Skip to main content
Log in

Superabsorbent composites (SACs) based on xanthan gum-g-poly (itaconic acid)/kaolinite

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this present investigation, crosslinked polyitaconic acid (PIA) was grafted onto natural polysaccharides xanthan gum and inorganic clay kaolinite using free radical polymerization in an inert atmosphere using FTIR ammonium persulfate (APS) as an initiator and Tetra (ethylene glycol) diacrylate (TEGDA) as a crosslinking agent. Scanning electron microscopy and Fourier transform infrared spectra techniques were used to characterized for structure SAPs. The effect of various parameters which include APS, TEGDA, neutralizing degree, kaolinite contents, and xanthan gum was investigated. The results indicate that PIA successfully grafted onto xanthan gum and a 3D structure was formed. The results indicated with an increasing Xanthan gum/kaolin weight ratio, swelling capacity, and gel content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Scheme 3
Fig. 3
Scheme 4
Scheme 5

Similar content being viewed by others

References

  1. Liu J, Li Q, Su Y, Yue Q, Gao B, Wang R (2013) Synthesis of wheat straw cellulose-g-poly (potassium acrylate)/PVA semi-IPNs superabsorbent resin. Carbohydr Polym 94:539–546

    Article  CAS  PubMed  Google Scholar 

  2. Park TG (1999) Temperature modulated protein release from ph/temperature-sensitive hydrogels. Biomaterials 20:517–521

    Article  CAS  PubMed  Google Scholar 

  3. Qiu Y, Park K (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Delivery Rev 53:321–339

    Article  CAS  Google Scholar 

  4. Li A, Wang A, Chen JM (2004) Studies on poly(acrylic acid)/attapulgite superabsorbent composite. I. Synthesis and characterization. J Appl Polym Sci 92(3):1596–1603

    Article  CAS  Google Scholar 

  5. Zhou WJ, Yao KJ, Kurth MJ (1996) Synthesis and swelling properties of the copolymer of acrylamide with anionic monomers. J Appl Polym Sci 62:911–915

    Article  CAS  Google Scholar 

  6. Yao KJ, Zhou WJ (1994) Synthesis and water absorbency of the copolymer of acrylamide with anionic monomers. J Appl Polym Sci 53:1533–1538

    Article  CAS  Google Scholar 

  7. Tsubakimoto T, Shimomura T, Kobabyashi H (1987) Jpn Pat 62:149–335

    Google Scholar 

  8. Holtz JH, Asher SA (1997) Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Nature 389:829–832

    Article  CAS  PubMed  Google Scholar 

  9. Adhikari B, Majumdar S (2004) Polymers in sensor applications. Prog Polym Sci 29:699–766

    Article  CAS  Google Scholar 

  10. Tanaka H, Kambayashi T, Sugiyama Y, Nagai T, Nagata K, Kubota K, Hirano K (1992) Eur Pat 501:482

    Google Scholar 

  11. Walker CO (1987) U.S. Pat. 4: 664–816

  12. Lee WF, Lin GH (2001) Superabsorbent polymeric materials VIII: Swelling behavior of crosslinked poly [sodium acrylate-co-trimethylmethacryloyloxyethyl ammonium iodide in aqueous salt solutions. J Appl Polym Sci 79:1665–1674

    Article  CAS  Google Scholar 

  13. Lee WF, Yang LG (2004) Superabsorbent polymeric materials XII. Effect of montmorillonite on water absorbency for poly[sodium acrylate] and montmorilonite nano composite superabsorbent. J Appl Polym Sci 92:3422–3429

    Article  CAS  Google Scholar 

  14. Kabiri K, Zohuriaan-Mehr MJ (2004) Porous superabsorbent hydrogel composites: synthesis, morphology and swelling rate. Macromol Mater Eng 289:653

    Article  CAS  Google Scholar 

  15. Li A, Wang A (2005) Synthesis and properties of clay-based superabsorbent composite. Eur Polym J 41:1630–1637

    Article  CAS  Google Scholar 

  16. Wang WA, Zhang J, Chen H, Wang A (2005) Study on superabsorbent composite. VIII. Composite based on acidified attapulgite and organo-attapulgite. Eur Polym J 41:2434–2442

    Article  CAS  Google Scholar 

  17. Pourjavadi A, Mahdavinia GR (2006) Chitosan-g-poly (acrylic acid)/kaolin superabsorbent composite: synthesis and characterization. Polym Polym Compos 14:203–211

    CAS  Google Scholar 

  18. Wu JH, Wei YL, Lin JM, Lin SB (2003) Study on starch-graft-acrylamide-mineral powder superabsorbent. Polymer 44:6513–6520

