, Inverse rectification in donor-acceptor molecular heterojunctions. ACS Nano 5, 9256–9263 (2011)

    Article  Google Scholar 

  193. H. Nakamura, Y. Asai, J. Hihath, C. Bruot, N. Tao, Switch of conducting orbital by bias-induced electronic contact asymmetry in a bipyrimidinyl-biphenyl diblock molecule: Mechanism to achieve a pn directional molecular diode. J. Phys. Chem. C 115, 19931–19938 (2011)

    Article  Google Scholar 

  194. H. Song, Y. Kim, Y.H. Jang, H. Jeong, M.A. Reed, T. Lee, Observation of molecular orbital gating. Nature 462, 1039–1043 (2009)

    Article  ADS  Google Scholar 

  195. P. Zhou, J. Zheng, T. Han, L. Chen, W. Cao, Y. Zhu, D. Zhou, R. Li, Y. Tian, Z. Liu, J. Liu, W. Hong, Electrostatic gating of single-molecule junctions based on the STM-BJ technique. Nanoscale 13, 7600 (2021)

    Article  Google Scholar 

  196. S. Ballmann, H.B. Weber, An electrostatic gate for mechanically controlled single-molecule junctions. New J. Phys. 14, 123028 (2012)

    Article  ADS  Google Scholar 

  197. M. Kotiuga, P. Darancet, C.R. Arroyo, L. Venkataraman, J.B. Neaton, Adsorption-induced solvent-based electrostatic gating of charge transport through molecular junctions. Nano Lett. 15, 4498–4503 (2015)

    Article  ADS  Google Scholar 

  198. A. Akhtar, U. Rashid, C. Seth, S. Kumar, P. Broekmann, V. Kaliginedi, Modulating the charge transport in metal | molecule | metal junctions via electrochemical gating. Electrochim. Acta 388, 138540 (2021)

    Article  Google Scholar 

  199. B. Capozzi, Q. Chen, P. Darancet, M. Kotiuga, M. Buzzeo, J.B. Neaton, C. Nuckolls, L. Venkataraman, Tunable charge transport in single-molecule junctions via electrolytic gating. Nano Lett. 14, 1400–1404 (2014)

    Article  ADS  Google Scholar 

  200. R.J. Nichols, S.J. Higgins, Single molecule nanoelectrochemistry in electrical junctions. Acc. Chem. Res. 49, 2640–2648 (2016)

    Article  Google Scholar 

  201. Y. Li, M. Buerkle, G. Li, A. Rostamian, H. Wang, Z. Wang, D.R. Bowler, T. Miyazaki, L. Xiang, Y. Asai, G. Zhou, N. Tao, Gate controlling of quantum interference and direct observation of anti-resonances in single molecule charge transport. Nat. Mater. 18, 357–363 (2019)

    Article  ADS  Google Scholar 

  202. S.J. Van Der Molen, J. Liao, T. Kudernac, J.S. Agustsson, L. Bernard, M. Calame, B.J. Van Wees, B.L. Feringa, C. Schönenberger, Light-controlled conductance switching of ordered metal-molecule-metal devices. Nano Lett. 9, 76–80 (2009)

    Article  ADS  Google Scholar 

  203. J.M. Artés, M. Lõpez-Martínez, I. Díez-Pérez, F. Sanz, P. Gorostiza, Conductance switching in single wired redox proteins. Small 10, 2537–2541 (2014)

    Article  Google Scholar 

  204. Y. Han, C. Nickle, Z. Zhang, H.P.A.G. Astier, T.J. Duffin, D. Qi, Z. Wang, E. del Barco, D. Thompson, C.A. Nijhuis, Electric-field-driven dual-functional molecular switches in tunnel junctions. Nat. Mater. 19, 843–848 (2020)

    Article  ADS  Google Scholar 

  205. Y.B. Zheng, Q. Hao, Y.W. Yang, B. Kiraly, I.K. Chiang, T.J. Huang, Light-driven artificial molecular machines. SPIE Rev. 1, 1199–1210 (2010)

    Google Scholar 

  206. T. Lee, S.U. Kim, J. Min, J.W. Choi, Multilevel biomemory device consisting of recombinant azurin/cytochrome c. Adv. Mater. 22, 510–514 (2010)

    Article  ADS  Google Scholar 

  207. F. Meng, L. Jiang, K. Zheng, C.F. Goh, S. Lim, H.H. Hng, J. Ma, F. Boey, X. Chen, Protein-based memristive nanodevices. Small 7, 3016–3020 (2011)

    Article  Google Scholar 

  208. J.E. Green, J. Wook Choi, A. Boukai, Y. Bunimovich, E. Johnston-Halperin, E. Deionno, Y. Luo, B.A. Sheriff, K. Xu, Y. Shik Shin, H.R. Tseng, J.F. Stoddart, J.R. Heath, A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre. Nature 445, 414–417 (2007)

    Article  ADS  Google Scholar 

  209. J. Bai, A. Daaoub, S. Sangtarash, X. Li, Y. Tang, Q. Zou, H. Sadeghi, S. Liu, X. Huang, Z. Tan, J. Liu, Y. Yang, J. Shi, G. Mészáros, W. Chen, C. Lambert, W. Hong, Anti-resonance features of destructive quantum interference in single-molecule thiophene junctions achieved by electrochemical gating. Nat. Mater. 18, 364–369 (2019)

    Article  ADS  Google Scholar 

  210. T. Markussen, R. Stadler, K.S. Thygesen, The relation between structure and quantum interference in single molecule junctions. Nano Lett. 10, 4260–4265 (2010)

