Skip to main content

Flocculation of Waste Water Using Architectural Copolymers: Recent Advancement and Future Perspective

  • Chapter
  • First Online:
Functional Polymer Nanocomposites for Wastewater Treatment

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 323))

Abstract

The main problem that the world is facing today is the scarcity of natural resources, including freshwater, due to ramping environmental pollution. It is primarily due to rapid industrialization posing a serious threat to the entire ecosystem. Most of the industries discharge effluents to the nearby wetlands and water bodies. As a result, the amount of usable water reduces drastically due to surface and ground waters contamination. The discharged effluents contain various toxic impurities in the form of metals, organic and inorganic particles, suspended solids, etc. If without proper treatment, the water is used, serious health hazards can occur. It is, therefore, necessary to treat the water before it is used for domestic and drinking purposes. There are many stages of treating natural wastewater for removal of organic, inorganic, and suspended loads. The primary process is to remove suspended inorganic solids and for that flocculation is generally used as it is one of the most convenient and cheapest unit operations. At the same time, it has also been found that polymeric flocculants are more effective than conventional inorganic flocculants for settling inorganic suspensions. It works both by charge neutralization and bridging mechanisms to settle the flocs in a reasonably quick time. This chapter vividly described the treatment of wastewater containing suspended inorganic solids with polysaccharide grafted hyperbranched copolymers as flocculants. Hyperbranched polymers have unique properties like higher solubility, higher hydrodynamic volume, more functional ends hence higher zeta potential for charge neutralization and more inner voids for bridging of flocs, which make them a better flocculant than conventional linear polymers. Along with hyperbranched polymer-based natural flocculants, future scope for incorporating various nanoparticles into the polymeric network for further improvement in flocculation efficiency, has also been discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T.A. Afolabi, D.G. Adekanmi, Characterization of native and graft copolymerized albizia gums and their application as a flocculant. J. Polym. 2017, 1–8 (2017). https://doi.org/10.1155/2017/3125385

    Article  Google Scholar 

  2. M.A. Barakat, New trends in removing heavy metals from industrial wastewater. Arab. J. Chem. 4, 361–377 (2011). https://doi.org/10.1016/j.arabjc.2010.07.019

    Article  CAS  Google Scholar 

  3. D.R. Biswal, R.P. Singh, Characterisation of carboxymethyl cellulose and polyacrylamide graft copolymer. Carbohydr. Polym. 57, 379–387 (2004). https://doi.org/10.1016/j.carbpol.2004.04.020

    Article  CAS  Google Scholar 

  4. J. Bratby, Coagulation and flocculation: with an emphasis on water and wastewater treatment (1980). https://doi.org/10.1016/0300-9467(81)80062-7

  5. W. Brostow, H.E. Hagg Lobland, S. Pal, R.P. Singh, polymeric flocculants for wastewater and industrial effluent treatment. J. Mater. Educ. Pal Singh J. Mater. Educ. 31, 3–4 (2009)

    Google Scholar 

  6. A. Carocci, A. Catalano, G. Lauria, M.S. Sinicropi, G. Genchi, Brief history of the development of the transfusion service. How Recruit Volunt Donors Third World? 238, 22–28 (2015). https://doi.org/10.1007/398

  7. H.W. Ching, T.S. Tanaka, M. Elimelech, Dynamics of coagulation of kaolin particles with ferric chloride. Water Res. 28, 559–569 (1994). https://doi.org/10.1016/0043-1354(94)90007-8

    Article  CAS  Google Scholar 

  8. K.K. Das, P. Somasundaran, A kinetic investigation of the flocculation of alumina with polyacrylic acid. J. Colloid Interface Sci. 271, 102–109 (2004). https://doi.org/10.1016/j.jcis.2003.11.010

    Article  CAS  Google Scholar 

  9. X. Feng, J. Wan, J. Deng, W. Qin, N. Zhao, X. Luo, M. He, X. Chen, Preparation of acrylamide and carboxymethyl cellulose graft copolymers and the effect of molecular weight on the flocculation properties in simulated dyeing wastewater under different pH conditions. Int. J. Biol. Macromol. (2020). https://doi.org/10.1016/j.ijbiomac.2019.11.081

    Article  Google Scholar 

  10. C.S.B. Fitzpatrick, E. Fradin, J. Gregory, Temperature effects on flocculation, using different coagulants. Water Sci. Technol. 50, 171–175 (2004). https://doi.org/10.2166/wst.2004.0710

