Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Electrically driven subwavelength optical nanocircuits

Abstract

The miniaturization of electronic and photonic device technologies has facilitated information processing and transport at ever-increasing speeds and decreasing power levels. Nanometallics or ‘plasmonics’ has empowered us to break the diffraction limit and open the door to the development of truly nanoscale optical circuits. A logical next step in this development is the realization of compact optical sources capable of electrically driving such nanocircuits. Nanometallic lasers are a possible candidate, but the realization of power-efficient, electrically pumped nanolasers at room temperature is extremely challenging. Here, we explore a plasmonic light-emitting diode as a possible alternative option. We demonstrate that an electrically driven, nano light-emitting diode is capable of directing light emission into a single-mode plasmon waveguide with a cross-sectional area of 0.016λ2 by exploiting the Purcell effect. With this source, electrically driven subwavelength optical nanocircuits for routing, splitting, free-space coupling and directional coupling are realized for the first time.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Subwavelength slot-waveguide-coupled nano-LED platform.
Figure 2: Optical characterization of the nano-LED source.
Figure 3: Slot waveguide-based T-splitter and slot antennas.
Figure 4: Slot-waveguide-based directional coupler.

Similar content being viewed by others

References

  1. Gramotnev, D. K. & Bozhevolnyi S. Plasmonics beyond the diffraction limit. Nature Photon. 4, 83–91 (2010).

    ADS  Google Scholar 

  2. Papaioannou, S. et al. A 320 Gb/s throughput 2 × 2 silicon-plasmonic router architecture for optical interconnects. J. Lightwave Technol. 29, 3185–3195 (2011)

    Article  ADS  Google Scholar 

  3. De Leon, N. P., Lukin, M. D. & Park, H. Quantum plasmonic circuits. IEEE J. Quantum Electron. 18, 1781–1791 (2012).

    Article  Google Scholar 

  4. Anker, J. N. et al. Biosensing with plasmonic nanosensors. Nature Mater. 7, 442–453 (2008).

    Article  ADS  Google Scholar 

  5. Service, R. F. Ever-smaller lasers pave the way for data highways made of light. Science 328, 810–811 (2010).

    Article  ADS  Google Scholar 

  6. Noda, S. Seeking the ultimate nanolaser. Science 314, 260–261 (2006).

    Article  Google Scholar 

  7. Khajavikhan, M. et al. Thresholdless nanoscale coaxial lasers. Nature 482, 204–207 (2012).

    Article  ADS  Google Scholar 

  8. Hill, M. T. et al. Lasing in metallic-coated nanocavities. Nature Photon. 1, 589–594 (2007).

    Article  ADS  Google Scholar 

  9. Marell, M. J. H. et al. Plasmonic distributed feedback lasers at telecommunications wavelengths. Opt. Express 19, 15109–15118 (2011).

    Article  ADS  Google Scholar 

  10. Kwon, S.-H. et al. Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity. Nano Lett. 10, 3679–3683 (2010).

    Article  ADS  Google Scholar 

  11. Noginov, M. A. et al. Demonstration of a spaser-based nanolaser. Nature 460, 1110–1112 (2009).

    Article  ADS  Google Scholar 

  12. Oulton, R. F. et al. Plasmon lasers at deep subwavelength scale. Nature 461, 629–632 (2009).

    Article  ADS  Google Scholar 

  13. Yu, K., Lakhani, A. & Wu, M. C. Subwavelength metal-optic semiconductor nanopatch lasers. Opt. Express 18, 8790–8799 (2010).

    Article  ADS  Google Scholar 

  14. Nezhad, M. P. et al. Room-temperature subwavelength metallo-dielectric lasers. Nature Photon. 4, 395–399 (2010).

    Article  ADS  Google Scholar 

  15. Chen, R. et al. Nanolasers grown on silicon. Nature Photon. 5, 170–175 (2011).

    Article  ADS  Google Scholar 

  16. Ellis, B. et al. Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser. Nature Photon. 5, 297–300 (2011).

    Article  ADS  Google Scholar 

  17. Loncar, M., Yoshie, T., Scherer, A., Gogna, P. & Qiu, Y. Low-threshold photonic crystal laser. Appl. Phys. Lett. 81, 2680–2682 (2002).