    Article  ADS  Google Scholar 

  211. V. Kaliginedi, P. Moreno-García, H. Valkenier, W. Hong, V.M. García-Suárez, P. Buiter, J.L.H. Otten, J.C. Hummelen, C.J. Lambert, T. Wandlowski, Correlations between molecular structure and single-junction conductance: A case study with oligo(phenylene-ethynylene)-type wires. J. Am. Chem. Soc. 134, 5262–5275 (2012)

    Article  Google Scholar 

  212. G. Yang, S. Sangtarash, Z. Liu, X. Li, H. Sadeghi, Z. Tan, R. Li, J. Zheng, X. Dong, J. Liu, Y. Yang, J. Shi, Z. Xiao, G. Zhang, C. Lambert, W. Hong, D. Zhang, Protonation tuning of quantum interference in azulene-type single-molecule junctions. Chem. Sci. 8, 7505–7509 (2017)

    Article  Google Scholar 

  213. B. Huang, X. Liu, Y. Yuan, Z.W. Hong, J.F. Zheng, L.Q. Pei, Y. Shao, J.F. Li, X.S. Zhou, J.Z. Chen, S. Jin, B.W. Mao, Controlling and observing sharp-valleyed quantum interference effect in single molecular junctions. J. Am. Chem. Soc. 140, 50 17685–17690 (2018)

    Google Scholar 

  214. J.D. Le, Y. He, T.R. Hoye, C.C. Mead, R.A. Kiehl, Negative differential resistance in a bilayer molecular junction. Appl. Phys. Lett. 83, 5518–5520 (2003)

    Article  ADS  Google Scholar 

  215. J. Chen, M.A. Reed, A.M. Rawlett, J.M. Tour, Large on-off ratios and negative differential resistance in a molecular electronic device. Science 286, 1550–1552 (1999)

    Article  Google Scholar 

  216. C. Jia, L. Cao, X. Zhou, B. Zhou, G. Zhou, Low-bias negative differential resistance in junction of a benzene between zigzag-edged phosphorene nanoribbons. J. Phys. Condens. Matter 30, 265301 (2018)

    Article  ADS  Google Scholar 

  217. I. Bâldea, Important issues facing model-based approaches to tunneling transport in molecular junctions. Phys. Chem. Chem. Phys. 17, 20217–20230 (2015)

    Article  Google Scholar 

  218. A.K. Mitchell, K.G.L. Pedersen, P. HedegÅrd, J. Paaske, Kondo blockade due to quantum interference in single-molecule junctions. Nat. Commun. 8, 1–10 (2017)

    Article  Google Scholar 

  219. P. Zalom, J. De Bruijckere, R. Gaudenzi, H.S.J. Van Der Zant, T. Novotný, R. Korytár, Magnetically tuned Kondo effect in a molecular double quantum dot: Role of the anisotropic exchange. J. Phys. Chem. C 123, 11917–11925 (2019)

    Article  Google Scholar 

  220. L.H. Yu, D. Natelson, The Kondo effect in C60 single-molecule transistors. Nano Lett. 4, 79–83 (2004)

    Article  ADS  Google Scholar 

  221. W. Liang, M.P. Shores, M. Bockrath, J.R. Long, H. Park, Kondo resonance in a single-molecule transistor. Nature 417, 725–729 (2002)

    Article  ADS  Google Scholar 

  222. K.B. Dhungana, R. Pati, Giant amplification of tunnel magnetoresistance in a molecular junction: Molecular spin-valve transistor. Appl. Phys. Lett. 104, 162404 (2014)

    Article  ADS  Google Scholar 

  223. D. Li, A. Smogunov, Giant magnetoresistance due to orbital-symmetry mismatch in transition metal benzene sandwich molecules. Phys. Rev. B 103, 085432 (2021)

    Article  ADS  Google Scholar 

  224. L.L. Tao, J. Wang, Giant magnetoresistance and perfect spin filter effects in manganese phthalocyanine based molecular junctions. Nanoscale 9, 12684–12689 (2017)

    Article  Google Scholar 

  225. N.L. Rangel, J.M. Seminario, Vibronics and plasmonics based graphene sensors. J. Chem. Phys. 132, 1–5 (2010)

    Article  Google Scholar 

  226. C. Karnetzky, P. Zimmermann, C. Trummer, C. Duque Sierra, M. Wörle, R. Kienberger, A. Holleitner, Towards femtosecond on-chip electronics based on plasmonic hot electron nano-emitters. Nat. Commun. 9, 1–7 (2018)

    Article  Google Scholar 

  227. P. Berini, Amplification and lasing with surface plasmon polaritons, in Handbook of Surface Science, (Elsevier, Amsterdam, 2014), pp. 309–328

    Google Scholar 

  228. M. Faryad, A.S. Hall, G.D. Barber, T.E. Mallouk, A. Lakhtakia, Excitation of multiple surface-plasmon-polariton waves guided by the periodically corrugated interface of a metal and a periodic multilayered isotropic dielectric material. J. Opt. Soc. Am. B Opt. Phys. 29, 704–713 (2012)

    Article  ADS  Google Scholar 

  229. A. Kalmykov, A. Kuzin, D. Negrov, P. Melentiev, V. Balykin, New method of SPP excitation based on metal photoluminescence. Opt. Commun. 486, 126793 (2021)

    Article  Google Scholar 

  230. E.J.R. Vesseur, J. Aizpurua, T. Coenen, A. Reyes-Coronado, P.E. Batson, A. Polman, Plasmonic excitation and manipulation with an electron beam. MRS Bull. 37, 752–760 (2012)

    Article  Google Scholar 

  231. M.V. Bashevoy, F. Jonsson, A.V. Krasavin, N.I. Zheludev, Y. Chen, M.I. Stockman, Generation of traveling surface plasmon waves by free-electron impact. Nano Lett. 6, 1113–1115 (2006)