    Article  CAS  Google Scholar 

  19. Lin J, Wu J, Yang Z, Pu M (2001) Synthesis and properties of poly(acrylic acid)/mica superabsorbent nanocomposite. Macromol Rapid Commun 22:422–424

    Article  CAS  Google Scholar 

  20. Lee WF, Chen YC (2005) Effect of intercalated reactive mica on water absorbency for [sodium acrylate] composite superabsorbent. Eur Polym J 41:1605–1612

    Article  CAS  Google Scholar 

  21. Santiago F, Mucientes AE, Osorio M, Rivera C (2007) Preparation of composites and nanocomposites based on bentonite and poly(sodium acrylate). Effect of amount of bentonite on the swelling behaviour. Eur Polym J 43:1–9

    Article  CAS  Google Scholar 

  22. Wu J, Lin J, Zhou M, Wei C (2000) Synthesis and properties of starch-graft -polyacrylamide/clay superabsorbent composite. Macromol Rapid Commun 21:1032–1034

    Article  CAS  Google Scholar 

  23. Gao D, Heimann RB, Lerchner J, Seidel J, Wolf G (2001) Development of a novel moisture sensor based on superabsorbent poly(acrylamide)-montmorillonite composite hydrogels. J MaterSci 36:4567–4571

    Article  CAS  Google Scholar 

  24. Zhang J, Li A, Wang A (2006) Study on absorbent composite. VI. Preparation, characterization, and swelling behavior of starch phosphate-graft-acrylamide-attapulgite superabsorbent composite. Carbohydr Polym 65:150–158

    Article  CAS  Google Scholar 

  25. Ajabshira SZ, Niasaria MS, Ajabshirb ZZ (2016) Nd2Zr2O7–Nd2O3 nanocomposites: new facile synthesis, characterization and investigation of photocatalytic behavior. Mater Lett 180:27–30

    Article  CAS  Google Scholar 

  26. Morassaei MS, Ajabshira SZ, Niasaria MS (2016) Simple salt-assisted combustion synthesis of Nd2Sn2O7–SnO2 nanocomposites with different amino acids as fuel: an efficient photocatalyst for the degradation of methyl orange dye. J Mater Sci Mater Electron 27:11698–11706

    Article  CAS  Google Scholar 

  27. Ajabshira SZ, Niasaria MS, Ajabshirb ZZB, Bagheri S, Hamid SBA (2017) Facile preparation of Nd2Zr2O7–ZrO2 nanocomposites as an effective photocatalyst via a new route. J Energy Chem 26:315–323

    Article  Google Scholar 

  28. Razi F, Ajabshira SZ, Niasaria MS (2017) Preparation, characterization and photocatalytic properties of Ag2ZnI4/AgI nanocomposites via a new simple hydrothermal approach. J Mol Liq 225:645–651

    Article  CAS  Google Scholar 

  29. Ajabshira SZ, Morassaei MS, Niasaria MS (2019) Eco-friendly synthesis of Nd2Sn2O7-based nanostructure materials using grape juice as green fuel as photocatalyst for the degradation of erythrosine. Compos Part B 167:643–653

    Article  CAS  Google Scholar 

  30. Ajabshira SZ, Niasaria MS (2019) Preparation of magnetically retrievable CoFe2O4@SiO2@Dy2Ce2O7 nanocomposites as novel photocatalyst for highly efficient degradation of organic contaminants. Compos B 174:106930

    Article  CAS  Google Scholar 

  31. Ajabshira SZ, Morassaei MS, Niasaria MS (2019) Facile synthesis of Nd2Sn2O7-–nO2 nanostructures by novel and environment-friendly approach for the photodegradation and removal of organic pollutants in water. J Environ Manag 233:107–119

    Article  CAS  Google Scholar 

  32. Ajabshira SZ, Derazkola SM, Niasaria MS (2018) Nd2O3–SiO2 nanocomposites: a simple sonochemical preparation, characterization and photocatalytic activity. Ultrason Sonochem 42:171–182

    Article  CAS  Google Scholar 

  33. Ajabshira SZ, Derazkola SM, Niasaria MS (2017) Simple sonochemical synthesis of Ho2O3–SiO2 nanocomposites as an effective photocatalyst for degradation and removal of organic contaminant. Ultrason Sonochem 39:452–460

    Article  CAS  Google Scholar 

  34. Morassaei MS, Ajabshir SZ, Niasaria MS (2016) New facile synthesis, structural and photocatalytic studies of NdOCl–Nd2Sn2O7–SnO2 nanocomposites. J Molec Liq 220:902–909

    Article  CAS  Google Scholar 

  35. Jeong G, Bak J, Yoo B (2019) Physical and rheological properties of xanthan gum agglomerated in fluidized bed: effect of HPMC as a binder. Int J Biol Macromol 121:424–428

    Article  CAS  PubMed  Google Scholar 

  36. Maiti S, Ray S, Sa B (2008) Effect of formulation variables on entrapment efficiency and release characteristics of bovine serum albumin from carboxymethyl xanthan microparticles. Polym Adv Technol 19(7):922–927

    Article  CAS  Google Scholar 

  37. Sand A, Vyas A (2020) Superabsorbent polymer based on guar gum-graft-acrylamide: synthesis and characterization. J Polym Rese 27:1–10

    Article  CAS  Google Scholar 

  38. Sand A, Vyas A, Gupta AK (2016) Graft copolymer based on (sodium alginate-g-acrylamide): Characterization and study of Water swelling capacity, metal ion sorption, flocculation and resistance to biodegradability Intern. J Bio Macrom 90:37–42

    Article  CAS  Google Scholar 

  39. Fanta GF (1973) Block and graft copolymerization. In: Ceresa RJ (ed) Wiley, New York, p 1

  40. Bao Y, Ma J, Li N (2011) Synthesis and swelling behaviour of sodium carboxy methyl cellulose-g-poly[AA-co-AM-Co-AMPS]-montmorilonite superabsorbent hydrogel. Carbohydr Polym 84:76–82

    Article  CAS  Google Scholar 

  41. Bruna J, Yazdani-Pedram M, Quijada R, Valentín JL, Lopez-Manchado MA (2005) Melt grafting of itaconic acid and its derivatives onto an ethylene-propylene copolymer. React Funct Polym 64:169–178

    Article  CAS  Google Scholar 

  42. Ma S, Liu M (2004) Preparation and properties of a salt-resistant superabsorbent polymer. J Appl Polym Sci 93:2532–2541

    Article  CAS  Google Scholar 

  43. Doo-Won L, Kee-Jong Y, Sohk-Won KO (2000) Synthesis of AA-based superabsorbent interpenetrated with sodium PVA sulfate. J Appl Polym Sci 78:2525–2532

    Article  Google Scholar 

  44. Khare AR, Peppas NA, Massimo G, Colombo P (1992) Measurement of the swelling force in ionic polymer networks: I. Effect of pH and ionic content. J Control Release 22:239–244

    Article  CAS  Google Scholar 

  45. Sand A, Yadav M, Behari K (2010a) Graft copolymerization of 2-acrylamidoglycolic acid on to xanthan gum and study of its physicochemical properties. Carbohydr Polym 81:626–632

    Article  CAS  Google Scholar 

  46. Yazdani-Pedram M, Vega H, Quijada R (2001) Melt functionalization of polypropylene with methyl esters of itaconic acid. Polymer 42:4751–4758

    Article  CAS  Google Scholar 

  47. Sand A, Yadav M, Behari K (2010b) Preparation and characterization of modified sodium carboxymethyl cellulose via free radical graft copolymerization of vinyl sulfonic acid in aqueous media. Carbohydr Polym 81:97–103

    Article  CAS  Google Scholar 

  48. Li J, Brill TB (2001) Spectroscopy of hydrothermal solutions 18: pH-dependent kinetics of itaconic acid reactions in real time. J Phys Chem A 105:10839–10845

    Article  CAS  Google Scholar 

  49. Ramazani-Harandi MJ, Zohuriaan-Mehr MJ, Yousefi AA, Ershad-Langroudi A, Kabiri K (2006) Rheological determination of the swollen gel strength of superabsorbent polymer hydrogels. Polym Test 25:470–474

    Article  CAS  Google Scholar 

  50. Ma S, Liu M, Chen Z (2004) Preparation and properties of a salt-resistant superabsorbent polymer. J Appl Polym Sci 93:2532–2541

    Article  CAS  Google Scholar 

  51. Siepmann J, Peppas NA (2001) Modelling of drug release from delivery system based on hydroxyl propyl methyl cellulose (HPMC). Adv Drug Deliv Rev 48:139–157

    Article  CAS  PubMed  Google Scholar 

  52. Sugama T, Cook M (2000) Poly(itaconic acid)-modified chitosan coatings for mitigating corrosion of aluminum substrates. Prog Org Coat 38:79–87

    Article  CAS  Google Scholar 

  53. Sand A, Yadav M, Mishra DK, Behari K (2010) Modification of alginate by grafting of N-vinyl-2-pyrrolidone and studies of physicochemical properties in terms of swelling capacity, metal-ion uptake and flocculation. Carbohydr Polym 80:1147–1154

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arpit Sand.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, P., Dagar, A., Sapna et al. Superabsorbent composites (SACs) based on xanthan gum-g-poly (itaconic acid)/kaolinite. Polym. Bull. 78, 6441–6454 (2021). https://doi.org/10.1007/s00289-020-03436-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03436-5

Keywords

Navigation