    Article  ADS  Google Scholar 

  18. Noda, S. Photonic crystal lasers—ultimate nanolasers and broad-area coherent lasers. J. Opt. Soc. Am. B 27, B1–B8 (2010).

    Article  Google Scholar 

  19. Khurgin, J. B. & Sun, G. Injection pumped single mode surface plasmon injection pumped single mode surface plasmon generators: threshold, linewidth, and coherence. Opt. Express 20, 15309–15325 (2012).

    Article  ADS  Google Scholar 

  20. Khurgin, J. B. & Sun, G. How small can ‘Nano’ be in a ‘Nanolaser’? Nanophotonics 1, 3–8 (2012).

    Article  ADS  Google Scholar 

  21. Okamoto, K. et al. Surface-plasmon-enhanced light emitters based on InGaN quantum wells. Nature Mater. 3, 601–605 (2004).

    Article  ADS  Google Scholar 

  22. Koller, D. M. et al. Organic plasmon-emitting diode. Nature Photon. 2, 684–687 (2008).

    Article  ADS  Google Scholar 

  23. Walters, R. J., van Loon, R. V. A., Brunets, I., Schmitz, J. & Polman, A. A silicon-based electrical source of surface plasmon polaritons. Nature Mater. 9, 21–25 (2010).

    Article  ADS  Google Scholar 

  24. Neutens, P., Lagae, L., Borghs, G. & Van Dorpe, P. Electrical excitation of confined surface plasmon polaritons in metallic slot waveguides. Nano Lett. 10, 1429–1432 (2010).

    Article  ADS  Google Scholar 

  25. Veronis, G. & Fan, S. Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal–dielectric–metal plasmonic waveguides. Opt. Express 15, 1211–1221 (2007).

    Article  ADS  Google Scholar 

  26. Brongersma, M. L. et al. in Plasmonic Nanoguides and Circuits (ed. Bozhevolnyi, S.) Ch. 13 (Pan Stanford, 2008).

    Google Scholar 

  27. Cai, W., Shin, W., Fan, S. & Brongersma, M. L. Elements for plasmonic nanocircuits with three-dimensional slot waveguides. Adv. Mater. 22, 5120–5124 (2010).

    Article  Google Scholar 

  28. Veronis, G. & Fan, S. Modes of subwavelength plasmonic slot waveguides. J. Lightwave Technol. 25, 2511–2521 (2007).

    Article  ADS  Google Scholar 

  29. Kurokawa, Y. & Miyazaki, H. T. Metal–insulator–metal plasmon nanocavities: analysis of optical properties. Phys. Rev. B 75, 035411 (2007).

    Article  ADS  Google Scholar 

  30. Pile, D. F. P. & Gramotnev, D. Plasmonic subwavelength waveguides: next to zero losses at sharp bends. Opt. Lett. 30, 1186–1188 (2005).

    Article  ADS  Google Scholar 

  31. Pile, D. F. P. et al. Two-dimensionally localized modes of a nanoscale gap plasmon waveguide. Appl. Phys. Lett. 87, 261114 (2005).

    Article  ADS  Google Scholar 

  32. Pile, D. F. P., Gramotnev, G. K., Rupert, O. F. & Zhang, X. On long-range plasmonic modes in metallic gaps. Opt. Express 15, 13669–13674 (2007).

    Article  ADS  Google Scholar 

  33. Pile, D. F. P. & Gramotnev, G. K. Channel plasmon–polariton in a triangular groove on a metal surface. Opt. Lett. 29, 1069–1071 (2004).

    Article  ADS  Google Scholar 

  34. Jun, Y. C., Kekatpure, R. D., White, J. S. & Brongersma, M. L. Nonresonant enhancement of spontaneous emission in metal–dielectric–metal plasmon waveguide structures. Phys. Rev. B 78, 153111 (2008).

    Article  ADS  Google Scholar 

  35. Jun, Y. C., Huang, K. C. Y. & Brongersma, M. L. Plasmonic beaming and active control over fluorescent emission. Nature Commun. 2, 283 (2011).

    Article  ADS  Google Scholar 

  36. Lau, E. K., Lakhani, A., Tucker, R. S. & Wu, M. C. Enhanced modulation bandwidth of nanocavity light emitting devices. Opt. Express 17, 7790–7799 (2009).