    Article  ADS  Google Scholar 

  232. M. Vadai, N. Nachman, M. Ben-Zion, M. Bürkle, F. Pauly, J.C. Cuevas, Y. Selzer, Plasmon-induced conductance enhancement in single-molecule junctions. J. Phys. Chem. Lett. 4, 2811–2816 (2013)

    Article  Google Scholar 

  233. A. Serrano, O. Rodríguez De La Fuente, V. Collado, J. Rubio-Zuazo, C. Monton, G.R. Castro, M.A. García, Simultaneous surface plasmon resonance and x-ray absorption spectroscopy. Rev. Sci. Instrum. 83, 83101 (2012)

    Article  Google Scholar 

  234. J.A. Schuller, E.S. Barnard, W. Cai, Y.C. Jun, J.S. White, M.L. Brongersma, Plasmonics for extreme light concentration and manipulation. Nat. Mater. 9, 193–204 (2010)

    Article  ADS  Google Scholar 

  235. D.K. Gramotnev, S.I. Bozhevolnyi, Plasmonics beyond the diffraction limit. Nat. Photonics 4, 83–91 (2010)

    Article  ADS  Google Scholar 

  236. S. Jahani, Z. Jacob, Transparent subdiffraction optics: Nanoscale light confinement without metal. Optica 1, 96 (2014)

    Article  ADS  Google Scholar 

  237. Y. Gutiérrez, A.S. Brown, F. Moreno, M. Losurdo, Plasmonics beyond noble metals: Exploiting phase and compositional changes for manipulating plasmonic performance. J. Appl. Phys. 128, 080901 (2020)

    Article  ADS  Google Scholar 

  238. H.J. Lezec, J.A. Dionne, H.A. Atwater, Negative refraction at visible frequencies. Science 316, 430–432 (2007)

    Article  ADS  Google Scholar 

  239. R.J. Walters, R.V.A. van Loon, I. Brunets, J. Schmitz, A. Polman, A silicon-based electrical source of surface plasmon polaritons. Nat. Mater. 9, 21–25 (2010)

    Article  ADS  Google Scholar 

  240. M. Schwartz, E. Schmidt, U. Rengstl, F. Hornung, S. Hepp, S.L. Portalupi, K. Llin, M. Jetter, M. Siegel, P. Michler, Fully on-chip single-photon hanbury-brown and twiss experiment on a monolithic semiconductor–superconductor platform. Nano Lett. 18, 6892–6897 (2018)

    Article  ADS  Google Scholar 

  241. P. Albella, R. Alcaraz de la Osa, F. Moreno, S.A. Maier, Electric and magnetic field enhancement with ultralow heat radiation dielectric nanoantennas: Considerations for surface-enhanced spectroscopies. ACS Photon. 1, 524–529 (2014)

    Article  Google Scholar 

  242. S. Zeng, K.V. Sreekanth, J. Shang, T. Yu, C.-K. Chen, F. Yin, D. Baillargeat, P. Coquet, H.-P. Ho, A.V. Kabashin, K.-T. Yong, Graphene-gold metasurface architectures for ultrasensitive plasmonic biosensing. Adv. Mater. 27, 6163–6169 (2015)

    Article  Google Scholar 

  243. H. Yu, Y. Peng, Y. Yang, Z.Y. Li, Plasmon-enhanced light–matter interactions and applications. npj Comput. Mater. 5, 1–14 (2019)

    Article  ADS  Google Scholar 

  244. Y. Li, K. Tantiwanichapan, A.K. Swan, R. Paiella, Graphene plasmonic devices for terahertz optoelectronics. Nanophotonics 9, 1901–1920 (2020)

    Article  Google Scholar 

  245. H.T. Chorsi, S.D. Gedney, Tunable plasmonic optoelectronic devices based on graphene metasurfaces. IEEE Photon. Technol. Lett. 29, 228–230 (2017)

    Article  ADS  Google Scholar 

  246. A. Politano, L. Viti, M.S. Vitiello, Optoelectronic devices, plasmonics, and photonics with topological insulators. APL Mater. 5, 35504 (2017)

    Article  Google Scholar 

  247. Z. Liang, J. Sun, Y. Jiang, L. Jiang, X. Chen, Plasmonic enhanced optoelectronic devices. Plasmonics 9, 859–866 (2014)

    Article  Google Scholar 

  248. A. Demming, M. Brongersma, D.S. Kim, Plasmonics in optoelectronic devices. Nanotechnology 23, 440201 (2012)

    Article  Google Scholar 

  249. J.C. Lacroix, P. Martin, P.C. Lacaze, Tailored surfaces/assemblies for molecular plasmonics and plasmonic molecular electronics. Annu. Rev. Anal. Chem. 10, 201–224 (2017)

    Article  Google Scholar 

  250. S. Unser, I. Bruzas, J. He, L. Sagle, Localized surface plasmon resonance biosensing: Current challenges and approaches. Sensors (Switzerland) 15, 15684–15716 (2015)

    Article  ADS  Google Scholar 

  251. A.J. Wilson, K.A. Willets, Molecular plasmonics. Annu. Rev. Anal. Chem. 9, 27–43 (2016)

    Article  Google Scholar 

  252. J. Lee, D.J. Jeon, J.S. Yeo, Quantum plasmonics: Energy transport through plasmonic gap. Adv. Mater. 33, 2006606-1–2006606-27 (2021)

    Article  Google Scholar 

  253. J.C. Lacroix, Q. van Nguyen, Y. Ai, Q. van Nguyen, P. Martin, P.C. Lacaze, From active plasmonic devices to plasmonic molecular electronics. Polym. Int. 68, 607–619 (2019)

    Article  Google Scholar 

  254. Y. Sun, L. Jiang, L. Zhong, Y. Jiang, X. Chen, Towards active plasmonic response devices. Nano Res. 8, 406–417 (2015)

    Article  Google Scholar 

  255. M. Iwane, S. Fujii, M. Kiguchi, Surface-enhanced Raman scattering in molecular junctions. Sensors (Switzerland) 17, 1901 (2017)

    Article  Google Scholar 

  256. Y. Fu, A.V. Rudnev, Scanning probe microscopy of an electrode/ionic liquid interface. Curr. Opin. Electrochem. 1, 59–65 (2017)

    Article  Google Scholar 

  257. A. Bellec, J. Lagoute, V. Repain, Molecular electronics: Scanning tunneling microscopy and single-molecule devices. Comp. Rendus Chim. 21, 1287–1299 (2018)

    Article  Google Scholar 

  258. S. Kasani, K. Curtin, N. Wu, A review of 2D and 3D plasmonic nanostructure array patterns: Fabrication, light management and sensing applications. Nanophotonics 8, 2065–2089 (2019)

    Article  Google Scholar 

  259. F. Evers, R. Korytár, S. Tewari, J.M. Van Ruitenbeek, Advances and challenges in single-molecule electron transport. Rev. Mod. Phys. 92, 1–69 (2020)

    Article  Google Scholar 

  260. C. Grupe, Visions for a molecular future. Nat. Nanotechnol. 8, 385–389 (2013)

    Article  Google Scholar 

  261. T. Lutz, C. Große, C. Dette, A. Kabakchiev, F. Schramm, M. Ruben, R. Gutzler, K. Kuhnke, U. Schlickum, K. Kern, Molecular orbital gates for plasmon excitation. Nano Lett. 13, 2846–2850 (2013)

    Article  ADS  Google Scholar 

  262. T.-C. Hung, B. Kiraly, J.H. Strik, A.A. Khajetoorians, D. Wegner, Plasmon-driven motion of an individual molecule. Nano Lett. 21, 12, 5006–5012 (2021)

    Google Scholar 

  263. N. Maccaferri, G. Barbillon, A.N. Koya, G. Lu, G.P. Acuna, D. Garoli, Recent advances in plasmonic nanocavities for single-molecule spectroscopy. Nanoscale Adv. 3, 633–642 (2021)

    Article  ADS  Google Scholar 

  264. H. Böckmann, M. Müller, A. Hammud, M.G. Willinger, M. Pszona, J. Waluk, M. Wolf, T. Kumagai, Near-field spectral response of optically excited scanning tunneling microscope junctions probed by single-molecule action spectroscopy. J. Phys. Chem. Lett. 10, 2068–2074 (2019)

    Article  Google Scholar 

  265. P.P. Pal, N. Jiang, M.D. Sonntag, N. Chiang, E.T. Foley, M.C. Hersam, R.P. Van Duyne, T. Seideman, Plasmon-mediated electron transport in tip-enhanced Raman spectroscopic junctions. J. Phys. Chem. Lett. 6, 4210–4218 (2015)

    Article  Google Scholar 

  266. H. Imada, K. Miwa, M. Imai-Imada, S. Kawahara, K. Kimura, Y. Kim, Single-molecule investigation of energy dynamics in a coupled plasmon-exciton system. Phys. Rev. Lett. 119, 1–6 (2017)

    Article  Google Scholar 

  267. M. Usman, K.P. Bera, G. Haider, B. Sainbileg, M. Hayashi, G.H. Lee, S.M. Peng, Y.F. Chen, K.L. Lu, Single-molecule-based electroluminescent device as future white light source. ACS Appl. Mater. Interfaces 11, 4084–4092 (2019)

    Article  Google Scholar 

  268. H.P. Goswami, W. Hua, Y. Zhang, S. Mukamel, U. Harbola, Electroluminescence in molecular junctions: A diagrammatic approach. J. Chem. Theory Comput. 11, 4304–4315 (2015)

    Article  Google Scholar 

  269. A.N. Nazarov, I.N. Osiyuk, J.M. Sun, R.A. Yankov, W. Skorupa, I.P. Tyagulskii, V.S. Lysenko, S. Prucnal, T. Gebel, L. Rebohle, Quenching of electroluminescence and charge trapping in high-efficiency Ge-implanted MOS light-emitting silicon diodes. Appl. Phys. B Lasers Opt. 87, 129–134 (2007)

    Article  ADS  Google Scholar 

  270. H.F. Haneef, A.M. Zeidell, O.D. Jurchescu, Charge carrier traps in organic semiconductors: A review on the underlying physics and impact on electronic devices. J. Mater. Chem. C 8, 759–787 (2020)

    Article  Google Scholar 

  271. S.-E. Zhu, Y.-M. Kuang, F. Geng, J.-Z. Zhu, C.-Z. Wang, Y.-J. Yu, Y. Luo, Y. Xiao, K.-Q. Liu, Q.-S. Meng, L. Zhang, S. Jiang, Y. Zhang, G.-W. Wang, Z.-C. Dong, J.G. Hou, Self-decoupled porphyrin with a tripodal anchor for molecular-scale electroluminescence. J. Am. Chem. Soc. 135, 15794–15800 (2013)

    Article  Google Scholar 

  272. C. Chen, P. Chu, C.A. Bobisch, D.L. Mills, W. Ho, Viewing the interior of a single molecule: Vibronically resolved photon imaging at submolecular resolution. Phys. Rev. Lett. 105, 217402 (2010)

    Article  ADS  Google Scholar 

  273. G. Reecht, F. Scheurer, V. Speisser, Y.J. Dappe, F. Mathevet, G. Schull, Electroluminescence of a polythiophene molecular wire suspended between a metallic surface and the tip of a scanning tunneling microscope. Phys. Rev. Lett. 112, 047403 (2014)

    Article  ADS  Google Scholar 

  274. E. Kazuma, J. Jung, H. Ueba, M. Trenary, Y. Kim, Real-space and real-time observation of a plasmon-induced chemical reaction of a single molecule. Science 360, 521–526 (2018)

    Article  ADS  Google Scholar 

  275. E. Kazuma, M. Lee, J. Jung, M. Trenary, Y. Kim, Single-molecule study of a plasmon-induced reaction for a strongly chemisorbed molecule. Angew. Chem. 132, 8034–8040 (2020)

    Article  ADS  Google Scholar 

  276. A.C. Aragonés, K. Domke, Electrochemical gating enhances nearfield trapping of single metalloprotein junctions. J. Mater. Chem. C, 9, 11698–11706 (2021)

    Google Scholar 

  277. C. Huang, M. Jevric, A. Borges, S.T. Olsen, J.M. Hamill, J.T. Zheng, Y. Yang, A. Rudnev, M. Baghernejad, P. Broekmann, A.U. Petersen, T. Wandlowski, K.V. Mikkelsen, G.C. Solomon, M. Brøndsted Nielsen, W. Hong, Single-molecule detection of dihydroazulene photo-thermal reaction using break junction technique. Nat. Commun. 8, 15436 (2017)

    Article  ADS  Google Scholar 

  278. D. Xiang, H. Jeong, D. Kim, T. Lee, Y. Cheng, Q. Wang, D. Mayer, Three-terminal single-molecule junctions formed by mechanically controllable break junctions with side gating. Nano Lett. 13, 2809–2813 (2013)

    Article  ADS  Google Scholar 

  279. K. Yoshihiko, O. Yoshifumi, T. Kunio, Development of mechanically controllable break-junction combined with transmission electron microscopy for single-atom contact. Microsc. Microanal. 13, 738–739 (2007)

    Article  Google Scholar 

  280. J. Tian, B. Liu, Y.Z. Li, B. Ren, S. Wu, T.Z.-Q. Tao, Study of molecular junctions with a combined surface-enhanced Raman and mechanically controllable break junction method. J. Am. Chem. Soc. 128, 14748–14749 (2006)

    Article  Google Scholar 

  281. J.H. Tian, B. Liu, S. Jin, K. Dai, Z.B. Chen, X. Li, H. Ke, S.T. Wu, Y. Yang, B. Ren, B.W. Mao, N. Tao, Z.Q. Tian, A combined SERS and MCBJ study on molecular junctions on silicon chips, in 2007 7th IEEE International Conference on Nanotechnology—IEEE-NANO 2007, Proceedings, (IEEE, Piscataway, NJ, 2007), pp. 1302–1305

    Google Scholar 

  282. E. Lörtscher, Wiring molecules into circuits. Nat. Nanotechnol. 8, 381–384 (2013)

    Article  ADS  Google Scholar 

  283. M.M. Waldrop, The chips are down for Moore’s law. Nature 530, 144–147 (2016)

    Article  ADS  Google Scholar 

  284. R.M. Metzger, Quo vadis, unimolecular electronics? Nanoscale 10, 10316–10332 (2018)

    Article  Google Scholar 

  285. C. Guo, X. Chen, S.Y. Ding, D. Mayer, Q. Wang, Z. Zhao, L. Ni, H. Liu, T. Lee, B. Xu, D. Xiang, Molecular orbital gating surface-enhanced Raman scattering. ACS Nano 12, 11229–11235 (2018)

    Article  Google Scholar 

  286. S. Kobayashi, S. Kaneko, S. Fujii, T. Nishino, K. Tsukagoshi, M. Kiguchi, Stretch dependent electronic structure and vibrational energy of the bipyridine single molecule junction. Phys. Chem. Chem. Phys. 21, 16910–16913 (2019)

    Article  Google Scholar 

  287. T. Xie, C. Jing, Y.T. Long, Single plasmonic nanoparticles as ultrasensitive sensors. Analyst 142, 409–420 (2017)

    Article  ADS  Google Scholar 

  288. L. Bernard, Y. Kamdzhilov, M. Calame, S.J. Van Der Molen, J. Liao, C. Schönenbergei, Spectroscopy of molecular junction networks obtained by place exchange in 2D nanoparticle arrays. J. Phys. Chem. C 111, 18445–18450 (2007)

    Article  Google Scholar 

  289. M. Belkin, S.H. Chao, M.P. Jonsson, C. Dekker, A. Aksimentiev, Plasmonic nanopores for trapping, controlling displacement, and sequencing of DNA. ACS Nano 9, 10598–10611 (2015)

    Article  Google Scholar 

  290. N. Yu, J. Fan, Q.J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, F. Capasso, Small-divergence semiconductor lasers by plasmonic collimation. Nat. Photonics 2, 564–570 (2008)

    Article  Google Scholar 

  291. K.-T. Lin, H.-L. Chen, Y.-S. Lai, Y.-M. Chi, T.-W. Chu, Plasmonics-based multifunctional electrodes for low-power-consumption compact color-image sensors. ACS Appl. Mater. Interfaces 8, 6718–6726 (2016)

    Article  Google Scholar 

  292. S. Lal, S. Link, N.J. Halas, Nano-optics from sensing to waveguiding, in Nanoscience and Technology, (Macmillan Publishers Ltd., London, 2009), pp. 213–220

    Chapter  Google Scholar 

  293. Y. Zhang, N. Stokes, B. Jia, S. Fan, M. Gu, Towards ultra-thin plasmonic silicon wafer solar cells with minimized efficiency loss. Sci. Rep. 4, 4939 (2014)

    Article  ADS  Google Scholar 

  294. Z.P. Lv, Z.Z. Luan, H.Y. Wang, S. Liu, C.H. Li, D. Wu, J.L. Zuo, S. Sun, Tuning electron-conduction and spin transport in magnetic iron oxide nanoparticle assemblies via tetrathiafulvalene-fused ligands. ACS Nano 9, 12205–12213 (2015)

    Article  Google Scholar 

  295. B. De Nijs, F. Benz, S.J. Barrow, D.O. Sigle, R. Chikkaraddy, A. Palma, C. Carnegie, M. Kamp, R. Sundararaman, P. Narang, O.A. Scherman, J.J. Baumberg, Plasmonic tunnel junctions for single-molecule redox chemistry. Nat. Commun. 8, 1–7 (2017)

    Google Scholar 

  296. R. Arielly, A. Ofarim, G. Noy, Y. Selzer, Accurate determination of plasmonic fields in molecular junctions by current rectification at optical frequencies. Nano Lett. 11, 2968–2972 (2011)

    Article  ADS  Google Scholar 

  297. S. Sanvito, Molecular spintronics. Chem. Soc. Rev. 40, 3336–3355 (2011)

    Article  Google Scholar 

  298. K. Michaeli, V. Varade, R. Naaman, D.H. Waldeck, A new approach towards spintronics-spintronics with no magnets. J. Phys. Condens. Matter 29, 103002 (2017)

    Article  ADS  Google Scholar 

  299. S. Sanvito, Molecular spintronics: The rise of spinterface science. Nat. Phys. 6, 562–564 (2010)

    Article  Google Scholar 

  300. A. Karabchevsky, A. Katiyi, A.S. Ang, A. Hazan, On-chip nanophotonics and future challenges. Nanophotonics 9, 3733–3753 (2020)

    Article  Google Scholar 

  301. P. Fan, C. Colombo, K.C.Y. Huang, P. Krogstrup, J. Nygård, I. Fontcuberta, A. Morral, M.L. Brongersma, An electrically-driven GaAs nanowire surface plasmon source. Nano Lett. 12, 4943–4947 (2012)

    Article  ADS  Google Scholar 

  302. K.C.Y. Huang, M.K. Seo, T. Sarmiento, Y. Huo, J.S. Harris, M.L. Brongersma, Electrically driven subwavelength optical nanocircuits. Nat. Photonics 8, 244–249 (2014)

    Article  ADS  Google Scholar 

  303. C.R. McDonald, G. Orlando, G. Vampa, T. Brabec, Tunneling time, what is its meaning? J. Phys. Conf. Ser. 594, 012019 (2015)

    Article  Google Scholar 

  304. D. Shafir, H. Soifer, B.D. Bruner, M. Dagan, Y. Mairesse, S. Patchkovskii, M.Y. Ivanov, O. Smirnova, N. Dudovich, Resolving the time when an electron exits a tunnelling barrier. Nature 485, 343–346 (2012)

    Article  ADS  Google Scholar 

  305. A. Katiyi, A. Karabchevsky, Si nanostrip optical waveguide for on-chip broadband molecular overtone spectroscopy in near-infrared. ACS Sensors 3, 618–623 (2018)

    Article  Google Scholar 

  306. P. Arora, A. Krishnan, On-chip label-free plasmonic based imaging microscopy for microfluidics. J. Phys. Commun. 2, 85012 (2018)

    Article  Google Scholar 

  307. W. Du, T. Wang, H.S. Chu, L. Wu, R. Liu, S. Sun, W.K. Phua, L. Wang, N. Tomczak, C.A. Nijhuis, On-chip molecular electronic plasmon sources based on self-assembled monolayer tunnel junctions. Nat. Photonics 10, 274–280 (2016)

    Article  ADS  Google Scholar 

  308. R. Verberk, M. Orrit, Photon statistics in the fluorescence of single molecules and nanocrystals: Correlation functions versus distributions of on- and off-times. J. Chem. Phys. 119, 2214–2222 (2003)

    Article  ADS  Google Scholar 

  309. R. Haag, M.A. Rampi, R.E. Holmlin, G.M. Whitesides, Electrical breakdown of aliphatic and aromatic self-assembled monolayers used as nanometer-thick organic dielectrics. J. Am. Chem. Soc. 121, 7895–7906 (1999)

    Article  Google Scholar 

  310. G. Gauglitz, J. Homola, Direct optical detection. Anal. Bioanal. Chem. 407, 3881–3882 (2015)

    Article  Google Scholar 

  311. H. Tang, C.J. Chen, Z. Huang, J. Bright, G. Meng, R.S. Liu, N. Wu, Plasmonic hot electrons for sensing, photodetection, and solar energy applications: A perspective. J. Chem. Phys. 152, 220901 (2020)

    Article  ADS  Google Scholar 

  312. K. Ueno, H. Misawa, Surface plasmon-enhanced photochemical reactions. J. Photochem. Photobiol. C Photochem. Rev. 15, 31–52 (2013)

    Article  Google Scholar 

  313. A. Furube, S. Hashimoto, Insight into plasmonic hot-electron transfer and plasmon molecular drive: New dimensions in energy conversion and nanofabrication. NPG Asia Mater. 9, e454 (2017)

    Article  Google Scholar 

  314. J. Jana, M. Ganguly, T. Pal, Enlightening surface plasmon resonance effect of metal nanoparticles for practical spectroscopic application. RSC Adv. 6, 86174–86211 (2016)

    Article  ADS  Google Scholar 

  315. P.K. Tien, J.P. Gordon, Multiphoton process observed in the interaction of microwave fields with the tunneling between superconductor films. Phys. Rev. 129, 647–651 (1963)

    Article  ADS  Google Scholar 

  316. K.M. Goodfellow, C. Chakraborty, R. Beams, L. Novotny, A.N. Vamivakas, Direct on-chip optical plasmon detection with an atomically thin semiconductor. Nano Lett. 15, 5477–5481 (2015)

    Article  ADS  Google Scholar 

  317. R. D’Agata, N. Bellassai, M. Allegretti, A. Rozzi, S. Korom, A. Manicardi, E. Melucci, E. Pescarmona, R. Corradini, P. Giacomini, G. Spoto, Direct plasmonic detection of circulating RAS mutated DNA in colorectal cancer patients. Biosens. Bioelectron. 170, 112648 (2020)

    Article  Google Scholar 

  318. J. Tong, W. Zhou, Y. Qu, Z. Xu, Z. Huang, D.H. Zhang, Surface plasmon induced direct detection of long wavelength photons. Nat. Commun. 8, 1–8 (2017)

    Article  Google Scholar 

  319. E. Kretschmann, H. Raether, Radiative decay of non radiative surface plasmons excited by light. Z. Nat. A 23, 2135–2136 (1968)

    Google Scholar 

  320. A.P. Vinogradov, A.V. Dorofeenko, A.A. Pukhov, A.A. Lisyansky, Exciting surface plasmon polaritons in the Kretschmann configuration by light beam. Phys. Rev. B 97, 235407 (2018)

    Article  ADS  Google Scholar 

  321. H.S. Leong, J. Guo, R.G. Lindquist, Q.H. Liu, Surface plasmon resonance in nanostructured metal films under the Kretschmann configuration. J. Appl. Phys. 106, 124314 (2009)

    Article  ADS  Google Scholar 

  322. C.W. Marquardt, S. Grunder, A. Błaszczyk, S. Dehm, F. Hennrich, H.V. Löhneysen, M. Mayor, R. Krupke, Electroluminescence from a single nanotube-molecule-nanotube junction. Nat. Nanotechnol. 5, 863–867 (2010)

    Article  ADS  Google Scholar 

  323. W. Du, Y. Han, H. Hu, H.S. Chu, H.V. Annadata, T. Wang, N. Tomczak, C.A. Nijhuis, Directional excitation of surface plasmon polaritons via molecular through-bond tunneling across double-barrier tunnel junctions. Nano Lett. 19, 4634–4640 (2019)

    Article  ADS  Google Scholar 

  324. M.M. Thuo, W.F. Reus, C.A. Nijhuis, J.R. Barber, C. Kim, M.D. Schulz, G.M. Whitesides, Odd-even effects in charge transport across self-assembled monolayers. J. Am. Chem. Soc. 133, 2962–2975 (2011)

    Article  Google Scholar 

  325. A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F.R. Aussenegg, A. Leitner, J.R. Krenn, Leakage radiation microscopy of surface plasmon polaritons. Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 149, 220–229 (2008)

    Article  Google Scholar 

  326. K.A. Willets, R.P. Van Duyne, Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 58, 267–297 (2007)

    Article  ADS  Google Scholar 

  327. J. Zhou, K. Wang, B. Xu, Y. Dubi, Photoconductance from exciton binding in molecular junctions. J. Am. Chem. Soc. 140, 70–73 (2018)

    Article  Google Scholar 

  328. H. Bi, C.A. Palma, Y. Gong, P. Hasch, M. Elbing, M. Mayor, J. Reichert, J.V. Barth, Voltage-driven conformational switching with distinct Raman signature in a single-molecule junction. J. Am. Chem. Soc. 140, 4835–4840 (2018)

    Article  Google Scholar 

  329. H. Jeong, D. Kim, D. Xiang, T. Lee, High-yield functional molecular electronic devices. ACS Nano 11, 6511–6548 (2017)

    Article  Google Scholar 

  330. L. Cui, R. Miao, C. Jiang, E. Meyhofer, P. Reddy, Perspective: Thermal and thermoelectric transport in molecular junctions. J. Chem. Phys. 146, 92201 (2017)

    Article  Google Scholar 

  331. Z. Ioffe, T. Shamai, A. Ophir, G. Noy, I. Yutsis, K. Kfir, O. Cheshnovsky, Y. Selzer, Detection of heating in current-carrying molecular junctions by Raman scattering. Nat. Nanotechnol. 3, 727–732 (2008)

    Article  ADS  Google Scholar 

  332. D.Y. Wu, Z.L. Bin, X.M. Liu, R. Huang, Y.F. Huang, B. Ren, Z.Q. Tian, Photon-driven charge transfer and photocatalysis of p-aminothiophenol in metal nanogaps: A DFT study of SERS. Chem. Commun. 47, 2520–2522 (2011)

    Article  Google Scholar 

  333. T.H. Park, M. Galperin, Correlation between Raman scattering and conductance in a molecular junction. EPL 95, 27001 (2011)

    Article  ADS  Google Scholar 

  334. A.J. White, M. Sukharev, M. Galperin, Molecular nanoplasmonics: Self-consistent electrodynamics in current-carrying junctions. Phys. Rev. B Condens. Matter Mater. Phys. 86, 205324 (2012)

    Article  ADS  Google Scholar 

  335. C. Gu, C. Jia, X. Guo, Single-molecule electrical detection with real-time label-free capability and ultrasensitivity. Small Methods 1, 1700071 (2017)

    Article  Google Scholar 

  336. T. Konishi, M. Kiguchi, M. Takase, F. Nagasawa, H. Nabika, K. Ikeda, K. Uosaki, K. Ueno, H. Misawa, K. Murakoshi, Single molecule dynamics at a mechanically controllable break junction in solution at room temperature. J. Am. Chem. Soc. 135, 1009–1014 (2013)

    Article  Google Scholar 

  337. G. Di Martino, V.A. Turek, A. Lombardi, I. Szabó, B. De Nijs, A. Kuhn, E. Rosta, J.J. Baumberg, Tracking nanoelectrochemistry using individual plasmonic nanocavities. Nano Lett. 17, 4840–4845 (2017)

    Article  ADS  Google Scholar 

  338. S. Zaleski, A.J. Wilson, M. Mattei, X. Chen, G. Goubert, M.F. Cardinal, K.A. Willets, R.P. Van Duyne, Investigating nanoscale electrochemistry with surface- and tip-enhanced Raman spectroscopy. Acc. Chem. Res. 49, 2023–2030 (2016)

    Article  Google Scholar 

  339. D. Kurouski, M. Mattei, R.P. Van Duyne, Probing redox reactions at the nanoscale with electrochemical tip-enhanced Raman spectroscopy. Nano Lett. 15, 7956–7962 (2015)

    Article  ADS  Google Scholar 

  340. A.C. Aragonès, N.L. Haworth, N. Darwish, S. Ciampi, N.J. Bloomfield, G.G. Wallace, I. Diez-Perez, M.L. Coote, Electrostatic catalysis of a Diels-Alder reaction. Nature 531, 88–91 (2016)

    Article  ADS  Google Scholar 

  341. J. Zheng, J. Liu, Y. Zhuo, R. Li, X. Jin, Y. Yang, C.Z. Bin, J. Shi, Z. Xiao, W. Hong, Z.Q. Tian, Electrical and SERS detection of disulfide-mediated dimerization in single-molecule benzene-1,4-dithiol junctions. Chem. Sci. 9, 5033–5038 (2018)

    Article  Google Scholar 

  342. D.R. Ward, D.A. Corley, J.M. Tour, D. Natelson, Vibrational and electronic heating in nanoscale junctions. Nat. Nanotechnol. 6, 33–38 (2011)

    Article  ADS  Google Scholar 

  343. S. Kaneko, D. Murai, S. Marqués-González, H. Nakamura, Y. Komoto, S. Fujii, T. Nishino, K. Ikeda, K. Tsukagoshi, M. Kiguchi, Site-selection in single-molecule junction for highly reproducible molecular electronics. J. Am. Chem. Soc. 138, 1294–1300 (2016)

    Article  Google Scholar 

  344. M.J. Urban, C. Shen, X.T. Kong, C. Zhu, A.O. Govorov, Q. Wang, M. Hentschel, N. Liu, Chiral plasmonic nanostructures enabled by bottom-up approaches. Annu. Rev. Phys. Chem. 70, 275–299 (2019)

    Article  ADS  Google Scholar 

  345. W. Pfaff, A. Vos, R. Hanson, Top-down fabrication of plasmonic nanostructures for deterministic coupling to single quantum emitters. J. Appl. Phys. 113, 24310 (2013)

    Article  Google Scholar 

  346. B.P. Isaacoff, K.A. Brown, Progress in top-down control of bottom-up assembly. Nano Lett. 17, 6508–6510 (2017)

    Article  ADS  Google Scholar 

  347. A. Dhawan, Y. Du, D. Batchelor, H.N. Wang, D. Leonard, V. Misra, M. Ozturk, M.D. Gerhold, T. Vo-Dinh, Hybrid top-down and bottom-up fabrication approach for wafer-scale plasmonic nanoplatforms. Small 7, 727–731 (2011)

    Article  Google Scholar 

  348. F. Enrichi, A. Quandt, G.C. Righini, Plasmonic enhanced solar cells: Summary of possible strategies and recent results. Renew. Sust. Energ. Rev. 82, 2433–2439 (2018)

    Google Scholar 

  349. Q. Huang, X. Hu, Z. Fu, Y. Lu, Plasmonic Thin Film Solar Cells. In: Das, N., editor. Nanostructured Solar Cells, IntechOpen, London (2017)

    Google Scholar 

  350. R. Siavash Moakhar, S. Gholipour, S. Masudy-Panah, A. Seza, A. Mehdikhani, N. Riahi-Noori, S. Tafazoli, N. Timasi, Y.F. Lim, M. Saliba, Recent advances in plasmonic perovskite solar cells. Adv. Sci. 7, 1902448 (2020)

    Article  Google Scholar 

  351. S. Mubeen, J. Lee, W.R. Lee, N. Singh, G.D. Stucky, M. Moskovits, On the plasmonic photovoltaic. ACS Nano 8, 6066–6073 (2014)

    Article  Google Scholar 

  352. H.A. Atwater, A. Polman, Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205–213 (2010)

    Article  ADS  Google Scholar 

  353. J. Liu, M. Jalali, S. Mahshid, S. Wachsmann-Hogiu, Are plasmonic optical biosensors ready for use in point-of-need applications? Analyst 145, 364–384 (2020)

    Article  ADS  Google Scholar 

  354. X. Han, K. Liu, C. Sun, Plasmonics for biosensing. Materials (Basel) 12, 1411 (2019)

    Article  ADS  Google Scholar 

  355. A.M. Shrivastav, U. Cvelbar, I. Abdulhalim, A comprehensive review on plasmonic-based biosensors used in viral diagnostics. Commun. Biol. 4, 70 (2021)

    Article  Google Scholar 

  356. J.R. Mejía-Salazar, O.N. Oliveira, Plasmonic biosensing. Chem. Rev. 118, 10617–10625 (2018)

    Article  Google Scholar 

  357. A.N. Masterson, T. Liyanage, H. Kaimakliotis, H. Gholami Derami, F. Deiss, R. Sardar, Bottom-up fabrication of plasmonic nanoantenna-based high-throughput multiplexing biosensors for ultrasensitive detection of microRNAs directly from cancer patients’ plasma. Anal. Chem. 92, 9295–9304 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rahaman, F.Y., Akhtar, A., Roy, A.C. (2022). Plasmonics Studies for Molecular Scale Optoelectronics. In: Biswas, R., Mazumder, N. (eds) Recent Advances in Plasmonic Probes. Lecture Notes in Nanoscale Science and Technology, vol 33. Springer, Cham. https://doi.org/10.1007/978-3-030-99491-4_4

Download citation

Publish with us

Policies and ethics