    Article  CAS  Google Scholar 

  11. K. Ghebremichael, J. Abaliwano, G. Amy, Combined natural organic and synthetic inorganic coagulants for surface water treatment. J. Water Supply Res. Technol. - AQUA 58, 267–276 (2009). https://doi.org/10.2166/aqua.2009.060

    Article  Google Scholar 

  12. S. Ghorai, A. Sarkar, A.B. Panda, S. Pal, Evaluation of the flocculation characteristics of polyacrylamide grafted xanthan gum/silica hybrid nanocomposite. Ind. Eng. Chem. Res. 52, 9731–9740 (2013). https://doi.org/10.1021/ie400550m

    Article  CAS  Google Scholar 

  13. T.K. Giri, M. Pradhan, D.K. Tripathi, Synthesis of graft copolymer of kappa-carrageenan using microwave energy and studies of swelling capacity, flocculation properties, and preliminary acute toxicity. Turkish J. Chem. 40, 283–295 (2016). https://doi.org/10.3906/kim-1503-16

    Article  CAS  Google Scholar 

  14. A.S. Greville, How to select a chemical coagulant and flocculant. Albert Water Wastewater Oper Assoc 24 (1997)

    Google Scholar 

  15. K. He, T. Lou, X. Wang, W. Zhao, Preparation of lignosulfonate-acrylamide-chitosan ternary graft copolymer and its flocculation performance. Int. J. Biol. Macromol. 81, 1053–1058 (2015). https://doi.org/10.1016/j.ijbiomac.2015.09.054

    Article  CAS  Google Scholar 

  16. Y.C. Ho, I. Norli, A.F.M. Alkarkhi, N. Morad, Characterization of biopolymeric flocculant (pectin) and organic synthetic flocculant (PAM): A comparative study on treatment and optimization in kaolin suspension. Bioresour. Technol. 101, 1166–1174 (2010). https://doi.org/10.1016/j.biortech.2009.09.064

    Article  CAS  Google Scholar 

  17. K.O. Iwuozor, Prospects and challenges of using coagulation-flocculation method in the treatment of effluents. Adv. J. Chem. A 2, 105–127 (2019). https://doi.org/10.29088/sami/ajca.2019.2.105127

  18. R. Jain, V. Mahto, V.P. Sharma, Evaluation of polyacrylamide-grafted-polyethylene glycol/silica nanocomposite as potential additive in water based drilling mud for reactive shale formation. J. Nat. Gas Sci. Eng. 26, 526–537 (2015). https://doi.org/10.1016/j.jngse.2015.06.051

    Article  CAS  Google Scholar 

  19. J.Q. Jiang, N.J.D. Graham, Pre-polymerised inorganic coagulants and phosphorus removal by coagulation - a review. Water SA 24, 237–244 (1998)

    CAS  Google Scholar 

  20. D.J. Joo, W.S. Shin, J.H. Choi, S.J. Choi, M.C. Kim, M.H. Han, T.W. Ha, Y.H. Kim, Decolorization of reactive dyes using inorganic coagulants and synthetic polymer. Dye Pigment. 73, 59–64 (2007). https://doi.org/10.1016/j.dyepig.2005.10.011

    Article  CAS  Google Scholar 

  21. J.M. Klein, V.S. de Lima, J.M. da Feira, M. Camassola, R.N. Brandalise, M.M. de Camargo Forte, Preparation of cashew gum-based flocculants by microwave- and ultrasound-assisted methods. Int. J. Biol. Macromol. 107, 1550–1558 (2018). https://doi.org/10.1016/j.ijbiomac.2017.09.118

  22. J.P. Kushwaha, V. Chandra Srivastava, I.D. Mall, Treatment of dairy wastewater by inorganic coagulants: parametric and disposal studies. Water Res. 44, 5867–5874 (2010). https://doi.org/10.1016/j.watres.2010.07.001

    Article  CAS  Google Scholar 

  23. D.G.J. Larsson, Pollution from drug manufacturing: Review and perspectives. Philos. Trans. R. Soc. B Biol. Sci. 369 (2014). https://doi.org/10.1098/rstb.2013.0571

  24. C.S. Lee, M.F. Chong, J. Robinson, E. Binner, A review on development and application of plant-based bioflocculants and grafted bioflocculants. Ind. Eng. Chem. Res. 53, 18357–18369 (2014). https://doi.org/10.1021/ie5034045

    Article  CAS  Google Scholar 

  25. C.S. Lee, J. Robinson, M.F. Chong, A review on application of flocculants in wastewater treatment. Process Saf. Environ. Prot. 92, 489–508 (2014). https://doi.org/10.1016/j.psep.2014.04.010

    Article  CAS  Google Scholar 

  26. J. Ma, R. Wang, X. Wang, H. Zhang, B. Zhu, L. Lian, D. Lou, Drinking water treatment by stepwise flocculation using polysilicate aluminum magnesium and cationic polyacrylamide. J. Environ. Chem. Eng. 7, 103049 (2019). https://doi.org/10.1016/j.jece.2019.103049

  27. P. Maćczak, H. Kaczmarek, M. Ziegler-Borowska, Recent achievements in polymer bio-based flocculants for water treatment. Materials (Basel) 13 (2020). https://doi.org/10.3390/ma13183951

  28. A. Maria, R. Version, W. Technologies, The costs of water pollution in India (2003)

    Google Scholar 

  29. C.J. Mate, S. Mishra, P.K. Srivastava, Design of low-cost Jhingan gum-based flocculant for remediation of wastewater: flocculation and biodegradation studies. Int. J. Environ. Sci. Technol. 17, 2545–2562 (2020). https://doi.org/10.1007/s13762-019-02587-x

    Article  CAS  Google Scholar 

  30. H. Mittal, V. Kumar, S.M. Alhassan, S.S. Ray, Modification of gum ghatti via grafting with acrylamide and analysis of its flocculation, adsorption, and biodegradation properties. Int. J. Biol. Macromol. 114, 283–294 (2018). https://doi.org/10.1016/j.ijbiomac.2018.03.131

    Article  CAS  Google Scholar 

  31. K.M. Mostafa, A.A. El-Sanabary, Synthesis and characterization of novel smart flocculant based on poly(MAam)-pregelled starch graft copolymers and their degraded products. Adv. Polym. Technol. 32, 1–10 (2013). https://doi.org/10.1002/adv.21339

    Article  CAS  Google Scholar 

  32. G. Nandi, A. Changder, L.K. Ghosh, Graft-copolymer of polyacrylamide-tamarind seed gum: synthesis, characterization and evaluation of flocculating potential in peroral paracetamol suspension. Carbohydr. Polym. 215, 213–225 (2019). https://doi.org/10.1016/j.carbpol.2019.03.088

    Article  CAS  Google Scholar 

  33. F.E. Okieimen, Preparation, characterization, and properties of cellulose-polyacrylamide graft copolymers. J. Appl. Polym. Sci. 89, 913–923 (2003). https://doi.org/10.1002/app.12014

    Article  CAS  Google Scholar 

  34. A.T. Owen, P.D. Fawell, J.D. Swift, J.B. Farrow, The impact of polyacrylamide flocculant solution age on flocculation performance. Int. J. Miner Process 67, 123–144 (2002). https://doi.org/10.1016/S0301-7516(02)00035-2

    Article  CAS  Google Scholar 

  35. S. Pal, S. Ghorai, C. Das, S. Samrat, A. Ghosh, A.B. Panda, Carboxymethyl tamarind-g-poly(acrylamide)/silica: A high performance hybrid nanocomposite for adsorption of methylene blue dye. Ind. Eng. Chem. Res. 51, 15546–15556 (2012). https://doi.org/10.1021/ie301134a

    Article  CAS  Google Scholar 

  36. S. Pal, A.S. Patra, S. Ghorai, A.K. Sarkar, R. Das, S. Sarkar, Modified guar gum/SiO2: development and application of a novel hybrid nanocomposite as a flocculant for the treatment of wastewater. Environ. Sci. Water Res. Technol. 1, 84–95 (2015). https://doi.org/10.1039/c4ew00023d

    Article  CAS  Google Scholar 

  37. S. Pal, G. Sen, S. Ghosh, R.P. Singh, High performance polymeric flocculants based on modified polysaccharides - microwave assisted synthesis. Carbohydr. Polym. 87, 336–342 (2012). https://doi.org/10.1016/j.carbpol.2011.07.052

    Article  CAS  Google Scholar 

  38. S.K. Rath, R.P. Singh, Crafted amylopectin: applications in flocculation. Colloids Surf. Phys. Chem. Eng. Asp. 139, 129–135 (1998). https://doi.org/10.1016/S0927-7757(98)00250-7

    Article  CAS  Google Scholar 

  39. R.F. Ben, W. Mnif, S.M. Siddeeg, Microbial flocculants as an alternative to synthetic polymers for wastewater treatment: a review. Symmetry (Basel) 10, 1–19 (2018). https://doi.org/10.3390/sym10110556

    Article  CAS  Google Scholar 

  40. F. Roselet, D. Vandamme, M. Roselet, K. Muylaert, P.C. Abreu, Effects of pH, salinity, biomass concentration, and algal organic matter on flocculant efficiency of synthetic versus natural polymers for harvesting microalgae biomass. Bioenergy Res. 10, 427–437 (2017). https://doi.org/10.1007/s12155-016-9806-3

    Article  CAS  Google Scholar 

  41. M. Rossini, J.G. Garrido, M. Galluzzo, Optimization of the coagulation-flocculation treatment: influence of rapid mix parameters. Water Res. 33, 1817–1826 (1999). https://doi.org/10.1016/S0043-1354(98)00367-4

    Article  CAS  Google Scholar 

  42. H. Salehizadeh, N. Yan, R. Farnood, Recent advances in polysaccharide bio-based flocculants. Biotechnol. Adv. 36, 92–119 (2018). https://doi.org/10.1016/j.biotechadv.2017.10.002

    Article  CAS  Google Scholar 

  43. A. Sand, A. Vyas, A.K. Gupta, Graft copolymer based on (sodium alginate-g-acrylamide): characterization and study of water swelling capacity, metal ion sorption, flocculation and resistance to biodegradability. Int. J. Biol. Macromol. 90, 37–43 (2016). https://doi.org/10.1016/j.ijbiomac.2015.11.085

    Article  CAS  Google Scholar 

  44. S. Sardar, A. Jana, A. Mukherjee, A. Dhara, A. Bandyopadhyay, Bottom-up synthesis of bright fluorescent, moisture-resistant methylammonium lead bromide@poly(3-bromothiophene). New J. Chem. 44, 2053–2058 (2020). https://doi.org/10.1039/c9nj04734d

    Article  CAS  Google Scholar 

  45. S. Sardar, R. Koley, U.K. Ghorai, A. Pal, S. Sengupta, I. Roy, A. Bandyopadhyay, Photophysical and electrochemical properties of oligothiophene in non-polymeric and polymeric solvents. J. Mol. Struct. 1168, 187–194 (2018). https://doi.org/10.1016/j.molstruc.2018.05.037

    Article  CAS  Google Scholar 

  46. S. Sardar, I. Roy, S. Chakraborty, A.B. Ghosh, A. Bandyopadhyay, A selective approach towards synthesis of poly (3‑bromo thiophene)/graphene quantum dot composites via in-situ and ex-situ routes: application in light emission and photocurrent generation. Electrochim. Acta 365 (2021). https://doi.org/10.1016/j.electacta.2020.137369

  47. A.K. Sarkar, N.R. Mandre, A.B. Panda, S. Pal, Amylopectin grafted with poly (acrylic acid): development and application of a high performance flocculant. Carbohydr. Polym. 95, 753–759 (2013). https://doi.org/10.1016/j.carbpol.2013.03.025

    Article  CAS  Google Scholar 

  48. B. Schmidt, Nanocomposite starch graft copolymers with carbon nanotubes – synthesis and flocculation efficiency. Polimery/Polymers 65, 226–231 (2020). https://doi.org/10.14314/polimery.2020.3.7

  49. G. Sen, R. Kumar, S. Ghosh, S. Pal, A novel polymeric flocculant based on polyacrylamide grafted carboxymethylstarch. Carbohydr. Polym. 77, 822–831 (2009). https://doi.org/10.1016/j.carbpol.2009.03.007

    Article  CAS  Google Scholar 

  50. P. Sharma, A. Dagar, V.A. Sapna, A. Sand, Superabsorbent composites (SACs) based on xanthan gum-g-poly (itaconic acid)/kaolinite. Polym. Bull. (2020). https://doi.org/10.1007/s00289-020-03436-5

    Article  Google Scholar 

  51. J.J. Shen, L.L. Ren, Y.Y. Zhuang, Interaction between anionic dyes and cationic flocculant P(AM-DMC) in synthetic solutions. J. Hazard. Mater. 136, 809–815 (2006). https://doi.org/10.1016/j.jhazmat.2006.01.013

    Article  CAS  Google Scholar 

  52. R.P. Singh, S. Pal, S.A. Ali, Novel biodegradable polymeric flocculants based on cationic polysaccharides. Adv. Mater. Lett. 5, 24–30 (2014). https://doi.org/10.5185/amlett.2013.6498

    Article  CAS  Google Scholar 

  53. D.N. Thomas, S.J. Judd, N. Fawcett, Flocculation modelling: a review. Water Res. 33, 1579–1592 (1999). https://doi.org/10.1016/S0043-1354(98)00392-3

    Article  CAS  Google Scholar 

  54. R.C. Tilton, J. Murphy, J.K. Dixon, The flocculation of algae with synthetic polymeric flocculants. Water Res. 6, 155–164 (1972). https://doi.org/10.1016/0043-1354(72)90090-5

    Article  CAS  Google Scholar 

  55. H.F. Wang, H. Hu, H.J. Wang, R.J. Zeng, Impact of dosing order of the coagulant and flocculant on sludge dewatering performance during the conditioning process. Sci. Total Environ. 643, 1065–1073 (2018). https://doi.org/10.1016/j.scitotenv.2018.06.161

    Article  CAS  Google Scholar 

  56. P. Wu, J. Yi, L. Feng, X. Li, Y. Chen, Z. Liu, S. Tian, S. Li, S. Khan, Y. Sun, Microwave assisted preparation and characterization of a chitosan based flocculant for the application and evaluation of sludge flocculation and dewatering. Int. J. Biol. Macromol. 155, 708–720 (2020). https://doi.org/10.1016/j.ijbiomac.2020.04.011

    Article  CAS  Google Scholar 

  57. Z. Yang, H. Peng, W. Wang, T. Liu, Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. J. Appl. Polym. Sci. 116, 2658–2667 (2010). https://doi.org/10.1002/app

    Article  CAS  Google Scholar 

  58. Z. Yang, H. Yang, Z. Jiang, T. Cai, H. Li, H. Li, A. Li, R. Cheng, Flocculation of both anionic and cationic dyes in aqueous solutions by the amphoteric grafting flocculant carboxymethyl chitosan-graft-polyacrylamide. J. Hazard. Mater. 254–255, 36–45 (2013). https://doi.org/10.1016/j.jhazmat.2013.03.053

    Article  CAS  Google Scholar 

  59. K.-J. Yao, Y.-B. Tang, Synthesis of starch-g-poly(acrylamide-co-sodium allylsulfonate) and its application of flocculation to Kaolin suspension. J. Appl. Polym. Sci. 45, 349–353 (1992). https://doi.org/10.1002/app.1992.070450217

    Article  CAS  Google Scholar 

  60. M. Yao, J. Nan, T. Chen, Effect of particle size distribution on turbidity under various water quality levels during flocculation processes. Desalination 354, 116–124 (2014). https://doi.org/10.1016/j.desal.2014.09.029

    Article  CAS  Google Scholar 

  61. D.H. Yoon, J.W. Jang, I.W. Cheong, Synthesis of cationic polyacrylamide/silica nanocomposites from inverse emulsion polymerization and their flocculation property for papermaking. Colloids Surf. A Physicochem. Eng. Asp. 411, 18–23 (2012). https://doi.org/10.1016/j.colsurfa.2012.06.036

    Article  CAS  Google Scholar 

  62. J. Yu, D. Wang, X. Ge, M. Yan, M. Yang, Flocculation of kaolin particles by two typical polyelectrolytes: A comparative study on the kinetics and floc structures. Colloids Surf. A Physicochem. Eng. Asp. 290, 288–294 (2006). https://doi.org/10.1016/j.colsurfa.2006.05.040

    Article  CAS  Google Scholar 

  63. A.Y. Zahrim, C. Tizaoui, N. Hilal, Evaluation of several commercial synthetic polymers as flocculant aids for removal of highly concentrated C.I. Acid Black 210 dye. J. Hazard. Mater. 182, 624–630 (2010). https://doi.org/10.1016/j.jhazmat.2010.06.077

    Article  CAS  Google Scholar 

  64. Y. Zhou, G.V. Franks, Flocculation mechanism induced by cationic polymers investigated by light scattering. Langmuir 22, 6775–6786 (2006). https://doi.org/10.1021/la060281+

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhijit Bandyopadhyay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chakraborty, S., Sardar, S., Bandyopadhyay, A. (2022). Flocculation of Waste Water Using Architectural Copolymers: Recent Advancement and Future Perspective. In: Hato, M.J., Sinha Ray, S. (eds) Functional Polymer Nanocomposites for Wastewater Treatment. Springer Series in Materials Science, vol 323. Springer, Cham. https://doi.org/10.1007/978-3-030-94995-2_3

Download citation

Publish with us

Policies and ethics