    Article  ADS  Google Scholar 

  37. Shambat, G. et al. Ultrafast direct modulation of a single-mode photonic crystal nanocavity light-emitting diode. Nature Commun. 2, 539 (2011).

    Article  ADS  Google Scholar 

  38. Suhr, T., Gregersen, N., Yvind, K. & Mork, J. Modulation response of nanoLEDs and nanolasers exploiting Purcell enhanced spontaneous emission. Opt. Express 18, 11230–11241 (2010).

    Article  ADS  Google Scholar 

  39. Chen, C. et al. GHz bandwidth GaAs light-emitting diodes. Appl. Phys. Lett. 74, 3140–3142 (1999).

    Article  ADS  Google Scholar 

  40. Fattal, D. et al. Design of an efficient light-emitting diode with 10 GHz modulation bandwidth. Appl. Phys. Lett. 93, 243501 (2008).

    Article  ADS  Google Scholar 

  41. Walter, G., Wu, C. H., Then, H. W., Feng, M. & Holonyak, N. Jr. Tilted-charge high speed (7 GHz) light emitting diode. Appl. Phys. Lett. 94, 231125 (2009).

    Article  ADS  Google Scholar 

  42. Miller, D. A. B. Device requirements for optical interconnects to silicon chips. Proc. IEEE 97, 1166–1185 (2009).

    Article  Google Scholar 

  43. Palik, E. D. Handbook of Optical Constants of Solids (Academic, 1985).

    Google Scholar 

  44. Bozhevolnyi, S., Volkov, V., Devaux, E., Laluet, J. & Ebbesen, T. Channel plasmon sub-wavelength waveguide components including interferometers and ring resonators. Nature 440, 508–511 (2006).

    Article  ADS  Google Scholar 

  45. Zablocki, M. J., Sharkawy, A., Ebil, O., Shi, S. & Prather, D. Electro-optically switched compact coupled photonic crystal waveguide directional coupler. Appl. Phys. Lett. 96, 081110 (2010).

    Article  ADS  Google Scholar 

  46. Zenin, V. A. et al. Directional coupling in channel plasmon–polariton waveguides. Opt. Express 20, 6124–6134 (2012).

    Article  ADS  Google Scholar 

  47. Haus, H. A. Waves and Fields in Optoelectronics (Prentice-Hall, 1984).

  48. Chen, L., Shakya, J. & Lipson, M. Subwavelength confinement in an integrated metal slot waveguide on silicon. Opt. Lett. 31, 2133–2135 (2006).

    Article  ADS  Google Scholar 

  49. Hryciw, A., Jun. Y. C. & Brongersma, M. L. Electrifying plasmonics on silicon. Nature Mater. 9, 3–4 (2010).

    Article  ADS  Google Scholar 

  50. Taflove, A. & Hagness, S. C. Computational Electrodynamics: The Finite-Difference Time-Domain Method 3rd edn (Artech House, 2005).

    MATH  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding support from the Air Force Office of Scientific Research (G. Pomrenke, grant no. FA9550-10-1-0264). M.-K.S. acknowledges support for this work by the Basic Science Research Program (2011-0015119 and 2009-0087691) of National Research Foundation of Korea and the Korean Ministry of Education. The authors thank W. Cai and A. Curto for discussions.

Author information

Authors and Affiliations

Authors

Contributions

M.-K.S. and M.L.B. conceived the idea. K.C.Y.H. and M.-K.S. designed the structures. Y.H. and T.S. performed the molecular beam epitaxial growth of the quantum-well structure under the supervision of J.S.H. K.C.Y.H. and M.-K.S. performed theoretical calculations and full-field simulations. K.C.Y.H. and M.-K.S. fabricated and characterized the samples. K.C.Y.H. and M.L.B. wrote the manuscript. M.L.B. supervised the project.

Corresponding authors

Correspondence to Min-Kyo Seo or Mark L. Brongersma.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3029 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, K., Seo, MK., Sarmiento, T. et al. Electrically driven subwavelength optical nanocircuits. Nature Photon 8, 244–249 (2014). https://doi.org/10.1038/nphoton.2014.2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2014.2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing