Skip to main content

Maritime Pine Genomics in Focus

  • Chapter
  • First Online:
The Pine Genomes

Abstract

The advent of next-generation genome sequencing technologies has allowed approaching the sequencing and analysis of large and complex conifer genomes. Maritime pine (Pinus pinaster Ait.) is an economically and ecologically important conifer species widely distributed in South-West Europe, which shows a significant genetic and adaptive variability. This chapter takes on the task of reviewing the insights into the maritime pine genome sequencing breakthrough and its impact on downstream analysis. Maritime pine genome sequencing and assembly approaches are described along with the impact of related tools. A section of the state-of-the-art research on comparative, functional, structural, and translational genomics aimed at dissecting the genetic basis and the specific regulation of biological processes underlying the expression of traits of interest in maritime pine and other conifers is also described. Perspectives about the impact of these tools as well as additional research approaches are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abad Viñas R, Caudullo G, Oliveira S, de Rigo D (2016) Pinus pinaster in Europe: distribution, habitat, usage and threats. In: San-Miguel-Ayanz J, de Rigo D, Caudullo G, Houston Durrant T, Mauri A (eds) European atlas of forest tree species. Publication Office of the European Union, Luxembourg, p e012d59+

    Google Scholar 

  • Abarca D, Carneros E, Hernández H, Pizarro A, Trontin J-F, Díaz-Sala, C (2015) Phenotypic analysis of transgenic Pinus pinaster lines overexpressing MYB5. ProCoGen final open conference on promoting conifer genomic resources, Orléans, France, 30 November–2 December 2015, p 2

    Google Scholar 

  • Abbott E, Hall D, Hamberger B, Bohlmann J (2010) Laser microdissection of conifer stem tissues: Isolation and analysis of high quality RNA, terpene synthase enzyme activity and terpenoid metabolites from resin ducts and cambial zone tissue of white spruce (Picea glauca). BMC Plant Biol 10(1):106. https://doi.org/10.1186/1471-2229-10-106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahuja MR (2017) Current status of forest tree biotechnology in a changing climate. In: Bonga JM, Park Y-S, Trontin J-F (eds) Proceedings of the 4th international conference of the IUFRO working party 2.09.02 on development and application of vegetative propagation technologies in plantation forestry to cope with a changing climate and environment, La Plata, Argentina, 19–23 September 2016. IUFRO, Vienna, Austria, pp 15–36

    Google Scholar 

  • Ahuja MR, Neale DB (2005) Evolution of genome size in conifers. Silvae Genet 54(1–6):126–137. https://doi.org/10.1515/sg-2005-0020

    Article  Google Scholar 

  • Aizat W, Goh H-H, Baharum SN (2018) Omics applications for systems biology. Springer, Cham

    Book  Google Scholar 

  • Alberto FJ, Aitken SN, Alía R, González-Martínez SC, Hänninen H, Kremer A, Lefèvre F, Lenormand T, Yeaman S, Whetten R, Savolainen O (2013) Potential for evolutionary responses to climate change-evidence from tree populations. Glob Chang Biol 19(6):1645–1661. https://doi.org/10.1111/gcb.12181

    Article  PubMed  Google Scholar 

  • Alía R, Chambel R, Notivol E, Climent J, González-Martínez SCSC (2014) Environment-dependent microevolution in a Mediterranean pine (Pinus pinaster Aiton). BMC Evol Biol 14(1):200. https://doi.org/10.1186/s12862-014-0200-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Alía R, Gil LA, Pardos JA (1995) Performance of 43 Pinus pinaster Ait. provenances on 5 locations in Central Spain. Silvae Genet 44(2–3):75–81

    Google Scholar 

  • Alía R, Moro J, Denis JB, Moro-Serrano J (1997) Performance of Pinus pinaster provenances in Spain: interpretation of the genotype by environment interaction. Can J for Res 27(10):1548–1559. https://doi.org/10.1139/cjfr-27-10-1548

    Article  Google Scholar 

  • Álvarez J, Cortizo M, Ordás R (2012) Cryopreservation of somatic embryogenic cultures of Pinus pinaster: effects on regrowth and embryo maturation. Cryo Letters 33(6):476–484

    PubMed  Google Scholar 

  • Alvarez JM, Bueno N, Cañas RA, Avila C, Cánovas FM, Ordás RJ (2018) Analysis of the WUSCHEL-RELATED HOMEOBOX gene family in Pinus pinaster : New insights into the gene family evolution. Plant Physiol Biochem 123:304–318. https://doi.org/10.1016/j.plaphy.2017.12.031

    Article  CAS  PubMed  Google Scholar 

  • Álvarez JM, Majada J, Ordás RJ (2009) An improved micropropagation protocol for maritime pine (Pinus pinaster Ait.) isolated cotyledons. Forestry 82(2):175–184. https://doi.org/10.1093/forestry/cpn052

  • Alvarez JM, Ordás RJ (2013) Stable Agrobacterium-mediated transformation of maritime pine based on kanamycin selection. Sci World J 2013:1–9. https://doi.org/10.1155/2013/681792

    Article  CAS  Google Scholar 

  • Andivia E, Ruiz-Benito P, Díaz-Martínez P, Carro-Martínez N, Zavala MA, Madrigal-González J (2020) Inter-specific tolerance to recurrent droughts of pine species revealed in saplings rather than adult trees. For Ecol Manage 459:117848. https://doi.org/10.1016/j.foreco.2019.117848

    Article  Google Scholar 

  • Andivia E, Zuccarini P, Grau B, de Herralde F, Villar-Salvador P, Savé R (2019) Rooting big and deep rapidly: the ecological roots of pine species distribution in southern Europe. Trees 33(1):293–303. https://doi.org/10.1007/s00468-018-1777-x

    Article  CAS  Google Scholar 

  • Aranda I, Alía R, Ortega U, Dantas ÂK, Majada J (2010) Intra-specific variability in biomass partitioning and carbon isotopic discrimination under moderate drought stress in seedlings from four Pinus pinaster populations. Tree Genet Genomes 6(2):169–178. https://doi.org/10.1007/s11295-009-0238-5

    Article  Google Scholar 

  • Archambeau J, Benito Garzón M, Barraquand F, de Miguel Vega M, Plomion C, González-Martínez SC (2020) Combining climatic and genomic data improves range-wide tree height growth prediction in a forest tree. bioRxiv 2020.11.13.382515. https://doi.org/10.1101/2020.11.13.382515

  • Arrillaga I, Guevara MA, Muñoz-Bertomeu J, Lázaro-Gimeno D, Sáez-Laguna E, Díaz LM, Torralba L, Mendoza-Poudereux I, Segura J, Cervera MT (2014) Selection of haploid cell lines from megagametophyte cultures of maritime pine as a DNA source for massive sequencing of the species. Plant Cell, Tissue Organ Cult 118(1):147–155. https://doi.org/10.1007/s11240-014-0470-z

    Article  CAS  Google Scholar 

  • Arrillaga I, Morcillo M, Zanón I, Lario F, Segura J, Sales E (2019) New approaches to optimize somatic embryogenesis in maritime pine. Front Plant Sci 10:138. https://doi.org/10.3389/fpls.2019.00138

    Article  PubMed  Google Scholar 

  • Assis TF, Fett-Neto AG, Alfenas AC (2004) Current techniques and prospects for the clonal propagation of hardwoods: emphasis on eucalyptus. In: Walter C, Carson M (eds) Plantation forestry for the 21st century, vol 1. Research SignPost. Trivandru, India, pp 303–333

    Google Scholar 

  • Ávila C, Rueda-López M, Canales J, Cánovas FM, Michel R, Pillet-Emanuel H, Canlet F, Debille S, Trontin J-F (2016) Molecular characterization of transgenic maritime pine somatic plants overexpressing a cytosolic glutamine synthetase gene (PsGS1a) involved in nitrogen assimilation. IUFRO subdivision 2.4 conference on genomics and forest tree genetics, Arcachon, France, 30 May–3 June 2016, p 29 (S6–10)

    Google Scholar 

  • Avila C, Suárez MF, Gómez‐Maldonado J, Cánovas FM (2001) Spatial and temporal expression of two cytosolic glutamine synthetase genes in Scots pine: functional implications on nitrogen metabolism during early stages of conifer development. Plant J 25(1):93–102. https://doi.org/10.1046/j.1365-313x.2001.00938.x

  • Azeez A, Busov V (2021) CRISPR/Cas9-mediated single and biallelic knockout of poplar STERILE APETALA (PopSAP) leads to complete reproductive sterility. Plant Biotechnol J 19(1):23–25. https://doi.org/10.1111/pbi.13451

    Article  CAS  PubMed  Google Scholar 

  • Ba M, Salin F, Fourcaud T, Stokes A (2010) Reorientation strategies in leaning stems of young maritime pine (Pinus pinaster) and loblolly pine (Pinus taeda). IAWA J 31(4):465–480. https://doi.org/10.1163/22941932-90000036

    Article  Google Scholar 

  • Baker EAG, Wegrzyn JL, Sezen UU, Falk T, Maloney PE, Vogler DR, Delfino-Mix A, Jensen C, Mitton J, Wright J, Knaus B, Rai H, Cronn R, Gonzalez-Ibeas D, Vasquez-Gross HA, Famula RA, Liu J-J, Kueppers LM, Neale DB (2018) Comparative transcriptomics among four white pine species. Genes Genomes Genet 8(5):1461–1474. https://doi.org/10.1534/g3.118.200257

    Article  CAS  Google Scholar 

  • Baradat P, Desprez-Loustau M (1997) Analyse diallèle et intégration de la sensibilité à la rouille courbeuse dans le programme d’amélioration du pin maritime (Diallel analysis and integration in the breeding program of maritime pine of sensitivity to twisting rust). Ann Des Sci for 54(1):83–106. https://doi.org/10.1051/forest:19970107

    Article  Google Scholar 

  • Bartholomé J, Bink MC, van Heerwaarden J, Chancerel E, Boury C, Lesur I, Isik F, Bouffier L, Plomion C (2016) Linkage and association mapping for two major traits used in the maritime pine breeding program: height growth and stem straightness. PLoS ONE 11(11):e0165323. https://doi.org/10.1371/journal.pone.0165323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartholomé J, Mabiala A, Burlett R, Bert D, Leplé J, Plomion C, Gion J (2020) The pulse of the tree is under genetic control: eucalyptus as a case study. Plant J 103(1):338–356. https://doi.org/10.1111/tpj.14734

    Article  CAS  PubMed  Google Scholar 

  • Bartholomé J, Van Heerwaarden J, Isik F, Boury C, Vidal M, Plomion C, Bouffier L (2016b) Performance of genomic prediction within and across generations in maritime pine. BMC Genomics 17(1):604. https://doi.org/10.1186/s12864-016-2879-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Batllori E, De Cáceres M, Brotons L, Ackerly DD, Moritz MA, Lloret F (2017) Cumulative effects of fire and drought in Mediterranean ecosystems. Ecosphere 8(8):e01906. https://doi.org/10.1002/ecs2.1906

    Article  Google Scholar 

  • Bautista R, Villalobos DP, Díaz-Moreno S, Cantón FR, Cánovas FM, Claros MG (2007) Toward a Pinus pinaster bacterial artificial chromosome library. Ann for Sci 64(8):855–864. https://doi.org/10.1051/forest:2007060

    Article  CAS  Google Scholar 

  • Beaulieu J, Doerksen TK, MacKay J, Rainville A, Bousquet J (2014) Genomic selection accuracies within and between environments and small breeding groups in white spruce. BMC Genomics 15(1):1048. https://doi.org/10.1186/1471-2164-15-1048

    Article  PubMed  PubMed Central  Google Scholar 

  • Beavis W (1998) QTL analyses: power, precision, and accuracy. In: Paterson AH (ed) Molecular dissection of complex traits, 1st edn. CRC Press, Boca Raton, Florida, USA, pp 145–162

    Google Scholar 

  • Bedon F, Bomal C, Caron S, Levasseur C, Boyle B, Mansfield SD, Schmidt A, Gershenzon J, Grima-Pettenati J, Séguin A, MacKay J (2010) Subgroup 4 R2R3-MYBs in conifer trees: gene family expansion and contribution to the isoprenoid- and flavonoid-oriented responses. J Exp Bot 61(14):3847–3864. https://doi.org/10.1093/jxb/erq196

    Article  CAS  PubMed  Google Scholar 

  • Behringer D, Zimmermann H, Ziegenhagen B, Liepelt S (2015) Differential gene expression reveals candidate genes for drought stress response in Abies alba (Pinaceae). PLoS ONE 10(4):e0124564. https://doi.org/10.1371/journal.pone.0124564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benito Garzón M, Robson TM, Hampe A (2019) ΔTraitSDMs: species distribution models that account for local adaptation and phenotypic plasticity. New Phytol 222(4):1757–1765. https://doi.org/10.1111/nph.15716

    Article  PubMed  Google Scholar 

  • Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG, Hall KP, Evers DJ, Barnes CL, Bignell HR, Boutell JM, Bryant J, Carter RJ, Keira Cheetham R, Cox AJ, Ellis DJ, Flatbush MR, Gormley NA, Humphray SJ, Irving LJ, Karbelashvili MS, Kirk SM, Li H, Liu X, Maisinger KS, Murray LJ, Obradovic B, Ost T, Parkinson ML, Pratt MR, Rasolonjatovo IMJ, Reed MT, Rigatti R, Rodighiero C, Ross MT, Sabot A, Sankar SV, Scally A, Schroth GP, Smith ME, Smith VP, Spiridou A, Torrance PE, Tzonev SS, Vermaas EH, Walter K, Wu X, Zhang L, Alam MD, Anastasi C, Aniebo IC, Bailey DMD, Bancarz IR, Banerjee S, Barbour SG, Baybayan PA, Benoit VA, Benson KF, Bevis C, Black PJ, Boodhun A, Brennan JS, Bridgham JA, Brown RC, Brown AA, Buermann DH, Bundu AA, Burrows JC, Carter NP, Castillo N, Chiara E. Catenazzi M, Chang S, Neil Cooley R, Crake NR, Dada OO, Diakoumakos KD, Dominguez-Fernandez B, Earnshaw DJ, Egbujor UC, Elmore DW, Etchin SS, Ewan MR, Fedurco M, Fraser LJ, Fuentes Fajardo KV, Scott Furey W, George D, Gietzen KJ, Goddard CP, Golda GS, Granieri PA, Green DE, Gustafson DL, Hansen NF, Harnish K, Haudenschild CD, Heyer NI, Hims MM, Ho JT, Horgan AM, Hoschler K, Hurwitz S, Ivanov DV, Johnson MQ, James T, Huw Jones TA, Kang G-D, Kerelska TH, Kersey AD, Khrebtukova I, Kindwall AP, Kingsbury Z, Kokko-Gonzales PI, Kumar A, Laurent MA, Lawley CT, Lee SE, Lee X, Liao AK, Loch JA, Lok M, Luo S, Mammen RM, Martin JW, McCauley PG, McNitt P, Mehta P, Moon KW, Mullens JW, Newington T, Ning Z, Ling Ng B, Novo SM, O’Neill MJ, Osborne MA, Osnowski A, Ostadan O, Paraschos LL, Pickering L, Pike AC, Pike AC, Chris Pinkard D, Pliskin DP, Podhasky J, Quijano VJ, Raczy C, Rae VH, Rawlings SR, Chiva Rodriguez A, Roe PM, Rogers J, Rogert Bacigalupo MC, Romanov N, Romieu A, Roth RK, Rourke NJ, Ruediger ST, Rusman E, Sanches-Kuiper RM, Schenker MR, Seoane JM, Shaw RJ, Shiver MK, Short SW, Sizto NL, Sluis JP, Smith MA, Ernest Sohna Sohna J, Spence EJ, Stevens K, Sutton N, Szajkowski L, Tregidgo CL, Turcatti G, VandeVondele S, Verhovsky Y, Virk SM, Wakelin S, Walcott GC, Wang J, Worsley GJ, Yan J, Yau L, Zuerlein M, Rogers J, Mullikin JC, Hurles ME, McCooke NJ, West JS, Oaks FL, Lundberg PL, Klenerman D, Durbin R, Smith AJ (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456(7218):53–59. https://doi.org/10.1038/nature07517

  • Bernhardsson C, Vidalis A, Wang X, Scofield DG, Schiffthaler B, Baison J, Street NR, García-Gil MR, Ingvarsson PK (2019) An ultra-dense haploid genetic map for evaluating the highly fragmented genome assembly of Norway spruce (Picea abies). Genes Genomes Genet 9(5):1623–1632. https://doi.org/10.1534/g3.118.200840

    Article  CAS  Google Scholar 

  • Birol I, Raymond A, Jackman SD, Pleasance S, Coope R, Taylor GA, Saint YMM, Keeling CI, Brand D, Vandervalk BP, Kirk H, Pandoh P, Moore RA, Zhao Y, Mungall AJ, Jaquish B, Yanchuk A, Ritland C, Boyle B, Bousquet J, Ritland K, MacKay J, Bohlmann J, Jones SJM (2013) Assembling the 20 Gb white spruce (Picea glauca) genome from whole-genome shotgun sequencing data. Bioinformatics 29(12):1492–1497. https://doi.org/10.1093/bioinformatics/btt178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blokhina O, Laitinen T, Hatakeyama Y, Delhomme N, Paasela T, Zhao L, Street NR, Wada H, Kärkönen A, Fagerstedt K (2019) Ray parenchymal cells contribute to lignification of tracheids in developing xylem of norway spruce. Plant Physiol 181(4):1552–1572. https://doi.org/10.1104/pp.19.00743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boller T, He SY (2009) Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science 324(5928):742–744. https://doi.org/10.1126/science.1171647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bömke C, Tudzynski B (2009) Diversity, regulation, and evolution of the gibberellin biosynthetic pathway in fungi compared to plants and bacteria. Phytochemistry 70(15–16):1876–1893. https://doi.org/10.1016/j.phytochem.2009.05.020

    Article  CAS  PubMed  Google Scholar 

  • Bonga JM (2016) Conifer clonal propagation in tree improvement programs. In: Park Y-S, Bonga JM, Moon H-K (eds) Vegetative propagation of forest trees. National Institute of Forest Science (NIFoS), Seoul, Korea, pp 3–31

    Google Scholar 

  • Bouffier L, Debille S, Harvengt L, Trontin J-F, Pastuszka P, Raffin A, Lelu-Walter M-A, Musch B (2017) Pollen contamination and mating structure in maritime pine clonal seed orchards. Proceedings of IUFRO seed orchard conference, Balsta, Sweden, 4–6 September 2017

    Google Scholar 

  • Bouffier L, Klápště J, Suontama M, Dungey HS, Mullin TJ (2019) Evaluation of forest tree breeding strategies based on partial pedigree reconstruction through simulations: Pinus pinaster and Eucalyptus nitens as case studies. Can J for Res 49(12):1504–1515. https://doi.org/10.1139/cjfr-2019-0145

    Article  Google Scholar 

  • Bouffier L, Raffin A, Alia R (2013) Maritime Pine (Pinus pinaster Ait.). In: Mullin T, Lee S (eds) Best practice for tree breeding in Europe. Skogforsk, Uppsala, Sweden, pp 65–76

    Google Scholar 

  • Brendel O, Pot D, Plomion C, Rozenberg P, Guehl J-M (2002) Genetic parameters and QTL analysis of δ 13 C and ring width in maritime pine. Plant Cell Environ 25(8):945–953. https://doi.org/10.1046/j.1365-3040.2002.00872.x

    Article  CAS  Google Scholar 

  • Brodribb TJ, Pittermann J, Coomes DA (2012) Elegance versus speed: examining the competition between conifer and angiosperm trees. Int J Plant Sci 173(6):673–694. https://doi.org/10.1086/666005

    Article  Google Scholar 

  • Bucci G, González-Martínez SC, Le Provost G, Plomion C, Ribeiro MM, Sebastiani F, Alía R, Vendramin GG (2007) Range-wide phylogeography and gene zones in Pinus pinaster Ait. revealed by chloroplast microsatellite markers. Mol Ecol 16(10):2137–2153. https://doi.org/10.1111/j.1365-294X.2007.03275.x

  • Budde KB, Heuertz M, Hernández-Serrano A, Pausas JG, Vendramin GG, Verdú M, González-Martínez SC (2014) In situ genetic association for serotiny, a fire-related trait, in Mediterranean maritime pine (Pinus pinaster). New Phytol 201(1):230–241. https://doi.org/10.1111/nph.12483

    Article  CAS  PubMed  Google Scholar 

  • Cabezas J, Morcillo M, Vélez M, Díaz L, Segura J, Cervera M, Arrillaga I (2016) Haploids in conifer species: characterization and chromosomal integrity of a maritime pine cell line. Forests 7(12):274. https://doi.org/10.3390/f7110274

    Article  Google Scholar 

  • Cabezas JA, González-Martínez SC, Collada C, Guevara MA, Boury C, de María N, Eveno E, Aranda I, Garnier-Géré PH, Brach J, Alía R, Plomion C, Cervera MT (2015) Nucleotide polymorphisms in a pine ortholog of the Arabidopsis degrading enzyme cellulase KORRIGAN are associated with early growth performance in Pinus pinaster. Tree Physiol 35(9):1000–1006. https://doi.org/10.1093/treephys/tpv050

    Article  CAS  PubMed  Google Scholar 

  • Caminero L, Génova M, Camarero JJ, Sánchez-Salguero R (2018) Growth responses to climate and drought at the southernmost European limit of Mediterranean Pinus pinaster forests. Dendrochronologia 48:20–29. https://doi.org/10.1016/j.dendro.2018.01.006

    Article  Google Scholar 

  • Canales J, Bautista R, Label P, Gómez-Maldonado J, Lesur I, Fernández-Pozo N, Rueda-López M, Guerrero-Fernández D, Castro-Rodríguez V, Benzekri H, Cañas RA, Guevara M-A, Rodrigues A, Seoane P, Teyssier C, Morel A, Ehrenmann F, Le Provost G, Lalanne C, Noirot C, Klopp C, Reymond I, García-Gutiérrez A, Trontin J-F, Lelu-Walter M-A, Miguel C, Cervera MT, Cantón FR, Plomion C, Harvengt L, Avila C, Gonzalo Claros M, Cánovas FM (2014) De novo assembly of maritime pine transcriptome: implications for forest breeding and biotechnology. Plant Biotechnol J 12(3):286–299. https://doi.org/10.1111/pbi.12136

    Article  CAS  PubMed  Google Scholar 

  • Cañas RA, Canales J, Gomez-Maldonado J, Avila C, Canovas FM (2014) Transcriptome analysis in maritime pine using laser capture microdissection and 454 pyrosequencing. Tree Physiol 34(11):1278–1288. https://doi.org/10.1093/treephys/tpt113

    Article  CAS  PubMed  Google Scholar 

  • Cañas RA, Feito I, Fuente-Maqueda JF, Ávila C, Majada J, Cánovas FM (2015) Transcriptome-wide analysis supports environmental adaptations of two Pinus pinaster populations from contrasting habitats. BMC Genomics 16(1):909. https://doi.org/10.1186/s12864-015-2177-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cañas RA, Li Z, Pascual MB, Castro-Rodríguez V, Ávila C, Sterck L, Van de Peer Y, Cánovas FM (2017) The gene expression landscape of pine seedling tissues. Plant J 91(6):1064–1087. https://doi.org/10.1111/tpj.13617

    Article  CAS  PubMed  Google Scholar 

  • Cañas RA, Pascual MB, de la Torre FN, Ávila C, Cánovas FM (2019) Resources for conifer functional genomics at the omics era. In: Cánovas FM (ed) Advances in botanical research. Academic Press, pp 39–76

    Google Scholar 

  • Cardon LR, Bell JI (2001) Association study designs for complex diseases. Nat Rev Genet 2(2):91–99. https://doi.org/10.1038/35052543

    Article  CAS  PubMed  Google Scholar 

  • Carneros E, Abarca D, del Amo A, Trontin J-F, Díaz-Sala C (2014) Genetic transformation of Pinus pinaster embryogenic lines: molecular characterization, optimization of embryo maturation-germination and plantlet micropropagation. In: Book of abstracts of the 3rd international conference of the IUFRO working party 2.09.02 on woody plant production integrating genetic and vegetative propagation technologies, Vitoria-Gasteiz, Spain, 8–12 September 2014, p 113

    Google Scholar 

  • Carrasquinho I, Lisboa A, Inácio ML, Gonçalves E (2018) Genetic variation in susceptibility to pine wilt disease of maritime pine (Pinus pinaster Aiton) half-sib families. Ann For Sci 75(3):85. https://doi.org/10.1007/s13595-018-0759-x

    Article  Google Scholar 

  • Carrión JS, Navarro C, Navarro J, Munuera M (2000) The distribution of cluster pine (Pinus pinaster) in Spain as derived from palaeoecological data: relationships with phytosociological classification. The Holocene 10(2):243–252. https://doi.org/10.1191/095968300676937462

    Article  Google Scholar 

  • Castander-Olarieta A, Pereira C, Montalbán IA, Canhoto J, Moncaleán P (2020) Stress modulation in Pinus spp. Somatic embryogenesis as model for climate change mitigation: stress is not always a problem. In: Chong P, Newman D, Steinmacher D (eds) Agricultural, forestry and bioindustry biotechnology and biodiscovery. Springer, Cham, pp 117–130

    Chapter  Google Scholar 

  • Castro-Rodríguez V, García-Gutiérrez A, Cañas RA, Pascual M, Avila C, Cánovas FM (2015) Redundancy and metabolic function of the glutamine synthetase gene family in poplar. BMC Plant Biol 15(1):20. https://doi.org/10.1186/s12870-014-0365-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Celedon JM, Yuen MMS, Chiang A, Henderson H, Reid KE, Bohlmann J (2017) Cell-type- and tissue-specific transcriptomes of the white spruce (Picea glauca) bark unmask fine-scale spatial patterns of constitutive and induced conifer defense. Plant J 92(4):710–726. https://doi.org/10.1111/tpj.13673

    Article  CAS  PubMed  Google Scholar 

  • Chagné D, Brown G, Lalanne C, Madur D, Pot D, Neale D, Plomion C (2003) Comparative genome and QTL mapping between maritime and loblolly pines. Mol Breed 12(3):185–195. https://doi.org/10.1023/A:1026318327911

    Article  Google Scholar 

  • Chambel MR, Climent J, Alía R (2004) Intra-specific variation of phenotypic plasticity for biomass allocation in Mediterranean pines. In: Arianoutsou M, Thanos C (eds) Proceedings 10th MEDECOS conference, Rhodes, Greece, April 2014. Millpress, Rhodas, Grecia

    Google Scholar 

  • Chancerel E, Lamy J-B, Lesur I, Noirot C, Klopp C, Ehrenmann F, Boury C, Le PG, Label P, Lalanne C, Léger V, Salin F, Gion J-M, Plomion C (2013) High-density linkage mapping in a pine tree reveals a genomic region associated with inbreeding depression and provides clues to the extent and distribution of meiotic recombination. BMC Biol 11(1):50. https://doi.org/10.1186/1741-7007-11-50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaperon H, Hinschberger F, Haury P, Alazard P (1991) A comparative study of the development of maritime pine plants raised from cuttings or from seedlings. Ann Rech Sylvi. AFOCEL 1989–1990:115–133

    Google Scholar 

  • Chávez Montes RA, de Rosas-Cárdenas FF, De Paoli E, Accerbi M, Rymarquis LA, Mahalingam G, Marsch-Martínez N, Meyers BC, Green PJ, de Folter S (2014) Sample sequencing of vascular plants demonstrates widespread conservation and divergence of microRNAs. Nat Commun 5(1):3722. https://doi.org/10.1038/ncomms4722

    Article  CAS  PubMed  Google Scholar 

  • Chen X (2009) Small RNAs and their roles in plant development. Annu Rev Cell Dev Biol 25(1):21–44. https://doi.org/10.1146/annurev.cellbio.042308.113417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chevin L-M, Collins S, Lefèvre F (2012) Phenotypic plasticity and evolutionary demographic responses to climate change: taking theory out to the field. Funct Ecol 27(4):967–979. https://doi.org/10.1111/j.1365-2435.2012.02043.x

    Article  Google Scholar 

  • Chevin L-M, Lande R, Mace GM (2010) Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLoS Biol 8(4):e1000357. https://doi.org/10.1371/journal.pbio.1000357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clements MN, Morrissey MM, Wilson AJ, Re D, Postma E, Walling CA, Kruuk LEB, Nussey DH, Reale D, Clements MN, Morrissey MM, Postma E, Walling CA, Kruuk LEB, Nussey DH (2009) An ecologist’s guide to the animal model. J Anim Ecol 79 (Pemberton 2008):13–26. https://doi.org/10.1111/j.1365-2656.2009.01639.x

  • Climent J, Prada MA, Calama R, Chambel MR, Sánchez de Ron D, Alía R, De Ron DS (2008) To grow or to seed: ecotypic variation in reproductive allocation and cone production by young female Aleppo pine (Pinus halepensis, Pinaceae). Am J Bot 95(7):833–842. https://doi.org/10.3732/ajb.2007354

    Article  PubMed  Google Scholar 

  • Colina FJ, Carbó M, Álvarez A, Valledor L, Cañal MJ (2020) The analysis of Pinus pinaster SnRKs reveals clues of the evolution of this family and a new set of abiotic stress resistance biomarkers. Agronomy 10(2):295. https://doi.org/10.3390/agronomy10020295

    Article  CAS  Google Scholar 

  • Consortium TG (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485(7400):635–641. https://doi.org/10.1038/nature11119

    Article  CAS  Google Scholar 

  • Corcuera L, Gil-Pelegrin E, Notivol E (2010) Phenotypic plasticity in Pinus pinaster δ13C: environment modulates genetic variation. Ann For Sci 67(8):812–812. https://doi.org/10.1051/forest/2010048

    Article  Google Scholar 

  • Corcuera L, Gil-Pelegrin E, Notivol E (2012) Differences in hydraulic architecture between mesic and xeric Pinus pinaster populations at the seedling stage. Tree Physiol 32(12):1442–1457. https://doi.org/10.1093/treephys/tps103

    Article  PubMed  Google Scholar 

  • Costa P, Durel CE (1996) Time trends in genetic control over height and diameter in maritime pine. Can J for Res 26(7):1209–1217

    Article  Google Scholar 

  • Craven-Bartle B, Pascual MB, Cánovas FM, Ávila C (2013) A Myb transcription factor regulates genes of the phenylalanine pathway in maritime pine. Plant J 74(5):755–766. https://doi.org/10.1111/tpj.12158

    Article  CAS  PubMed  Google Scholar 

  • Czemmel S, Höll J, Loyola R, Arce-Johnson P, Alcalde JA, Matus JT, Bogs J (2017) Transcriptome-wide identification of novel UV-B- and light modulated flavonol pathway genes controlled by VviMYBF1. Front Plant Sci 8:1084. https://doi.org/10.3389/fpls.2017.01084

    Article  PubMed  PubMed Central  Google Scholar 

  • Dai Y, Hu G, Dupas A, Medina L, Blandels N, San Clemente H, Ladouce N, Badawi M, Hernandez-Raquet G, Mounet F, Grima-Pettenati J, Cassan-Wang H (2020) Implementing the CRISPR/Cas9 technology in eucalyptus hairy roots using wood-related genes. Int J Mol Sci 21(10):3408. https://doi.org/10.3390/ijms21103408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danjon F (1994) Heritabilities and genetic correlations for estimated growth curve parameters in maritime pine. Theor Appl Genet 89–89(7–8):911–921. https://doi.org/10.1007/BF00224517

    Article  Google Scholar 

  • De Bie T, Cristianini N, Demuth JP, Hahn MW (2006) CAFE: a computational tool for the study of gene family evolution. Bioinformatics 22(10):1269–1271. https://doi.org/10.1093/bioinformatics/btl097

    Article  CAS  PubMed  Google Scholar 

  • De Diego N, Montalbán IA, Moncaleán P (2011) Improved micropropagation protocol for maritime pine using zygotic embryos. Scand J For Res 26(3):202–211. https://doi.org/10.1080/02827581.2011.559174

    Article  Google Scholar 

  • De La Torre AR, Birol I, Bousquet J, Ingvarsson PK, Jansson S, Jones SJM, Keeling CI, MacKay J, Nilsson O, Ritland K, Street N, Yanchuk A, Zerbe P, Bohlmann J (2014) Insights into conifer giga-genomes. Plant Physiol 166(4):1724–1732. https://doi.org/10.1104/pp.114.248708

    Article  CAS  PubMed  Google Scholar 

  • De La Torre AR, Li Z, Van de Peer Y, Ingvarsson PK (2017) Contrasting rates of molecular evolution and patterns of selection among gymnosperms and flowering plants. Mol Biol Evol 34(6):1363–1377. https://doi.org/10.1093/molbev/msx069

    Article  CAS  PubMed  Google Scholar 

  • De La Torre AR, Wilhite B, Neale DB (2019) Environmental genome-wide association reveals climate adaptation is shaped by subtle to moderate allele frequency shifts in loblolly pine. Genome Biol Evol 11(10):2976–2989. https://doi.org/10.1093/gbe/evz220

    Article  CAS  PubMed  Google Scholar 

  • de María N, Guevara MÁ, Perdiguero P, Vélez MD, Cabezas JA, López‐Hinojosa M, Li Z, Díaz LM, Pizarro A, Mancha JA, Sterck L, Sánchez‐Gómez D, Miguel C, Collada C, Díaz‐Sala MC, Cervera MT (2020) Molecular study of drought response in the Mediterranean conifer Pinus pinaster Ait.: differential transcriptomic profiling reveals constitutive water deficit‐independent drought tolerance mechanisms. Ecol Evol 10(18):9788–9807. https://doi.org/10.1002/ece3.6613

  • de Miguel M, Bartholomé J, Ehrenmann F, Murat F, Moriguchi Y, Uchiyama K, Ueno S, Tsumura Y, Lagraulet H, de Maria N, Cabezas J-A, Cervera M-T, Gion JM, Salse J, Plomion C (2015) Evidence of intense chromosomal shuffling during conifer evolution. Genome Biol Evol 7(10):2799–2890. https://doi.org/10.1093/gbe/evv185

    Article  PubMed  PubMed Central  Google Scholar 

  • de Miguel M, Cabezas J-A, de María N, Sánchez-Gómez D, Guevara M-Á, Vélez M-D, Sáez-Laguna E, Díaz L-M, Mancha J-A, Barbero M-C, Collada C, Díaz-Sala C, Aranda I, Cervera M-T (2014) Genetic control of functional traits related to photosynthesis and water use efficiency in Pinus pinaster Ait. drought response: integration of genome annotation, allele association and QTL detection for candidate gene identification. BMC Genomics 15(1):464. https://doi.org/10.1186/1471-2164-15-464

  • de Miguel M, Guevara MÁ, Sánchez-Gómez D, de María N, Díaz LM, Mancha JA, Fernández de Simón B, Cadahía E, Desai N, Aranda I, Cervera M-T (2016) Organ-specific metabolic responses to drought in Pinus pinaster Ait. Plant Physiol Biochem 102:17–26. https://doi.org/10.1016/j.plaphy.2016.02.013

    Article  CAS  PubMed  Google Scholar 

  • de Miguel M, Rodríguez-Quilón I, Heuertz M, Hurel A, Grivet D, Jaramillo-Correa J-P, Vendramin GG, Plomion C, Majada J, Alía R, Eckert AJ, González-Martínez SC (2020) Polygenic adaptation and negative selection across traits, years and environments in a long-lived plant species (Pinus pinaster Ait.). bioRxiv 2020.03.02.974113. https://doi.org/10.1101/2020.03.02.974113

  • de Miguel M, Sanchez-Gomez D, Cervera MT, Aranda I (2012) Functional and genetic characterization of gas exchange and intrinsic water use efficiency in a full-sib family of Pinus pinaster Ait. in response to drought. Tree Physiol 32(1):94–103. https://doi.org/10.1093/treephys/tpr122

  • de Vega-Bartol JJ, Simões M, Lorenz W, Rodrigues AS, Alba R, Dean JFD, Miguel CM (2013) Transcriptomic analysis highlights epigenetic and transcriptional regulation during zygotic embryo development of Pinus pinaster. BMC Plant Biol 13(1):123. https://doi.org/10.1186/1471-2229-13-123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deamer D, Akeson M, Branton D (2016) Three decades of nanopore sequencing. Nat Biotechnol 34(5):518–524. https://doi.org/10.1038/nbt.3423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desprez-Loustau M, Baradat P (1991) Variabilité interraciale de la sensibilité à la rouille courbeuse chez le pin maritime (Variation in susceptibility to twisting rust between maritime pine races). Ann Des Sci for 48(5):497–511. https://doi.org/10.1051/forest:19910502

    Article  Google Scholar 

  • Di Matteo G, Voltas J (2016) Multienvironment evaluation of Pinus pinaster provenances: evidence of genetic trade-offs between sdaptation to optimal conditions and resistance to the maritime pine bast scale (Matsucoccus feytaudi). For Sci 62(5):553–563. https://doi.org/10.5849/forsci.15-109

    Article  Google Scholar 

  • Díaz-Sala C (2014) Direct reprogramming of adult somatic cells toward adventitious root formation in forest tree species: the effect of the juvenile-adult transition. Front Plant Sci 5:310. https://doi.org/10.3389/fpls.2014.00310

    Article  PubMed  PubMed Central  Google Scholar 

  • Díaz-Sala C (2019) Molecular dissection of the regenerative capacity of forest tree species: special focus on conifers. Front Plant Sci 9:1943. https://doi.org/10.3389/fpls.2018.01943

    Article  PubMed  PubMed Central  Google Scholar 

  • Díaz-Sala C (2020) A perspective on adventitious root formation in tree species. Plants 9(12):1789. https://doi.org/10.3390/plants9121789

    Article  PubMed  PubMed Central  Google Scholar 

  • Ding C, Park YS, Bonga J, Bartlett B, Li Y, Raley F (2019) A brief review of combining genomic selection and somatic embryogenesis for tree improvement. In: Bonga JM, Park YS, Trontin J-F (eds) Proceedings of the 5th international conference of the IUFRO working party 2.09.02 on clonal trees in the bioeconomy age: opportunities and challenges, Coimbra, Portugal, 10–15 September 2018. IUFRO, Vienna, Austria, pp 55–69

    Google Scholar 

  • Dolgosheina EV, Morin RD, Aksay G, Sahinalp SC, Magrini V, Mardis ER, Mattsson J, Unrau PJ (2008) Conifers have a unique small RNA silencing signature. RNA 14(8):1508–1515. https://doi.org/10.1261/rna.1052008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubos C, Le Provost G, Pot D, Salin F, Lalane C, Madur D, Frigerio J-M, Plomion C (2003) Identification and characterization of water-stress-responsive genes in hydroponically grown maritime pine (Pinus pinaster) seedlings. Tree Physiol 23(3):169–179. https://doi.org/10.1093/treephys/23.3.169

    Article  CAS  PubMed  Google Scholar 

  • Dubos C, Plomion C (2003) Identification of water-deficit responsive genes in maritime pine (Pinus pinaster Ait.) roots. Plant Mol Biol 51(2):249–262. https://doi.org/10.1023/A:1021168811590

  • Dumas E, Franclet A, Monteuuis O (1989) Microgreffage de méristèmes primaires caulinaires de pins maritimes (Pinus pinaster Ait.) âgés sur de jeunes semis cultivés in vitro (Apical meristem micrografting of mature maritime pines (Pinus pinaster Ait.) onto in vitro young seedlings.). C R Acad Sci (III), Paris, France 309(19):723–728

    Google Scholar 

  • Dumas E, Monteuuis O (1995) In vitro rooting of micropropagated shoots from juvenile and mature Pinus pinaster explants: influence of activated charcoal. Plant Cell Tissue Organ Cult 40(3):231–235. https://doi.org/10.1007/BF00048128

    Article  Google Scholar 

  • Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P, Bettman B, Bibillo A, Bjornson K, Chaudhuri B, Christians F, Cicero R, Clark S, Dalal R, DeWinter A, Dixon J, Foquet M, Gaertner A, Hardenbol P, Heiner C, Hester K, Holden D, Kearns G, Kong X, Kuse R, Lacroix Y, Lin S, Lundquist P, Ma C, Marks P, Maxham M, Murphy D, Park I, Pham T, Phillips M, Roy J, Sebra R, Shen G, Sorenson J, Tomaney A, Travers K, Trulson M, Vieceli J, Wegener J, Wu D, Yang A, Zaccarin D, Zhao P, Zhong F, Korlach J, Turner S (2009) Real-time DNA sequencing from single polymerase molecules. Science 323(5910):133–138. https://doi.org/10.1126/science.1162986

    Article  CAS  PubMed  Google Scholar 

  • El-Azaz J, de la Torre F, Ávila C, Cánovas FM (2016) Identification of a small protein domain present in all plant lineages that confers high prephenate dehydratase activity. Plant J 87(2):215–229. https://doi.org/10.1111/tpj.13195

    Article  CAS  PubMed  Google Scholar 

  • El-Azaz J, de la Torre F, Pascual MB, Debille S, Canlet F, Harvengt L, Trontin J-F, Ávila C, Cánovas FM (2020) Transcriptional analysis of arogenate dehydratase genes identifies a link between phenylalanine biosynthesis and lignin biosynthesis. J Exp Bot 71(10):3080–3093. https://doi.org/10.1093/jxb/eraa099

    Article  CAS  PubMed Central  Google Scholar 

  • Elvira-Recuenco M, Iturritxa E, Majada J, Alia R, Raposo R (2014) Adaptive potential of maritime pine (Pinus pinaster) populations to the emerging pitch canker pathogen Fusarium circinatum. Plos One 9(12):e114971. https://doi.org/10.1371/journal.pone.0114971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • EPPO (2011) Plant quarantine data retrieval system (PQR version 5.3.5). Retrieved January 15, 2021 from http://www.eppo.int/DATABASES/pqr/pqr.htm

  • Estravis-Barcala M, Mattera MG, Soliani C, Bellora N, Opgenoorth L, Heer K, Arana MV (2020) Molecular bases of responses to abiotic stress in trees. J Exp Bot 71(13):3765–3779. https://doi.org/10.1093/jxb/erz532

    Article  CAS  PubMed  Google Scholar 

  • Evans HF, McNamara DG, Braasch H, Chadoeuf J, Magnusson C (1996) Pest Risk Analysis (PRA) for the territories of the European Union (as PRA area) on Bursaphelenchus xylophilus and its vectors in the genus Monochamus. EPPO Bull 26(2):199–249. https://doi.org/10.1111/j.1365-2338.1996.tb00594.x

    Article  Google Scholar 

  • Eveno E, Collada C, Guevara MÁ, Léger V, Soto A, Díaz L, Leger P, González-Martínez SC, Cervera MT, Plomion C, Garnier-Gere PH (2008) Contrasting patterns of selection at Pinus pinaster Ait. drought stress candidate genes as revealed by genetic differentiation analyses. Mol Biol Evol 25(2):417–437. https://doi.org/10.1093/molbev/msm272

  • Fady B, Cottrell J, Ackzell L, Alía R, Muys B, Prada A, González-Martínez SC (2016) Forests and global change: what can genetics contribute to the major forest management and policy challenges of the twenty-first century? Reg Environ Chang 16(4):927–939. https://doi.org/10.1007/s10113-015-0843-9

    Article  Google Scholar 

  • Fan D, Liu T, Li C, Jiao B, Li S, Hou Y, Luo K (2015) Efficient CRISPR/Cas9-mediated targeted mutagenesis in Populus in the first generation. Sci Rep 5(1):12217. https://doi.org/10.1038/srep12217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fei Y, Xiao B, Yang M, Ding Q, Tang W (2016) MicroRNAs, polyamines, and the activities antioxidant enzymes are associated with in vitro rooting in white pine (Pinus strobus L.). Springerplus 5(1):416. https://doi.org/10.1186/s40064-016-2080-1

  • Fernando RL, Grossman M (1989) Marker assisted selection using best linear unbiased prediction. Genet Sel Evol 21(4):467. https://doi.org/10.1186/1297-9686-21-4-467

    Article  Google Scholar 

  • Feinard-Duranceau M, Berthier A, Vincent-Barbaroux C, Marin S, Lario F-J, Rozenberg P (2018) Plastic response of four maritime pine (Pinus pinaster Aiton) families to controlled soil water deficit. Ann For Sci 75(2):47. https://doi.org/10.1007/s13595-018-0719-5

    Article  Google Scholar 

  • Flachowsky H, Hanke M-V, Peil A, Strauss SH, Fladung M (2009) A review on transgenic approaches to accelerate breeding of woody plants. Plant Breed 128(3):217–226. https://doi.org/10.1111/j.1439-0523.2008.01591.x

    Article  CAS  Google Scholar 

  • Foissac S, Gouzy J, Rombauts S, Mathe C, Amselem J, Sterck L, de Peer Y, Rouze P, Schiex T (2008) Genome annotation in plants and fungi: EuGene as a model platform. Curr Bioinform 3(2):87–97. https://doi.org/10.2174/157489308784340702

    Article  CAS  Google Scholar 

  • Franclet A, Boulay M, Bekkaoui F, Fouret Y, Verschoore-Martouzet B, Walker N (1987) Rejuvenation. In: Bonga JM, Durzan DJ (eds) Cell and tissue culture in Forestry, Forestry Sciences, vol 24–26. Springer, Dordrecht, pp 232–248

    Chapter  Google Scholar 

  • Gaspar D, Trindade C, Usié A, Meireles B, Barbosa P, Fortes A, Pesquita C, Costa R, Ramos A (2017) Expression profiling in Pinus pinaster in response to infection with the pine wood nematode Bursaphelenchus xylophilus. Forests 8(8):279. https://doi.org/10.3390/f8080279

    Article  Google Scholar 

  • Gaspar D, Trindade C, Usié A, Meireles B, Fortes A, Guimarães J, Simões F, Costa R, Ramos A (2020) Comparative transcriptomic response of two Pinus species to infection with the pine wood nematode Bursaphelenchus xylophilus. Forests 11(2):204. https://doi.org/10.3390/f11020204

    Article  Google Scholar 

  • Gaspar MJ, Louzada JL, Silva ME, Aguiar A, Almeida MH (2008) Age trends in genetic parameters of wood density components in 46 half-sibling families of Pinus pinaster. Can J For Res 38(6):1470–1477. https://doi.org/10.1139/X08-013

    Article  Google Scholar 

  • Gaspar MJ, Velasco T, Feito I, Alía R, Majada J (2013) Genetic variation of drought tolerance in Pinus pinaster at three hierarchical levels: a comparison of induced osmotic stress and field testing. PLoS ONE 8(11):e79094. https://doi.org/10.1371/journal.pone.0079094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gómez A, Vendramin GG, González-Martínez SC, Alía R (2005) Genetic diversity and differentiation of two Mediterranean pines (Pinus halepensis Mill. and Pinus pinaster Ait.) along a latitudinal cline using chloroplast microsatellite markers. Divers Distrib 11(3):257–263. https://doi.org/10.1111/j.1366-9516.2005.00152.x

  • Gómez-Maldonado J, Avila C, Torre F, Cañas R, Cánovas FM, Campbell MM (2004) Functional interactions between a glutamine synthetase promoter and MYB proteins. Plant J 39(4):513–526. https://doi.org/10.1111/j.1365-313X.2004.02153.x

    Article  CAS  PubMed  Google Scholar 

  • Gómez-Maldonado J, Crespillo R, ÉAvila C, Céanovas FM, (2001) Efficient preparation of maritime pine (Pinus pinaster) protoplasts suitable for transgene expression analysis. Plant Mol Biol Report 19(4):361–366. https://doi.org/10.1007/BF02772834

    Article  Google Scholar 

  • Gonçalves E, Figueiredo AC, Barroso JG, Henriques J, Sousa E, Bonifácio L (2020) Effect of Monochamus galloprovincialis feeding on Pinus pinaster and Pinus pinea, oleoresin and insect volatiles. Phytochemistry 169:112159. https://doi.org/10.1016/j.phytochem.2019.112159

    Article  CAS  PubMed  Google Scholar 

  • González-Martínez SC, Alía R, Gil L (2002) Population genetic structure in a Mediterranean pine (Pinus pinaster Ait.): a comparison of allozyme markers and quantitative traits. Heredity 89(3):199–206. https://doi.org/10.1038/sj.hdy.6800114

  • González-Martínez SC, Gómez A, Carrión JS, Agúndez D, Alía R, Gil L (2007) Spatial genetic structure of an explicit glacial refugium of maritime pine (Pinus pinaster Aiton) in southeastern Spain. In: Weiss S, Ferrand N (eds) Phylogeography of southern European refugia. Springer, Dordrecht, pp 257–269

    Chapter  Google Scholar 

  • González-Martínez SC, Salvador L, Agúndez D, Alía R, Gil LA, Müller-Starck G, Schubert R et al (2001) Geographical variation of gene diversity of Pinus pinaster Ait. in the Iberian Peninsula. In: Muller-Starck H, Schubert R (eds) Genetic response of forest systems to changing environmental conditions. Kluwer Academic Publishers, Dordrecht, Boston, London, pp 161–171

    Chapter  Google Scholar 

  • González-Martínez SC, Burczyk J, Nathan R, Nanos N, Gil LA, Alía R (2006) Effective gene dispersal and female reproductive success in Mediterranean maritime pine (Pinus pinaster Aiton). Mol Ecol 15(14):4577–4588. https://doi.org/10.1111/j.1365-294X.2006.03118.x

    Article  Google Scholar 

  • Goodwin S, McPherson JD, McCombie WR (2016) Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet 17:333–351. https://doi.org/10.1038/nrg.2016.49

    Article  CAS  Google Scholar 

  • Grattapaglia D (2014) Breeding forest trees by genomic selection: current progress and the way forward. In: Tuberosa R, Graner A, Frison E (eds) Genomics of plant genetic resources. Springer, Dordrecht, pp 651–682

    Chapter  Google Scholar 

  • Grattapaglia D, Silva-Junior OB, Resende RT, Cappa EP, Müller BSF, Tan B, Isik F, Ratcliffe B, El-Kassaby YA (2018) Quantitative genetics and genomics converge to accelerate forest tree breeding. Front Plant Sci 9(1693). https://doi.org/10.3389/fpls.2018.01693

  • Gravel-Grenier J, Lamhamedi MS, Beaulieu J, Carles S, Margolis HA, Rioux M, Stowe DC, Lapointe L (2011) Utilization of family genetic variability to improve the rooting ability of white spruce (Picea glauca) cuttings. Can J for Res 41(6):1308–1318. https://doi.org/10.1139/x11-044

    Article  Google Scholar 

  • Grivet D, Avia K, Vaattovaara A, Eckert AJ, Neale DB, Savolainen O, González-Martínez SC (2017) High rate of adaptive evolution in two widespread European pines. Mol Ecol 26(24):6857–6870. https://doi.org/10.1111/mec.14402

    Article  PubMed  Google Scholar 

  • Grivet D, Sebastiani F, Alía R, Bataillon T, Torre S, Zabal-Aguirre M, Vendramin GG, González-Martínez SC (2011) Molecular footprints of local adaptation in two Mediterranean conifers. Mol Biol Evol 28(1):101–116. https://doi.org/10.1093/molbev/msq190

    Article  CAS  PubMed  Google Scholar 

  • Guan R, Zhao Y, Zhang H, Fan G, Liu X, Zhou W, Shi C, Wang J, Liu W, Liang X, Fu Y, Ma K, Zhao L, Zhang F, Lu Z, Lee SM-Y, Xu X, Wang J, Yang H, Fu C, Ge S, Chen W (2016) Draft genome of the living fossil Ginkgo biloba. Gigascience 5(1):49. https://doi.org/10.1186/s13742-016-0154-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo L, Chen F (2014) A challenge for miRNA: multiple isomiRs in miRNAomics. Gene 544(1):1–7. https://doi.org/10.1016/j.gene.2014.04.039

    Article  CAS  PubMed  Google Scholar 

  • Hadfield JD, Wilson AJ, Garant D, Sheldon BC, Kruuk LEB (2010) The misuse of BLUP in ecology and evolution. Am Nat 175(1):116–125. https://doi.org/10.1086/648604

    Article  PubMed  Google Scholar 

  • Hamberger B, Ohnishi T, Hamberger B, Séguin A, Bohlmann J (2011) Evolution of diterpene metabolism: sitka spruce CYP720B4 catalyzes multiple oxidations in resin acid biosynthesis of conifer defense against insects. Plant Physiol 157(4):1677–1695. https://doi.org/10.1104/pp.111.185843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harfouche A, Baradat P, Durel C, Pommery J (1995) Variabilité intraspécifique chez le pin maritime (Pinus pinaster Ait) dans le sud-est de la France. I. Variabilité des populations autochtones et des populations de l’ensemble de l’aire de l’espèce (Intraspecific variability in maritime pine (Pinus pinaster Ait.) in the south-east of France. Variability in autochthonous populations and in the whole range of the species.). Ann des Sci For 52(4):307–328. https://doi.org/10.1051/forest:19950402

  • Haslam E (1993) Shikimic acid: metabolism and metabolites. Wiley, Chichester, UK

    Google Scholar 

  • Hassani SB, Benneckenstein T, Rupps A, Hensel G, Broeders S, Trontin J-F, Zoglauer K (2013a) Analysis of different promoters and reporter genes in somatic embryos of Pinus pinaster Ait. and Larix decidua Mill. In: Park YS, Bonga JM (eds) Proceeding of the 2nd international conference of the IUFRO working party 2.09.02 on integrating vegetative propagation, biotechnology and genetic improvement for tree production and sustainable forest management, Brno, Czech Republic, 25–28 June 2012). IUFRO, Vienna, Austria, p 192

    Google Scholar 

  • Hassani SB, Rupps A, Arndt N, Cánovas FM, Trontin J-F, Zoglauer K (2013b) Overexpression of embryogenesis- and growth-related genes in transgenic Pinus pinaster embryos. Conference of German botanics (Botanikertagung), Tübingen, Germany, 30 September - 4 October 2013

    Google Scholar 

  • Hassani, SB (2015). Gene transfer and expression analysis of genes related to growth and development of maritime pine (Pinus pinaster). PhD thesis, Humboldt University of Berlin, Germany

    Google Scholar 

  • Hernández-Escribano L (2019) Fusarium circinatum—host interaction: ecological and molecular aspects of the pathogenic and endophytic association. Universidad Politécnica de Madrid

    Google Scholar 

  • Hernández-Escribano L, Visser EA, Iturritxa E, Raposo R, Naidoo S (2020) The transcriptome of Pinus pinaster under Fusarium circinatum challenge. BMC Genomics 21(1):28. https://doi.org/10.1186/s12864-019-6444-0

    Article  CAS  PubMed Central  Google Scholar 

  • Hughes-Jarlet E (1989). Recherches sur l’aptitude à l’embryogenèse somatique de matériel juvénile et de matériel issu d’arbres adultes de Pinus pinaster Sol (Research on the aptitude for somatic embryogenesis of juvenile and adult material from Pinus pinaster Sol.). PhD dissertation in plant biology and physiology, University Paris VI, France, 135 p

    Google Scholar 

  • Hurel A (2020) Génomique écologique de l’adaptation locale chez le pin maritime (Pinus pinaster) (Ecological genomics of local adaptation in maritime pine (Pinus pinaster Aiton).) Agricultural Sciences. University of Bordeaux, France.

    Google Scholar 

  • Hurel A, de Miguel M, Dutech C, Desprez-Loustau M-L, Plomion C, Rodríguez-Quilón I, Cyrille A, Guzman T, Alía R, González-Martínez SC, Budde KB (2021) Genetic basis of growth, spring phenology, and susceptibility to biotic stressors in maritime pine. Evol Appl. https://doi.org/10.1111/eva.13309

  • Ingvarsson PK, Street NR (2011) Association genetics of complex traits in plants. New Phytol 189(4):909–922. https://doi.org/10.1111/j.1469-8137.2010.03593.x

    Article  PubMed  Google Scholar 

  • Isik F, Bartholomé J, Farjat A, Chancerel E, Raffin A, Sanchez L, Plomion C, Bouffier L (2016) Genomic selection in maritime pine. Plant Sci 242:108–119. https://doi.org/10.1016/j.plantsci.2015.08.006

    Article  CAS  PubMed  Google Scholar 

  • Iturritxa E, Ganley RJ, Raposo R, García-Serna I, Mesanza N, Kirkpatrick SC, Gordon TR (2013) Resistance levels of Spanish conifers against Fusarium circinatum and Diplodia pinea. For Pathol 43(6):488–495. https://doi.org/10.1111/efp.12061

    Article  Google Scholar 

  • Iturritxa E, Mesanza N, Elvira-Recuenco M, Serrano Y, Quintana E, Raposo R (2012) Evaluation of genetic resistance in Pinus to pitch canker in Spain. Australas Plant Pathol 41(6):601–607. https://doi.org/10.1007/s13313-012-0160-4

    Article  Google Scholar 

  • Jackman SD, Vandervalk BP, Mohamadi H, Chu J, Yeo S, Hammond SA, Jahesh G, Khan H, Coombe L, Warren RL, Birol I (2017) ABySS 2.0: resource-efficient assembly of large genomes using a Bloom filter. Genome Res 27(5):768–777. https://doi.org/10.1101/gr.214346.116

  • Jactel H, Kleinhentz M, Raffin A, Menassieu P (1999) Comparison of different selection methods for the resistance to Dioryctria sylvestrella Ratz. (Lepidoptera: Pyralidae) in Pinus pinaster Ait. In: Lieutier F, Mattson WJ, Wagner MR (eds) Proceedings of the physiology and genetics of tree-phytophage interactions international symposium, vol 90. INRA, Paris, France, pp 137–149

    Google Scholar 

  • Jain M, Koren S, Miga KH, Quick J, Rand AC, Sasani TA, Tyson JR, Beggs AD, Dilthey AT, Fiddes IT, Malla S, Marriott H, Nieto T, O’Grady J, Olsen HE, Pedersen BS, Rhie A, Richardson H, Quinlan AR, Snutch TP, Tee L, Paten B, Phillippy AM, Simpson JT, Loman NJ, Loose M (2018) Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat Biotechnol 36:338–345. https://doi.org/10.1038/nbt.4060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaramillo-correa JP, Prunier J, Vázquez-Lobo A, Keller S, Moreno-Letelier A (2015) Molecular signatures of adaptation and selection in forest trees. Adv Bot Res 74:265–306. https://doi.org/10.1016/bs.abr.2015.04.003

    Article  Google Scholar 

  • Jiao Y, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L, Ralph PE, Tomsho LP, Hu Y, Liang H, Soltis PS, Soltis DE, Clifton SW, Schlarbaum SE, Schuster SC, Ma H, Leebens-Mack J, DePamphilis CW (2011) Ancestral polyploidy in seed plants and angiosperms. Nature 473(7345):97–100. https://doi.org/10.1038/nature09916

    Article  CAS  PubMed  Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444(7117):323–329. https://doi.org/10.1038/nature05286

    Article  CAS  PubMed  Google Scholar 

  • Jones JT, Moens M, Mota M, Li H, Kikuchi T (2008) Bursaphelenchus xylophilus: opportunities in comparative genomics and molecular host-parasite interactions. Mol Plant Pathol 9(3):357–368. https://doi.org/10.1111/j.1364-3703.2007.00461.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Joshi R, Wani SH, Singh B, Bohra A, Dar ZA, Lone AA, Pareek A, Singla-Pareek SL (2016) Transcription factors and plants response to drought stress: current understanding and future directions. Front Plant Sci 7:1029. https://doi.org/10.3389/fpls.2016.01029

    Article  PubMed  PubMed Central  Google Scholar 

  • Jyske TM, Suuronen J-P, Pranovich AV, Laakso T, Watanabe U, Kuroda K, Abe H (2015) Seasonal variation in formation, structure, and chemical properties of phloem in Picea abies as studied by novel microtechniques. Planta 242(3):613–629. https://doi.org/10.1007/s00425-015-2347-8

    Article  CAS  PubMed  Google Scholar 

  • Kleinhentz M, Raffinz A, Jactel H (1998) Genetic parameters and gain expected from direct selection for resistance to Dioryctria sylvestrella Ratz. (Lepidoptera: Pyralidae) in Pinus pinaster Ait., using a full diallel mating design. For Genet 5(3):147–154

    Google Scholar 

  • Klimaszewska K, Hargreaves C, Lelu-Walter M-A, Trontin J-F (2016) Advances in conifer somatic embryogenesis since year 2000. In: Germana M, Lambardi M (eds) In vitro embryogenesis in higher plants. Methods in molecular biology, vol 1359. Humana Press, New York, NY, pp 131–166

    Google Scholar 

  • Klimaszewska K, Noceda C, Pelletier G, Label P, Rodriguez R, Lelu-Walter MA (2009) Biological characterization of young and aged embryogenic cultures of Pinus pinaster (Ait.). Vitr Cell Dev Biol Plant 45(1):20–33. https://doi.org/10.1007/s11627-008-9158-6

  • Kodan A, Kuroda H, Sakai F (2002) A stilbene synthase from Japanese red pine (Pinus densiflora): Implications for phytoalexin accumulation and down-regulation of flavonoid biosynthesis. Proc Natl Acad Sci 99(5):3335–3339. https://doi.org/10.1073/pnas.042698899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovach A, Wegrzyn JL, Parra G, Holt C, Bruening GE, Loopstra CA, Hartigan J, Yandell M, Langley CH, Korf I, Neale DB (2010) The Pinus taeda genome is characterized by diverse and highly diverged repetitive sequences. BMC Genomics 11(1):420. https://doi.org/10.1186/1471-2164-11-420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kremer A (1992) Predictions of Age-Age correlations of total height based on serial correlations between height increments in maritime pine (Pinus pinaster Ait). Theor Appl Genet 85(2–3):152–158

    Article  CAS  Google Scholar 

  • Krivmane B, Šņepste I, Šķipars V, Yakovlev I, Fossdal CG, Vivian-Smith A, Ruņģis D (2020) Identification and in silico characterization of novel and conserved micrornas in methyl jasmonate-stimulated Scots pine (Pinus sylvestris L.) needles. Forests 11(4):384. https://doi.org/10.3390/f11040384

  • Krutovsky KV, Troggio M, Brown GR, Jermstad KD, Neale DB (2004) Comparative mapping in the Pinaceae. Genetics 168(1):447–461. https://doi.org/10.1534/genetics.104.028381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuromori T, Seo M, Shinozaki K (2018) ABA transport and plant water stress responses. Trends Plant Sci 23(6):513–522. https://doi.org/10.1016/j.tplants.2018.04.001

    Article  CAS  PubMed  Google Scholar 

  • Kuzmin DA, Feranchuk SI, Sharov VV, Cybin AN, Makolov SV, Putintseva YA, Oreshkova NV, Krutovsky KV (2019) Stepwise large genome assembly approach: a case of Siberian larch (Larix sibirica Ledeb). BMC Bioinform 20(S1):37. https://doi.org/10.1186/s12859-018-2570-y

    Article  CAS  Google Scholar 

  • Laajanen K, Vuorinen I, Salo V, Juuti J, Raudaskoski M (2007) Cloning of Pinus sylvestris SCARECROW gene and its expression pattern in the pine root system, mycorrhiza and NPA-treated short roots. New Phytol 175(2):230–243. https://doi.org/10.1111/j.1469-8137.2007.02102.x

    Article  CAS  PubMed  Google Scholar 

  • Lagraulet H (2015) Plasticité phenotypique et architecture genetique de la croissance et de la densite du bois du pin maritime (Pinus pinaster Ait.)(Phenotypic plasticity and genetic architecture of the growth and density of maritime pine wood (Pinus pinaster Ait.).). University of Bordeaux, France

    Google Scholar 

  • Lambeth C, Lee B-C, O’Malley D, Wheeler N (2001) Polymix breeding with parental analysis of progeny: an alternative to full-sib breeding and testing. Theor Appl Genet 103(6–7):930–943. https://doi.org/10.1007/s001220100627

    Article  Google Scholar 

  • Lamy J-B, Bouffier L, Burlett R, Plomion C, Cochard H, Delzon S (2011) Uniform selection as a primary force reducing population genetic differentiation of cavitation resistance across a species range. PLoS ONE 6(8):e23476. https://doi.org/10.1371/journal.pone.0023476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lande R, Arnold SJ (1983) The measurement of selection on correlated characters. Evolution 37(6):1210–1226. https://doi.org/10.1111/j.1558-5646.1983.tb00236.x

    Article  PubMed  Google Scholar 

  • Landeras E, García P, Fernández Y, Braña M, Fernández-Alonso O, Méndez-Lodos S, Pérez-Sierra A, León M, Abad-Campos P, Berbegal M, Beltrán R, García-Jiménez J, Armengol J (2005) Outbreak of pitch canker caused by Fusarium circinatum on Pinus spp. in Northern Spain. Plant Dis 89(9):1015–1015. https://doi.org/10.1094/PD-89-1015A

    Article  CAS  PubMed  Google Scholar 

  • Larkin PJ, Scowcroft WR (1981) Somaclonal variation—a novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60(4):197–214. https://doi.org/10.1007/BF02342540

    Article  CAS  PubMed  Google Scholar 

  • Le Provost G, Domergue F, Lalanne C, Ramos Campos P, Grosbois A, Bert D, Meredieu C, Danjon F, Plomion C, Gion J-M (2013) Soil water stress affects both cuticular wax content and cuticle-related gene expression in young saplings of maritime pine (Pinus pinaster Ait). BMC Plant Biol 13(1):95. https://doi.org/10.1186/1471-2229-13-95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee YG, Choi SC, Kang Y, Kim KM, Kang C-S, Kim C (2019) Constructing a reference genome in a single lab: the possibility to use Oxford nanopore technology. Plants 8(8):270. https://doi.org/10.3390/plants8080270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lelu-Walter M-A, Bernier-Cardou M, Klimaszewska K (2006) Simplified and improved somatic embryogenesis for clonal propagation of Pinus pinaster (Ait.). Plant Cell Rep 25(8):767–776. https://doi.org/10.1007/s00299-006-0115-8

  • Lelu-Walter M-A, Klimaszewska K, Miguel C, Aronen T, Hargreaves C, Teyssier C, Trontin J-F (2016) Somatic embryogenesis for more effective breeding and deployment of improved varieties in Pinus spp.: bottlenecks and recent advances. In: Loyola-Vargas V, Ochoa-Alejo N (eds) Somatic embryogenesis: fundamental aspects and applications. Springer, Cham, pp 319–365

    Chapter  Google Scholar 

  • Lepoittevin C, Harvengt L, Plomion C, Garnier-Géré P (2012) Association mapping for growth, straightness and wood chemistry traits in the Pinus pinaster Aquitaine breeding population. Tree Genet Genomes 8(1):113–126. https://doi.org/10.1007/s11295-011-0426-y

    Article  Google Scholar 

  • Lepoittevin C, Rousseau J-P, Guillemin A, Gauvrit C, Besson F, Hubert F, da Silva PD, Harvengt L, Plomion C (2011) Genetic parameters of growth, straightness and wood chemistry traits in Pinus pinaster. Ann For Sci 68(4):873–884. https://doi.org/10.1007/s13595-011-0084-0

    Article  Google Scholar 

  • Li Y, Wei H, Yang J, Du K, Li J, Zhang Y, Qiu T, Liu Z, Ren Y, Song L, Kang X (2020) High-quality de novo assembly of the Eucommia ulmoides haploid genome provides new insights into evolution and rubber biosynthesis. Hortic Res 7(1):183. https://doi.org/10.1038/s41438-020-00406-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Baniaga AE, Sessa EB, Scascitelli M, Graham SW, Rieseberg LH, Barker MS (2015) Early genome duplications in conifers and other seed plants. Sci Adv 1(10):e1501084. https://doi.org/10.1126/sciadv.1501084

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu J, Schoettle AW, Sniezko RA, Yao F, Zamany A, Williams H, Rancourt B (2019) Limber pine (Pinus flexilis James) genetic map constructed by exome-seq provides insight into the evolution of disease resistance and a genomic resource for genomics-based breeding. Plant J 98(4):745–758. https://doi.org/10.1111/tpj.14270

    Article  CAS  PubMed  Google Scholar 

  • Llebrés M-T, Pascual M-B, Debille S, Trontin J-F, Harvengt L, Avila C, Cánovas FM (2018) The role of arginine metabolic pathway during embryogenesis and germination in maritime pine (Pinus pinaster Ait.). Tree Physiol 38(3):471–484. https://doi.org/10.1093/treephys/tpx133

  • López-Goldar X, Villari C, Bonello P, Borg-Karlson AK, Grivet D, Zas R, Sampedro L (2018) Inducibility of plant secondary metabolites in the stem predicts genetic variation in resistance against a key insect herbivore in maritime pine. Front Plant Sci 9:1651. https://doi.org/10.3389/fpls.2018.01651

    Article  PubMed  PubMed Central  Google Scholar 

  • López-Goldar X, Villari C, Bonello P, Borg-Karlson AK, Grivet D, Sampedro L, Zas R (2019) Genetic variation in the constitutive defensive metabolome and its inducibility are geographically structured and largely determined by demographic processes in maritime pine. J Ecol 107(5):2464–2477. https://doi.org/10.1111/1365-2745.13159

    Article  CAS  Google Scholar 

  • López‐Hinojosa M, de María N, Guevara MÁ, Vélez MD, Cabezas JA, Díaz LM, Mancha JA, Pizarro A, Manjarrez LF, Collada C, Díaz‐Sala MC, Cervera MT (2021) Rootstock effects on scion gene expression in maritime pine. Sci Rep 11(1):11582. https://doi.org/10.1038/s41598-021-90672-y

  • Lv J, Yu K, Wei J, Gui H, Liu C, Liang D, Wang Y, Zhou H, Carlin R, Rich R, Lu T, Que Q, Wang WC, Zhang X, Kelliher T (2020) Generation of paternal haploids in wheat by genome editing of the centromeric histone CENH3. Nat Biotechnol 38(12):1397–1401. https://doi.org/10.1038/s41587-020-0728-4

    Article  CAS  PubMed  Google Scholar 

  • Mackay J, Dean JFD, Plomion C, Peterson DG, Cánovas FM, Pavy N, Ingvarsson PK, Savolainen O, Guevara MÁ, Fluch S, Vinceti B, Abarca D, Díaz-Sala C, Cervera M-T (2012) Towards decoding the conifer giga-genome. Plant Mol Biol 80(6):555–569. https://doi.org/10.1007/s11103-012-9961-7

    Article  CAS  PubMed  Google Scholar 

  • Madrigal-González J, Herrero A, Ruiz-Benito P, Zavala MA (2017) Resilience to drought in a dry forest: insights from demographic rates. For Ecol Manage 389:167–175. https://doi.org/10.1016/j.foreco.2016.12.012

    Article  Google Scholar 

  • Majada J, Martínez-Alonso C, Feito I, Kidelman A, Aranda I, Alía R (2011) Mini-cuttings: an effective technique for the propagation of Pinus pinaster Ait. New For 41(3):399–412. https://doi.org/10.1007/s11056-010-9232-x

    Article  Google Scholar 

  • Marguerit E, Bouffier L, Chancerel E, Costa P, Lagane F, Guehl J-M, Plomion C, Brendel O (2014) The genetics of water-use efficiency and its relation to growth in maritime pine. J Exp Bot 65(17):4757–4768. https://doi.org/10.1093/jxb/eru226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen Y-J, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer MLI, Jarvie TP, Jirage KB, Kim J-B, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, Lohman KL, Lu H, Makhijani VB, McDade KE, McKenna MP, Myers EW, Nickerson E, Nobile JR, Plant R, Puc BP, Ronan MT, Roth GT, Sarkis GJ, Simons JF, Simpson JW, Srinivasan M, Tartaro KR, Tomasz A, Vogt KA, Volkmer GA, Wang SH, Wang Y, Weiner MP, Yu P, Begley RF, Rothberg JM (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380. https://doi.org/10.1038/nature03959

    Article  PubMed  PubMed Central  Google Scholar 

  • Markussen T, Fladung M, Achere V, Favre JM, Faivre-Rampant P, Aragones A, Da Silva Perez D, Harvengt L, Espinel S, Ritter E (2003) Identification of QTLs controlling growth, chemical and physical wood property traits in Pinus pinaster (ait.). Silvae Genet 52(1):8–15

    Google Scholar 

  • Martínez-Alonso C, Kidelman A, Feito I, Velasco T, Alía R, Gaspar MJ, Majada J (2012) Optimization of seasonality and mother plant nutrition for vegetative propagation of Pinus pinaster Ait. New For 43(5–6):651–663. https://doi.org/10.1007/s11056-012-9333-9

    Article  Google Scholar 

  • Martinho C, Confraria A, Elias CA, Crozet P, Rubio-Somoza I, Weigel D, Baena-González E (2015) Dissection of miRNA pathways using arabidopsis mesophyll protoplasts. Mol Plant 8(2):261–275. https://doi.org/10.1016/j.molp.2014.10.003

    Article  CAS  PubMed  Google Scholar 

  • Mauriat M, Le Provost G, Rozenberg P, Delzon S, Breda N, Clair B, Coutand C, Domec J-C, Fourcaud T, Grima-Pettenati J, Herrera R, Leplé J-C, Richet N, Trontin J-F, Plomion C (2014) Wood formation in trees. In: Ramawat KG, Mérillon J-M, Ahuja MR (eds) Tree biotechnology. CRC Press, Boca Raton, Florida, USA, pp 56–111

    Google Scholar 

  • Maury S, Le Gac A-L, Lafon-Placette C, Dia Sow M, Fichot R, Delaunay A, Le Jan I, Lelu-Walter M-A, Segura V, Rogier O, Trontin J-F, Plomion C, Le Provost G, Ehrenmann F, Salse J, Ambroise C, Gribkova S, Mirouze M, Grunau C, Chaparro C, Strauss SH, Conde D, Allona I, Tost J (2019a) Epigenetics in trees: a source of plasticity and adaptation in the context of climate change. In: Bonga JM, Park Y-S, Trontin J-F (eds) Proceedings of the 5th international conference of the IUFRO working party 2.09.02 on clonal trees in the bioeconomy age: opportunities and challenges, Coimbra, Portugal, 10–15 September 2018. IUFRO, Vienna, Austria, pp 110–115

    Google Scholar 

  • Maury S, Sow MD, Le Gac A-L, Genitoni J, Lafon-Placette C, Iva Mozgova I (2019b) Phytohormone and chromatin crosstalk: the missing link for developmental plasticity? Front Plant Sci 10:395. https://doi.org/10.3389/fpls.2019.00395

    Article  PubMed  PubMed Central  Google Scholar 

  • Meijón M, Feito I, Oravec M, Delatorre C, Weckwerth W, Majada J, Valledor L (2016) Exploring natural variation of Pinus pinaster Aiton using metabolomics: Is it possible to identify the region of origin of a pine from its metabolites? Mol Ecol 25(4):959–976. https://doi.org/10.1111/mec.13525

    Article  CAS  PubMed  Google Scholar 

  • Mendoza-Poudereux I, Cano M, Ávila C, Cánovas F, Lelu-Walter M-A, Trontin J-F, Segura J, Arrillaga I (2014) Generation of transgenic maritime pine somatic embryos with altered expression of genes involved in nitrogen metabolism and wood formation. In: Book of abstracts of the 3rd international conference of the IUFRO working party 2.09.02 on woody plant production integrating genetic and vegetative propagation technologies, Vitoria-Gasteiz, Spain, 8–12 September 2014, p 121

    Google Scholar 

  • Menéndez-Gutiérrez M, Alonso M, Toval G, Díaz R (2017a) Variation in pinewood nematode susceptibility among Pinus pinaster Ait. provenances from the Iberian Peninsula and France. Ann For Sci 74(4):76. https://doi.org/10.1007/s13595-017-0677-3

  • Menéndez-Gutiérrez M, Alonso M, Toval G, Díaz R (2017b) Testing of selected Pinus pinaster half-sib families for tolerance to pinewood nematode (Bursaphelenchus xylophilus). For an Int J for Res 91(1):38–48. https://doi.org/10.1093/forestry/cpx030

    Article  Google Scholar 

  • Miguel C, Marum L (2011) An epigenetic view of plant cells cultured in vitro: somaclonal variation and beyond. J Exp Bot 62(11):3713–3725. https://doi.org/10.1093/jxb/err155

    Article  CAS  Google Scholar 

  • Miner BG, Sultan SE, Morgan SG, Padilla DK, Relyea RA (2005) Ecological consequences of phenotypic plasticity. Trends Ecol Evol 20(12):685–692. https://doi.org/10.1016/j.tree.2005.08.002

    Article  PubMed  Google Scholar 

  • Mitsuda N, Iwase A, Yamamoto H, Yoshida M, Seki M, Shinozaki K, Ohme-Takagi M (2007) NAC transcription factors, NST1 and NST3, are key regulators of the formation of secondary walls in woody tissues of Arabidopsis. Plant Cell 19(1):270–280. https://doi.org/10.1105/tpc.106.047043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Modesto I, Sterck L, Arbona V, Gómez-Cadenas A, Carrasquinho I, Van de Peer Y, Miguel CM (2021) Insights into the mechanisms implicated in Pinus pinaster resistance to pinewood nematode. Front Plant Sci. https://doi.org/10.3389/fpls.2021.690857

    Article  PubMed  PubMed Central  Google Scholar 

  • Monteuuis O, Dumas E (1992) Morphological features as indicators of maturity in acclimatized Pinus pinaster from different in vitro origins. Can J for Res 22(9):1417–1421. https://doi.org/10.1139/x92-188

    Article  Google Scholar 

  • Moran E, Lauder J, Musser C, Stathos A, Shu M (2017) The genetics of drought tolerance in conifers. New Phytol 216(4):1034–1048. https://doi.org/10.1111/nph.14774

    Article  CAS  PubMed  Google Scholar 

  • Morel A, Teyssier C, Trontin J-F, Eliášová K, Pešek B, Beaufour M, Morabito D, Boizot N, Le Metté C, Belal-Bessai L, Reymond I, Harvengt L, Cadene M, Corbineau F, Vágner M, Label P, Lelu-Walter M-A (2014a) Early molecular events involved in Pinus pinaster Ait. somatic embryo development under reduced water availability: transcriptomic and proteomic analyses. Physiol Plant 152(1):184–201. https://doi.org/10.1111/ppl.12158

  • Morel A, Trontin J-F, Corbineau F, Lomenech A-M, Beaufour M, Reymond I, Le Metté C, Ader K, Harvengt L, Cadene M, Label P, Teyssier C, Lelu-Walter M-A (2014b) Cotyledonary somatic embryos of Pinus pinaster Ait. most closely resemble fresh, maturing cotyledonary zygotic embryos: biological, carbohydrate and proteomic analyses. Planta 240(5):1075–1095. https://doi.org/10.1007/s00425-014-2125-z

  • Moriguchi Y, Ujino-Ihara T, Uchiyama K, Futamura N, Saito M, Ueno S, Matsumoto A, Tani N, Taira H, Shinohara K, Tsumura Y (2012) The construction of a high-density linkage map for identifying SNP markers that are tightly linked to a nuclear-recessive major gene for male sterility in Cryptomeria japonica D. Don. BMC Genomics 13(1):95. https://doi.org/10.1186/1471-2164-13-95

    Article  CAS  PubMed  Google Scholar 

  • Morozova O, Hirst M, Marra MA (2009) Applications of new sequencing technologies for transcriptome analysis. Annu Rev Genomics Hum Genet 10(1):135–151. https://doi.org/10.1146/annurev-genom-082908-145957

    Article  CAS  PubMed  Google Scholar 

  • Morrissey MB, Kruuk LEB, Wilson AJ (2010) The danger of applying the breeder’s equation in observational studies of natural populations. J Evol Biol 23(11):2277–2288. https://doi.org/10.1111/j.1420-9101.2010.02084.x

    Article  CAS  PubMed  Google Scholar 

  • Morse AM, Peterson DG, Islam-Faridi MN, Smith KE, Magbanua Z, Garcia SA, Kubisiak TL, Amerson HV, Carlson JE, Nelson CD, Davis JM (2009) Evolution of genome size and complexity in Pinus. PLoS ONE 4(2):1–11. https://doi.org/10.1371/journal.pone.0004332

    Article  CAS  Google Scholar 

  • Mosca E, Cruz F, Gómez-Garrido J, Bianco L, Rellstab C, Brodbeck S, Csilléry K, Fady B, Fladung M, Fussi B, Gömöry D, González-Martínez SC, Grivet D, Gut M, Hansen OK, Heer K, Kaya Z, Krutovsky KV, Kersten B, Liepelt S, Opgenoorth L, Sperisen C, Ullrich KK, Vendramin GG, Westergren M, Ziegenhagen B, Alioto T, Gugerli F, Heinze B, Höhn M, Troggio M, Neale DB (2019) A reference genome sequence for the European silver fir (Abies alba Mill.): a community-generated genomic resource. Genes Genomes Genet 9(7):2039–2049. https://doi.org/10.1534/g3.119.400083

  • Mota MM, Braasch H, Bravo MA, Penas AC, Burgermeister W, Metge K, Sousa E (1999) First report of Bursaphelenchus xylophilus in Portugal and in Europe. Nematology 1(7):727–734. https://doi.org/10.1163/156854199508757

    Article  Google Scholar 

  • Muranty H, Jorge V, Bastien C, Lepoittevin C, Bouffier L, Sanchez L (2014) Potential for marker-assisted selection for forest tree breeding: lessons from 20 years of MAS in crops. Tree Genet Genomes 10(6):1491–1510. https://doi.org/10.1007/s11295-014-0790-5

    Article  Google Scholar 

  • Murat F, Armero A, Pont C, Klopp C, Salse J (2017) Reconstructing the genome of the most recent common ancestor of flowering plants. Nat Genet 49(4):490–496. https://doi.org/10.1038/ng.3813

    Article  CAS  PubMed  Google Scholar 

  • Naidoo S, Slippers B, Plett JM, Coles D, Oates CN (2019) The road to resistance in forest trees. Front Plant Sci 10:273. https://doi.org/10.3389/fpls.2019.00273

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakamura M, Köhler C, Hennig L (2019) Tissue-specific transposon-associated small RNAs in the gymnosperm tree, Norway Spruce. BMC Genomics 20(1):997. https://doi.org/10.1186/s12864-019-6385-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakashima K, Takasaki H, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) NAC transcription factors in plant abiotic stress responses. Biochim Biophys Acta Gene Regul Mech 2:97–103. https://doi.org/10.1016/j.bbagrm.2011.10.005

    Article  CAS  Google Scholar 

  • Nardini A, Lo Gullo MA, Trifilò P, Salleo S (2014) The challenge of the Mediterranean climate to plant hydraulics: responses and adaptations. Environ Exp Bot 103:68–79. https://doi.org/10.1016/j.envexpbot.2013.09.018

    Article  Google Scholar 

  • Neale DB, McGuire PE, Wheeler NC, Stevens KA, Crepeau MW, Cardeno C, Zimin AV, Puiu D, Pertea GM, Sezen UU, Casola C, Koralewski TE, Paul R, Gonzalez-Ibeas D, Zaman S, Cronn R, Yandell M, Holt C, Langley CH, Yorke JA, Salzberg SL, Wegrzyn JL (2017) The Douglas-fir genome sequence reveals specialization of the photosynthetic apparatus in Pinaceae. Genes Genomes Genet 7(9):3157–3167. https://doi.org/10.1534/g3.117.300078

    Article  CAS  Google Scholar 

  • Neale DB, Wegrzyn JL, Stevens KA, Zimin AV, Puiu D, Crepeau MW, Cardeno C, Koriabine M, Holtz-Morris AE, Liechty JD, Martínez-García PJ, Vasquez-Gross HA, Lin BY, Zieve JJ, Dougherty WM, Fuentes-Soriano S, Wu L-S, Gilbert D, Marçais G, Roberts M, Holt C, Yandell M, Davis JM, Smith KE, Dean JF, Lorenz W, Whetten RW, Sederoff R, Wheeler N, McGuire PE, Main D, Loopstra CA, Mockaitis K, DeJong PJ, Yorke JA, Salzberg SL, Langley CH (2014) Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies. Genome Biol 15(3):R59. https://doi.org/10.1186/gb-2014-15-3-r59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neilsen CT, Goodall GJ, Bracken CP (2012) IsomiRs—the overlooked repertoire in the dynamic microRNAome. Trends Genet 28(11):544–549. https://doi.org/10.1016/j.tig.2012.07.005

    Article  CAS  PubMed  Google Scholar 

  • Nguyen NH, Jeong CY, Kang G, Yoo S, Hong S, Lee H (2015) MYBD employed by HY5 increases anthocyanin accumulation via repression of MYBL2 in Arabidopsis. Plant J 84(6):1192–1205. https://doi.org/10.1111/tpj.13077

    Article  CAS  PubMed  Google Scholar 

  • Nguyen-Queyrens A, Bouchet-Lannat F (2003) Osmotic adjustment in three-year-old seedlings of five provenances of maritime pine (Pinus pinaster) in response to drought. Tree Physiol 23(6):397–404. https://doi.org/10.1093/treephys/23.6.397

    Article  PubMed  Google Scholar 

  • Nguyen-Queyrens A, Costa P, Loustau D, Plomion C (2002) Osmotic adjustment in Pinus pinaster cuttings in response to a soil drying cycle. Ann For Sci 59(7):795–799. https://doi.org/10.1051/forest:2002067

    Article  Google Scholar 

  • Niu S-H, Liu C, Yuan H-W, Li P, Li Y, Li W (2015) Identification and expression profiles of sRNAs and their biogenesis and action-related genes in male and female cones of Pinus tabuliformis. BMC Genomics 16(1):693. https://doi.org/10.1186/s12864-015-1885-6

    Article  CAS  PubMed  Google Scholar 

  • Nystedt B, Street NR, Wetterbom A, Zuccolo A, Lin Y-C, Scofield DG, Vezzi F, Delhomme N, Giacomello S, Alexeyenko A, Vicedomini R, Sahlin K, Sherwood E, Elfstrand M, Gramzow L, Holmberg K, Hällman J, Keech O, Klasson L, Koriabine M, Kucukoglu M, Käller M, Luthman J, Lysholm F, Niittylä T, Olson Å, Rilakovic N, Ritland C, Rosselló JA, Sena J, Svensson T, Talavera-López C, Theißen G, Tuominen H, Vanneste K, Wu Z-Q, Zhang B, Zerbe P, Arvestad L, Bhalerao R, Bohlmann J, Bousquet J, Garcia Gil R, Hvidsten TR, de Jong P, MacKay J, Morgante M, Ritland K, Sundberg B, Lee Thompson S, Van de Peer Y, Andersson B, Nilsson O, Ingvarsson PK, Lundeberg J, Jansson S (2013) The Norway spruce genome sequence and conifer genome evolution. Nature 497(7451):579–584. https://doi.org/10.1038/nature12211

    Article  CAS  PubMed  Google Scholar 

  • O’Connor LJ, Schoech AP, Hormozdiari F, Gazal S, Patterson N, Price AL (2019) Extreme polygenicity of complex traits is explained by negative selection. Am J Hum Genet 105(3):456–476. https://doi.org/10.1016/j.ajhg.2019.07.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ojeda DI, Mattila TM, Ruttink T, Kujala ST, Kärkkäinen K, Verta J-P, Pyhäjärvi T (2019) Utilization of tissue ploidy level variation in de novo transcriptome assembly of Pinus sylvestris. Genes Genomes Genet 9(10):3409–3421. https://doi.org/10.1534/g3.119.400357

    Article  CAS  Google Scholar 

  • Olsen JL, Rouzé P, Verhelst B, Lin Y-C, Bayer T, Collen J, Dattolo E, De Paoli E, Dittami S, Maumus F, Michel G, Kersting A, Lauritano C, Lohaus R, Töpel M, Tonon T, Vanneste K, Amirebrahimi M, Brakel J, Boström C, Chovatia M, Grimwood J, Jenkins JW, Jueterbock A, Mraz A, Stam WT, Tice H, Bornberg-Bauer E, Green PJ, Pearson GA, Procaccini G, Duarte CM, Schmutz J, Reusch TBH, Van de Peer Y (2016) The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea. Nature 530(7590):331–335. https://doi.org/10.1038/nature16548

    Article  CAS  PubMed  Google Scholar 

  • Ooka H (2003) Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res 10(6):239–247. https://doi.org/10.1093/dnares/10.6.239

    Article  CAS  PubMed  Google Scholar 

  • Park Y, Beaulieu J, Bousquet J (2016) Multi-varietal forestry integrating genomic selection and somatic embryogenesis. In: Park Y-S, Bonga J, Moon H (eds) Vegetative propagation of forest trees. National Institute of Forest Science (NIFoS), Seoul, Korea, pp 302–322

    Google Scholar 

  • Parsons TJ, Sinkar VP, Stettler RF, Nester EW, Gordon MP (1986) Transformation of poplar by Agrobacterium tumefaciens. Nat Biotechnol 4(6):533–536. https://doi.org/10.1038/nbt0686-533

    Article  CAS  Google Scholar 

  • Pascual MB, Cánovas FM, Ávila C (2015) The NAC transcription factor family in maritime pine (Pinus Pinaster): molecular regulation of two genes involved in stress responses. BMC Plant Biol 15(1):254. https://doi.org/10.1186/s12870-015-0640-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pascual MB, Llebrés M-T, Craven-Bartle B, Cañas RA, Cánovas FM, Ávila C (2018) PpNAC1, a main regulator of phenylalanine biosynthesis and utilization in maritime pine. Plant Biotechnol J 16(5):1094–1104. https://doi.org/10.1111/pbi.12854

    Article  CAS  PubMed  Google Scholar 

  • Pattison RJ, Csukasi F, Zheng Y, Fei Z, van der Knaap E, Catalá C (2015) Comprehensive tissue-specific transcriptome analysis reveals distinct regulatory programs during early tomato fruit development. Plant Physiol 168(4):1684–1701. https://doi.org/10.1104/pp.15.00287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pavy N, Lamothe M, Pelgas B, Gagnon F, Birol I, Bohlmann J, Mackay J, Isabel N, Bousquet J (2017) A high-resolution reference genetic map positioning 8.8 K genes for the conifer white spruce: structural genomics implications and correspondence with physical distance. Plant J 90(1):189–203. https://doi.org/10.1111/tpj.13478

  • Pavy N, Pelgas B, Laroche J, Rigault P, Isabel N, Bousquet J (2012) A spruce gene map infers ancient plant genome reshuffling and subsequent slow evolution in the gymnosperm lineage leading to extant conifers. BMC Biol 10(1):84. https://doi.org/10.1186/1741-7007-10-84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pelgas B, Beauseigle S, Acheré V, Jeandroz S, Bousquet J, Isabel N (2006) Comparative genome mapping among Picea glauca, P. mariana × P. rubens and P. abies, and correspondence with other Pinaceae. Theor Appl Genet 113(8):1371–1393. https://doi.org/10.1007/s00122-006-0354-7

  • Pelgas B, Bousquet J, Beauseigle S, Isabel N (2005) A composite linkage map from two crosses for the species complex Picea mariana × Picea rubens and analysis of synteny with other Pinaceae. Theor Appl Genet 111(8):1466–1488. https://doi.org/10.1007/s00122-005-0068-2

    Article  CAS  PubMed  Google Scholar 

  • Perdiguero P, del Barbero M, C, Cervera MT, Collada C, Soto Á, (2013) Molecular response to water stress in two contrasting Mediterranean pines (Pinus pinaster and Pinus pinea). Plant Physiol Biochem 67:199–208. https://doi.org/10.1016/j.plaphy.2013.03.008

    Article  CAS  PubMed  Google Scholar 

  • Perdiguero P, Barbero MC, Cervera MT, Soto Á, Collada C (2012a) Novel conserved segments are associated with differential expression patterns for Pinaceae dehydrins. Planta 236(6):1863–1874. https://doi.org/10.1007/s00425-012-1737-4

    Article  CAS  PubMed  Google Scholar 

  • Perdiguero P, Collada C, del Barbero MC, García Casado G, Cervera MT, Soto Á (2012b) Identification of water stress genes in Pinus pinaster Ait. by controlled progressive stress and suppression-subtractive hybridization. Plant Physiol Biochem 50:44–53. https://doi.org/10.1016/j.plaphy.2011.09.022

    Article  CAS  PubMed  Google Scholar 

  • Perdiguero P, Collada C, Soto Á (2014) Novel dehydrins lacking complete K-segments in Pinaceae. The exception rather than the rule. Front Plant Sci 5. https://doi.org/10.3389/fpls.2014.00682

  • Perdiguero P, Rodrigues AS, Chaves I, Costa B, Alves A, María N, Vélez MD, Díaz-Sala C, Cervera MT, Miguel CM (2020) Comprehensive analysis of the isomiRome in the vegetative organs of the conifer Pinus pinaster under contrasting water availability. Plant Cell Environ. https://doi.org/10.1111/pce.13976

    Article  PubMed  Google Scholar 

  • Pérez-Oliver MA, Haro JG, Pavlovic I, Novák O, Segura J, Sales E, Arrillaga I (2021) Priming maritime pine megagametophytes during somatic embryogenesis improved plant adaptation to heat stress. Plants 10:446. https://doi.org/10.3390/plants10030446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-Rodríguez MJ, Suárez MF, Heredia R, Ávila C, Breton D, Trontin J-F, Filonova L, Bozhkov P, von Arnold S, Harvengt L, Cánovas FM (2006) Expression patterns of two glutamine synthetase genes in zygotic and somatic pine embryos support specific roles in nitrogen metabolism during embryogenesis. New Phytol 169:35–44. https://doi.org/10.1111/j.1469-8137.2005.01551.x

    Article  CAS  Google Scholar 

  • Peterson DG, Tomkins JP, Frisch DA, Wing RA, Paterson AH (2000) Construction of plant bacterial artificial chromosome (BAC) libraries: an illustrated guide. J Agric Genomics 5:1–100

    Google Scholar 

  • Pizarro A, Díaz-Sala C (2019) Cellular dynamics during maturation-related decline of adventitious root formation in forest tree species. Physiol Plant 165(1):73–80. https://doi.org/10.1111/ppl.12768

    Article  CAS  PubMed  Google Scholar 

  • Plomion C, Bartholomé J, Lesur I, Boury C, Rodríguez-Quilón I, Lagraulet H, Ehrenmann F, Bouffier L, Gion JM, Grivet D, de Miguel M, de María N, Cervera MT, Bagnoli F, Isik F, Vendramin GG, González-Martínez SC (2016a) High-density SNP assay development for genetic analysis in maritime pine (Pinus pinaster). Mol Ecol Resour 16(2):574–587. https://doi.org/10.1111/1755-0998.12464

    Article  CAS  PubMed  Google Scholar 

  • Plomion C, Bastien C, Bogeat-Triboulot M-B, Bouffier L, Déjardin A, Duplessis S, Fady B, Heuertz M, Le Gac A-L, Le Provost G, Legué V, Lelu-Walter M-A, Leplé J-C, Maury S, Morel A, Oddou-Muratorio S, Pilate G, Sanchez L, Scotti I, Scotti-Saintagne C, Segura V, Trontin J-F, Vacher C (2016b) Forest tree genomics: 10 achievements from the past 10 years and future prospects. Ann For Sci 73(1):77–103. https://doi.org/10.1007/s13595-015-0488-3

    Article  Google Scholar 

  • Plomion C, Chancerel E, Endelman J, Lamy J-B, Mandrou E, Lesur I, Ehrenmann F, Isik F, Bink MC, van heerwaarden J, Bouffier L, (2014) Genome-wide distribution of genetic diversity and linkage disequilibrium in a mass-selected population of maritime pine. BMC Genomics 15(1):171. https://doi.org/10.1186/1471-2164-15-171

    Article  PubMed  PubMed Central  Google Scholar 

  • Plomion C, Durel C-E, O’Malley DM (1996a) Genetic dissection of height in maritime pine seedlings raised under accelerated growth conditions. Theor Appl Genet 93(5–6):849–858. https://doi.org/10.1007/BF00224085

    Article  CAS  PubMed  Google Scholar 

  • Plomion C, Yani A, Marpeau A (1996b) Genetic determinism of δ3-carene in maritime pine using RAPD markers. Genome 39(6):1123–1127. https://doi.org/10.1139/g96-141

    Article  CAS  PubMed  Google Scholar 

  • Pot D, Rodrigues J-C, Rozenberg P, Chantre G, Tibbits J, Cahalan C, Pichavant F, Plomion C (2006) QTLs and candidate genes for wood properties in maritime pine (Pinus pinaster Ait.). Tree Genet Genomes 2(1):10–24. https://doi.org/10.1007/s11295-005-0026-9

  • Pritchard JK, Pickrell JK, Coop G (2010) The genetics of human adaptation: hard sweeps, soft sweeps, and polygenic adaptation. Curr Biol 20(4):R208–R215. https://doi.org/10.1016/j.cub.2009.11.055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ralph SG, Chun H, Kolosova N, Cooper D, Oddy C, Ritland CE, Kirkpatrick R, Moore R, Barber S, Holt RA, Jones SJ, Marra MA, Douglas CJ, Ritland K, Bohlmann J (2008) A conifer genomics resource of 200,000 spruce (Picea spp.) ESTs and 6,464 high-quality, sequence-finished full-length cDNAs for Sitka spruce (Picea sitchensis). BMC Genomics 9(1):484. https://doi.org/10.1186/1471-2164-9-484

  • Ren R, Wang H, Guo C, Zhang N, Zeng L, Chen Y, Ma H, Qi J (2018) Widespread whole genome duplications contribute to genome complexity and species diversity in angiosperms. Mol Plant 11(3):414–428. https://doi.org/10.1016/j.molp.2018.01.002

    Article  CAS  PubMed  Google Scholar 

  • Rigault P, Boyle B, Lepage P, Cooke JEK, Bousquet J, MacKay JJ (2011) A white spruce gene catalog for conifer genome analyses. Plant Physiol 157(1):14–28. https://doi.org/10.1104/pp.111.179663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rincent R, Charpentier J-P, Faivre-Rampant P, Paux E, Le Gouis J, Bastien C, Segura V (2018) Phenomic selection is a low-cost and high-throughput method based on indirect predictions: proof of concept on wheat and poplar. Genes Genomes Genet 8(12):3961–3972. https://doi.org/10.1534/g3.118.200760

    Article  CAS  Google Scholar 

  • Riov J, Fox H, Attias R, Shklar G, Farkash-Haim L, Sitbon R, Moshe Y, Abu-Abied M, Sadot E, David-Schwartz R (2020) Improved method for vegetative propagation of mature Pinus halepensis and its hybrids by cuttings. Isr J Plant Sci 67(1–2):5–15. https://doi.org/10.1163/22238980-20191118

    Article  Google Scholar 

  • Rodrigues AM, Mendes MD, Lima AS, Barbosa PM, Ascensão L, Barroso JG, Pedro LG, Mota MM, Figueiredo AC (2017) Pinus halepensis, Pinus pinaster, Pinus pinea and Pinus sylvestris essential oils chemotypes and monoterpene hydrocarbon enantiomers, before and after inoculation with the pinewood nematode Bursaphelenchus xylophilus. Chem Biodivers 14(1):e1600153. https://doi.org/10.1002/cbdv.201600153

    Article  CAS  Google Scholar 

  • Rodrigues AS, Chaves I, Costa BV, Lin Y-C, Lopes S, Milhinhos A, Van de Peer Y, Miguel CM (2019) Small RNA profiling in Pinus pinaster reveals the transcriptome of developing seeds and highlights differences between zygotic and somatic embryos. Sci Rep 9(1):11327. https://doi.org/10.1038/s41598-019-47789-y

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues AS, De Vega JJ, Miguel CM (2018) Comprehensive assembly and analysis of the transcriptome of maritime pine developing embryos. BMC Plant Biol 18(1):379. https://doi.org/10.1186/s12870-018-1564-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodríguez-Quilón I, Santos-del-Blanco L, Serra-Varela MJ, Koskela J, González-Martínez SC, Alía R (2016) Capturing neutral and adaptive genetic diversity for conservation in a highly structured tree species. Ecol Appl 26(7):2254–2266. https://doi.org/10.1002/eap.1361

    Article  PubMed  Google Scholar 

  • Romero IG, Ruvinsky I, Gilad Y (2012) Comparative studies of gene expression and the evolution of gene regulation. Nat Rev Genet 13(7):505–516. https://doi.org/10.1038/nrg3229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roodt D, Lohaus R, Sterck L, Swanepoel RL, Van de Peer Y, Mizrachi E (2017) Evidence for an ancient whole genome duplication in the cycad lineage. PLoS ONE 12(9):e0184454. https://doi.org/10.1371/journal.pone.0184454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosvall O, Bradshaw RHW, Egertsdotter U, Ingvarsson PK, Wu H (2019) Using Norway spruce clones in Swedish forestry: introduction. Scand J for Res 34(5):333–335. https://doi.org/10.1080/02827581.2018.1562565

    Article  Google Scholar 

  • Rowe DB, Blazich FA, Raper CD (2002) Nitrogen nutrition of hedged stock plants of loblolly pine. I. Tissue nitrogen concentrations and carbohydrate status. New For 24(1):39–51. https://doi.org/10.1023/A:1020551029894

  • Rozas V, Zas R, García-González I (2011) Contrasting effects of water availability on Pinus pinaster radial growth near the transition between the Atlantic and Mediterranean biogeographical regions in NW Spain. Eur J For Res 130(6):959–970. https://doi.org/10.1007/s10342-011-0494-4

    Article  Google Scholar 

  • Rubiales JM, García-Amorena I, García Álvarez S, Morla C (2009) Anthracological evidence suggests naturalness of Pinus pinaster in inland southwestern Iberia. Plant Ecol 200(2):155–160. https://doi.org/10.1007/s11258-008-9439-5

    Article  Google Scholar 

  • Ruffault J, Curt T, Moron V, Trigo RM, Mouillot F, Koutsias N, Pimont F, Martin-StPaul N, Barbero R, Dupuy J-L, Russo A, Belhadj-Khedher C (2020) Increased likelihood of heat-induced large wildfires in the Mediterranean Basin. Sci Rep 10(1):13790. https://doi.org/10.1038/s41598-020-70069-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rupps A, Raschke J, Rümmler M, Linke B, Zoglauer K (2016) Identification of putative homologs of Larix decidua to BABYBOOM (BBM), Leafy Cotyledon1 (LEC1), Wuschel-related HOMEOBOX2 (WOX2) and Somatic Embryogenesis Receptor-like Kinase (SERK) during somatic embryogenesis. Planta 243:473–488. https://doi.org/10.1007/s00425-015-2409-y

    Article  CAS  PubMed  Google Scholar 

  • Sampedro L, Moreira X, Llusia J, Peñuelas J, Zas R (2010) Genetics, phosphorus availability, and herbivore-derived induction as sources of phenotypic variation of leaf volatile terpenes in a pine species. J Exp Bot 61(15):4437–4447. https://doi.org/10.1093/jxb/erq246

    Article  CAS  PubMed  Google Scholar 

  • Sampedro L, Moreira X, Martíns P, Zas R (2009) Growth and nutritional response of Pinus pinaster after a large pine weevil (Hylobius abietis) attack. Trees 23(6):1189–1197. https://doi.org/10.1007/s00468-009-0358-4

    Article  CAS  Google Scholar 

  • Sampedro L, Moreira X, Zas R (2011) Costs of constitutive and herbivore-induced chemical defences in pine trees emerge only under low nutrient availability. J Ecol 99(3):818–827. https://doi.org/10.1111/j.1365-2745.2011.01814.x

    Article  Google Scholar 

  • Sánchez-Gómez D, Majada J, Alía R, Feito I, Aranda I (2010) Intraspecific variation in growth and allocation patterns in seedlings of Pinus pinaster Ait. submitted to contrasting watering regimes: can water availability explain regional variation? Ann For Sci 67(5):505. https://doi.org/10.1051/forest/2010007

  • Sánchez-Salguero R, Camarero JJ, Rozas V, Génova M, Olano JM, Arzac A, Gazol A, Caminero L, Tejedor E, de Luis M, Linares JC (2018) Resist, recover or both? Growth plasticity in response to drought is geographically structured and linked to intraspecific variability in Pinus pinaster. J Biogeogr 45(5):1126–1139. https://doi.org/10.1111/jbi.13202

    Article  Google Scholar 

  • Santos-del-Blanco L, Alía R, González-Martínez SCSC, Sampedro L, Lario F, Climent J (2015) Correlated genetic effects on reproduction define a domestication syndrome in a forest tree. Evol Appl 8(4):403–410. https://doi.org/10.1111/eva.12252

    Article  PubMed  PubMed Central  Google Scholar 

  • Schveste D, Ughetto F (1986) Différences de sensibilité à Matsucoccus feytaudi Duc (Homoptera: Margarodidae) selon les provenances de pin maritime (Pinus pinaster AIT)(Differences in susceptibility to Matsucoccus feytaudi Duc (Homoptera: Margarodidae) in maritime pine (Pinus pinaster AIT) according to provenance.). Ann des Sci For 43(4):459–474. https://doi.org/10.1051/forest:19860403

  • Scott AD, Zimin AV, Puiu D, Workman R, Britton M, Zaman S, Caballero M, Read AC, Bogdanove AJ, Burns E, Wegrzyn J, Timp W, Salzberg SL, Neale DB (2020) A reference genome sequence for giant sequoia. Genes Genomes Genet 10(11):3907–3919. https://doi.org/10.1534/g3.120.401612

    Article  CAS  Google Scholar 

  • Seidl R, Thom D, Kautz M, Martin-Benito D, Peltoniemi M, Vacchiano G, Wild J, Ascoli D, Petr M, Honkaniemi J, Lexer MJ, Trotsiuk V, Mairota P, Svoboda M, Fabrika M, Nagel TA, Reyer CPO (2017) Forest disturbances under climate change. Nat Clim Chang 7(6):395–402. https://doi.org/10.1038/nclimate3303

    Article  PubMed  PubMed Central  Google Scholar 

  • Seoane-Zonjic P, Cañas RA, Bautista R, Gómez-Maldonado J, Arrillaga I, Fernández-Pozo N, Claros MG, Cánovas FM, Ávila C (2016) Establishing gene models from the Pinus pinaster genome using gene capture and BAC sequencing. BMC Genomics 17:148. https://doi.org/10.1186/s12864-016-2490-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serra-Varela MJ, Grivet D, Vincenot L, Broennimann O, Gonzalo-Jiménez J, Zimmermann NE (2015) Does phylogeographical structure relate to climatic niche divergence? A test using maritime pine (Pinus pinaster Ait.). Glob Ecol Biogeogr 24(11):1302–1313. https://doi.org/10.1111/geb.12369

  • Shao C, Ma X, Xu X, Wang H, Meng Y (2012) Genome-wide identification of reverse complementary microRNA genes in plants. PLoS ONE 7(10):e46991. https://doi.org/10.1371/journal.pone.0046991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma SK, Verma SK (2011) Seasonal influences on the rooting response of Chir pine (Pinus roxburghii Sarg.). Ann For Res 54(2):241–247. https://doi.org/10.15287/afr.2011.93

  • Shepherd M, Mellick R, Toon P, Dale G, Dieters M (2005) Genetic control of adventitious rooting on stem cuttings in two Pinus elliottii × P. caribaea hybrid families. Ann For Sci 62(5):403–412. https://doi.org/10.1051/forest:2005036

  • Shimizu T, Tanizawa Y, Mochizuki T, Nagasaki H, Yoshioka T, Toyoda A, Fujiyama A, Kaminuma E, Nakamura Y (2017) Draft sequencing of the heterozygous diploid genome of satsuma (Citrus unshiu Marc.) using a hybrid assembly approach. Front Genet 8:180. https://doi.org/10.3389/fgene.2017.00180

  • Shin H, Lee H, Woo K-S, Noh E-W, Koo Y-B, Lee K-J (2009) Identification of genes upregulated by pinewood nematode inoculation in Japanese red pine. Tree Physiol 29(3):411–421. https://doi.org/10.1093/treephys/tpn034

    Article  CAS  PubMed  Google Scholar 

  • Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJM, Birol I (2009) ABySS: a parallel assembler for short read sequence data. Genome Res 19(6):1117–1123. https://doi.org/10.1101/gr.089532.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh KB (1998) Transcriptional regulation in plants: the importance of combinatorial control. Plant Physiol 118(4):1111–1120. https://doi.org/10.1104/pp.118.4.1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sniezko RA, Koch J (2017) Breeding trees resistant to insects and diseases: putting theory into application. Biol Invasions 19(11):3377–3400. https://doi.org/10.1007/s10530-017-1482-5

    Article  Google Scholar 

  • Sohn J, Nam J-W (2018) The present and future of de novo whole-genome assembly. Brief Bioinform 19(1):23–40. https://doi.org/10.1093/bib/bbw096

    Article  CAS  PubMed  Google Scholar 

  • Solla A, Aguín O, Cubera E, Sampedro L, Mansilla JP, Zas R (2011) Survival time analysis of Pinus pinaster inoculated with Armillaria ostoyae: genetic variation and relevance of seed and root traits. Eur J Plant Pathol 130(4):477–488. https://doi.org/10.1007/s10658-011-9767-5

    Article  Google Scholar 

  • Stein L (2001) Genome annotation: from sequence to biology. Nat Rev Genet 2(7):493–503. https://doi.org/10.1038/35080529

    Article  CAS  PubMed  Google Scholar 

  • Stevens KA, Wegrzyn JL, Zimin A, Puiu D, Crepeau M, Cardeno C, Paul R, Gonzalez-Ibeas D, Koriabine M, Holtz-Morris AE, Martínez-García PJ, Sezen UU, Marçais G, Jermstad K, McGuire PE, Loopstra CA, Davis JM, Eckert A, de Jong P, Yorke JA, Salzberg SL, Neale DB, Langley CH (2016) Sequence of the sugar pine megagenome. Genetics 204(4):1613–1626. https://doi.org/10.1534/genetics.116.193227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Street NR (2019) Genomics of forest trees. In: Cánovas FM (ed) Advances in botanical research, vol 89. Academic Press, pp 1–37

    Google Scholar 

  • Suárez-Vidal E, López-Goldar X, Sampedro L, Zas R (2017) Effect of light availability on the interaction between maritime pine and the pine weevil: light drives insect feeding behavior but also the defensive capabilities of the host. Front Plant Sci 8:1452. https://doi.org/10.3389/fpls.2017.01452

    Article  PubMed  PubMed Central  Google Scholar 

  • Sultan SE (2004) Promising directions in plant phenotypic plasticity. Perspect Plant Ecol Evol Syst 6(4):227–233. https://doi.org/10.1078/1433-8319-00082

    Article  Google Scholar 

  • Takahashi F, Kuromori T, Sato H, Shinozaki K (2018) Regulatory gene networks in drought stress responses and resistance in plants. In: Iwaya-Inoue M, Sakurai M, Uemura M (eds) Survival strategies in extreme cold and desiccation. Advances in experimental medicine and biology, vol 1081. Springer, Singapore, pp 189–214

    Google Scholar 

  • Tereso S, Gonçalves S, Marum L, Oliveira M, Maroco J, Miguel C (2006a) Improved axillary and adventitious bud regeneration from Portuguese genotypes of Pinus pinaster AIT. Propag Ornam Plants 6(1):24–33

    Google Scholar 

  • Tereso S, Miguel C, Maroco J, Oliveira MM (2006b) Susceptibility of embryogenic and organogenic tissues of maritime pine (Pinus pinaster) to antibiotics used in Agrobacterium-mediated genetic transformation. Plant Cell Tiss Org Cult 87:33–40

    Article  CAS  Google Scholar 

  • Tereso S, Miguel C, Zoglauer K, Valle-Piquera C, Oliveira MM (2006c) Stable Agrobacterium-mediated transformation of embryogenic tissues from Pinus pinaster Portuguese genotypes. J Plant Growth Reg 50:57–68

    Article  CAS  Google Scholar 

  • Tereso S, Zoglauer K, Miguel C, Oliveira MM (2003) Establishing a genetic transformation system in Pinus pinaster. In: Espinel S, Barreto Y, Ritter E (eds) Sustainable forestry, wood products and biotechnology. DFA-AFA Press, Vitoria-Gasteiz, Spain, pp 195–204

    Google Scholar 

  • Toda T, Kurinobu S (2002) Realized genetic gains observed in progeny tolerance of selected red pine (Pinus densiflora) and black pine (P. thunbergii) to pine wilt disease. Silvae Genet 51(1):42–44

    Google Scholar 

  • Trontin J-F, Alazard P, Dumas E, Quniou S, Canlet F, Chantre G, Harvengt L (2004) Prospects for clonal propagation of selected maritime pine (Pinus pinaster Ait.) using micropropagation techniques. 9th international conference on biotechnology in the pulp and paper industry, Durban, South Africa, 10–14 October 2004, p 9.5

    Google Scholar 

  • Trontin J-F, Aronen T, Hargreaves C, Montalbán I, Moncaleán P, Reeves C, Quoniou S, Lelu-Walter, M-A, Klimaszewska K (2016a) International effort to induce somatic embryogenesis in adult pine trees. In: Park Y-S, Bonga J, Moon H-K (eds) Vegetative propagation of forest trees. National Institute of Forest Science (NIFoS), Seoul, Korea, pp 211–260

    Google Scholar 

  • Trontin J-F, Ávila C, Debille S, De La Torre F, El-Azaz J, Pascual B, Canlet F, Teyssier C, Boizot N, Le Metté C, Lesage-Descauses M-C, Da Silva Perez D, Cañas R, Le Provost G, Plomion C, Harvengt L, Label P, Lelu-Walter M-A, Cánovas F (2015a) Towards functional genomics of transcription factor genes associated to growth and wood formation in maritime pine. ProCoGen final open conference, on promoting conifer genomic resources, Orléans, France, 30 November–2 December 2015, p 11

    Google Scholar 

  • Trontin J-F, Ávila C, Debille S, Teyssier C, Canlet F, Rueda-López M, Canales J, De la Torre F, El-Azaz J, Pascual B, Caňas R, Boizot N, Le Metté C, Lesage-Descauses M-C, Abarca D, Carneros E, Rupps A, Hassani SB, Zoglauer K, Arrillaga I, Mendoza-Poudereux I, Cano M, Segura J, Miguel C, De Vega-Bartol J, Tonelli M, Rodrigues A, Label P, Le Provost G, Plomion C, da Silva Perez D, Harvengt L, Díaz-Sala C, Cánovas FM, Lelu-Walter M-A (2017) Somatic embryogenesis as an enabling technology for reverse genetics: achievements and prospects for breeding maritime pine (Pinus pinaster Ait.). In: Bonga JM, Park YS, Trontin J-F (eds) Proceedings of the 4th international conference of the IUFRO working party 2.09.02 on development and application of vegetative propagation technologies in plantation forestry to cope with a changing climate and environment, La Plata, Argentina, 19–23 September 2016. IUFRO, Vienna, Austria, p 338

    Google Scholar 

  • Trontin J-F, Debille S, Canlet F, Harvengt L, Lelu-Walter M-A, Label P, Teyssier C, Lesage-Descause MC, Le Metté C, Miguel C, De Vega-Bartol J, Tonelli M, Santos R, Rupps A, Hassani SB, Zoglauer K, Carneros E, Diaz-Sala C, Abarca D, Arrillaga I, Mendoza-Poudereux I, Segura J, Ávila C, Rueda M, Canales J, Cánovas FM (2013) Somatic embryogenesis as an effective regeneration support for reverse genetics in maritime pine: the Sustainpine collaborative project as a case study. In: Park YS, Bonga JM (eds) Proceeding of the 2nd international conference of the IUFRO working party 2.09.02 on integrating vegetative propagation, biotechnology and genetic improvement for tree production and sustainable forest management, Brno, Czech Republic, 25–28 June 2012. IUFRO, Vienna, Austria, pp 184–187

    Google Scholar 

  • Trontin J-F, Debille S, Vallance M, Quoniou S, Lesage-Descause M-C, Label P, Harvengt L, Lelu-Walter M-A (2009) Basal medium formulation strongly affects transformation efficiency in maritime pine. IUFRO tree biotechnology conference, Whistler, British Columbia, Canada, 28 June–2 July 2009, p 62 (P 122)

    Google Scholar 

  • Trontin J-F, Harvengt L, Garin E, Lopez-Vernaza M, Arancio L, Hoebeke J, Canlet F, Pâques M (2002) Towards genetic engineering of maritime pine (Pinus pinaster Ait.). Ann For Sci 59(5–6):687–697. https://doi.org/10.1051/forest:2002057

  • Trontin J-F, Klimaszewska K, Morel A, Hargreaves C, Lelu-Walter M-A (2016b) Molecular aspects of conifer zygotic and somatic embryo development: a review of genome-wide approaches and recent insights. In: Germana M, Lambardi M (eds) In vitro embryogenesis in higher plants. Methods in molecular biology, vol 1359. Humana Press, New York, NY, pp 167–207

    Google Scholar 

  • Trontin J-F, Raschke J, Rupps A (2020) Tree “memory”: new insights on temperature-induced priming effects during early embryogenesis. Tree Physiol 41:906–911. https://doi.org/10.1093/treephys/tpaa150

    Article  Google Scholar 

  • Trontin J-F, Reymond I, Canlet F, Sow MD, Delaunay A, Maury S, Le Metté C, Teyssier C, Lelu-Walter M-A (2019a) Temperature affects somatic embryo development in maritime pine. In: Bonga JM, Park Y-S, Trontin J-F (eds) Proceedings of the 5th international conference of the IUFRO working party 2.09.02 on clonal trees in the bioeconomy age: opportunities and challenges, Coimbra, Portugal, 10–15 September 2018. IUFRO, Vienna, Austria, p 274

    Google Scholar 

  • Trontin JF, Rupps A, Raschke J, Lelu-Walter MA, Teyssier C, Gauchat ME, Vera Bravo C, Aronen T, Varis S, Tikkinen M, Moncaleán P, Montalbán I, Egertsdotter U, Dobrowolska I, Street N (2019b) MULTIFOREVER: towards intensification of conifer production through multi-varietal forestry based on somatic embryogenesis. ForestValue kick-off seminar, 23–24 May 2019, Helsinki, Finland, https://forestvalue.org/

  • Trontin J-F, Teyssier C, Avila C, Debille S, Le Metté C, Lesage-Descauses M-C, Boizot N, Canlet F, Le Provost G, Harvengt L, Plomion C, Label P, Cánovas F, Lelu-Walter M-A (2015b) Molecular phenotyping of maritime pine somatic plants transformed with an RNAi construct targeting cinnamyl alcohol dehydrogenase (CAD). In: Park YS, Bonga JM (eds) Proceedings of the 3rd IUFRO unit 2.09.02 international conference on woody plant production integrating genetic and vegetative propagation technologies, Vitoria-Gasteiz, Spain, 8–12 September 2014, p 131

    Google Scholar 

  • Trontin J-F, Teyssier C, Morel A, Harvengt L, Lelu-Walter M-A (2016c) Prospects for new variety deployment through somatic embryogenesis in maritime pine. In: Park Y-S, Bonga JM, Moon H-K (eds) Vegetative propagation of forest trees. National Institute of Forest Science (NIFoS), Seoul, Korea, pp 572–606

    Google Scholar 

  • Trontin J-F, Walter C, Klimaszewska K, Park Y-S, Lelu-Walter M-A (2007) Recent progress on genetic transformation of four Pinus spp. Transgenic Plant J 1:314–329

    Google Scholar 

  • Tsavkelova E, Oeser B, Oren-Young L, Israeli M, Sasson Y, Tudzynski B, Sharon A (2012) Identification and functional characterization of indole-3-acetamide-mediated IAA biosynthesis in plant-associated Fusarium species. Fungal Genet Biol 49(1):48–57. https://doi.org/10.1016/j.fgb.2011.10.005

    Article  CAS  PubMed  Google Scholar 

  • Tuskan GA, DiFazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A, Schein J, Sterck L, Aerts A, Bhalerao RR, Bhalerao RP, Blaudez D, Boerjan W, Brun A, Brunner A, Busov V, Campbell M, Carlson J, Chalot M, Chapman J, Chen G-L, Cooper D, Coutinho PM, Couturier J, Covert S, Cronk Q, Cunningham R, Davis J, Degroeve S, Dejardin A, DePamphilis C, Detter J, Dirks B, Dubchak I, Duplessis S, Ehlting J, Ellis B, Gendler K, Goodstein D, Gribskov M, Grimwood J, Groover A, Gunter L, Hamberger B, Heinze B, Helariutta Y, Henrissat B, Holligan D, Holt R, Huang W, Islam-Faridi N, Jones S, Jones-Rhoades M, Jorgensen R, Joshi C, Kangasjarvi J, Karlsson J, Kelleher C, Kirkpatrick R, Kirst M, Kohler A, Kalluri U, Larimer F, Leebens-Mack J, Leple J-C, Locascio P, Lou Y, Lucas S, Martin F, Montanini B, Napoli C, Nelson DR, Nelson C, Nieminen K, Nilsson O, Pereda V, Peter G, Philippe R, Pilate G, Poliakov A, Razumovskaya J, Richardson P, Rinaldi C, Ritland K, Rouze P, Ryaboy D, Schmutz J, Schrader J, Segerman B, Shin H, Siddiqui A, Sterky F, Terry A, Tsai C-J, Uberbacher E, Unneberg P, Vahala J, Wall K, Wessler S, Yang G, Yin T, Douglas C, Marra M, Sandberg G, Van de Peer Y, Rokhsar D (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313(5793):1596–1604. https://doi.org/10.1126/science.1128691

  • Ullah A, Manghwar H, Shaban M, Khan AH, Akbar A, Ali U, Ali E, Fahad S (2018) Phytohormones enhanced drought tolerance in plants: a coping strategy. Environ Sci Pollut Res 25(33):33103–33118. https://doi.org/10.1007/s11356-018-3364-5

    Article  CAS  Google Scholar 

  • Umezawa T, Nakashima K, Miyakawa T, Kuromori T, Tanokura M, Shinozaki K, Yamaguchi-Shinozaki K (2010) Molecular basis of the core regulatory network in ABA responses: sensing, signaling and transport. Plant Cell Physiol 51(11):1821–1839. https://doi.org/10.1093/pcp/pcq156

    Article  CAS  PubMed Central  Google Scholar 

  • Varis S, Klimaszewska K, Aronen T (2018) Somatic embryogenesis and plant regeneration from primordial shoot explants of Picea abies (L.) H. Karst. Somatic Trees. Front Plant Sci 9:1551. https://doi.org/10.3389/fpls.2018.01551

  • Vázquez-González C, López-Goldar X, Zas R, Sampedro L (2019) Neutral and climate-driven adaptive processes contribute to explain population variation in resin duct traits in a Mediterranean pine species. Front Plant Sci 10:1613. https://doi.org/10.3389/fpls.2019.01613

    Article  PubMed  PubMed Central  Google Scholar 

  • Vázquez-González C, Sampedro L, López‐Goldar X, Zas R (2021) Genetic and ecological basis of resistance to herbivorous insects in Mediterranean pines. In: Ne’eman G, Osem Y (eds) Pines and their mixed forest ecosystems in the Mediterranean basin. Springer Nature Switzerland AG, p in press

    Google Scholar 

  • Velasco-Conde T, Yakovlev I, Majada JP, Aranda I, Johnsen Ø (2012) Dehydrins in maritime pine (Pinus pinaster) and their expression related to drought stress response. Tree Genet Genomes 8(5):957–973. https://doi.org/10.1007/s11295-012-0476-9

    Article  Google Scholar 

  • Vicente C, Espada M, Vieira P, Mota M (2012) Pine wilt disease: a threat to European forestry. Eur J Plant Pathol 133(1):89–99. https://doi.org/10.1007/s10658-011-9924-x

    Article  CAS  Google Scholar 

  • Vidal M, Plomion C, Harvengt L, Raffin A, Boury C, Bouffier L (2015) Paternity recovery in two maritime pine polycross mating designs and consequences for breeding. Tree Genet Genomes 11(5):105. https://doi.org/10.1007/s11295-015-0932-4

    Article  Google Scholar 

  • Vidal M, Plomion C, Raffin A, Harvengt L, Bouffier L (2017) Forward selection in a maritime pine polycross progeny trial using pedigree reconstruction. Ann For Sci 74(1):21. https://doi.org/10.1007/s13595-016-0596-8

    Article  Google Scholar 

  • Vilasboa J, Da Costa CT, Fett-Neto AG (2019) Rooting of eucalypt cuttings as a problem-solving oriented model in plant biology. Prog Biophys Mol Biol 146:85–97. https://doi.org/10.1016/j.pbiomolbio.2018.12.007

    Article  PubMed  Google Scholar 

  • Vivas M, Zas R, Solla A (2012) Screening of Maritime pine (Pinus pinaster) for resistance to Fusarium circinatum, the causal agent of pitch canker disease. Forestry 85(2):185–192. https://doi.org/10.1093/forestry/cpr055

    Article  Google Scholar 

  • Walsh B, Lynch M (eds) (2018) Evolution and selection of quantitative traits, vol 2. Oxford University Press, Cary, N.C

    Google Scholar 

  • Wan L-C, Wang F, Guo X, Lu S, Qiu Z, Zhao Y, Zhang H, Lin J (2012) Identification and characterization of small non-coding RNAs from Chinese fir by high throughput sequencing. BMC Plant Biol 12(1):146. https://doi.org/10.1186/1471-2229-12-146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan T, Liu Z-M, Li L-F, Leitch AR, Leitch IJ, Lohaus R, Liu Z-J, Xin H-P, Gong Y-B, Liu Y, Wang W-C, Chen L-Y, Yang Y, Kelly LJ, Yang J, Huang J-L, Li Z, Liu P, Zhang L, Liu H-M, Wang H, Deng S-H, Liu M, Li J, Ma L, Liu Y, Lei Y, Xu W, Wu L-Q, Liu F, Ma Q, Yu X-R, Jiang Z, Zhang G-Q, Li S-H, Li R-Q, Zhang S-Z, Wang Q-F, Van de Peer Y, Zhang J-B, Wang X-M (2018) A genome for gnetophytes and early evolution of seed plants. Nat Plants 4(2):82–89. https://doi.org/10.1038/s41477-017-0097-2

    Article  CAS  PubMed  Google Scholar 

  • Wang X-Q, Ran J-H (2014) Evolution and biogeography of gymnosperms. Mol Phylogenet Evol 75(1):24–40. https://doi.org/10.1016/j.ympev.2014.02.005

    Article  PubMed  Google Scholar 

  • Warren RL, Keeling CI, Saint YMM, Raymond A, Taylor GA, Vandervalk BP, Mohamadi H, Paulino D, Chiu R, Jackman SD, Robertson G, Yang C, Boyle B, Hoffmann M, Weigel D, Nelson DR, Ritland C, Isabel N, Jaquish B, Yanchuk A, Bousquet J, Jones SJM, MacKay J, Birol I, Bohlmann J (2015) Improved white spruce (Picea glauca) genome assemblies and annotation of large gene families of conifer terpenoid and phenolic defense metabolism. Plant J 83(2):189–212. https://doi.org/10.1111/tpj.12886

    Article  CAS  PubMed  Google Scholar 

  • Wenger AM, Peluso P, Rowell WJ, Chang P-C, Hall RJ, Concepcion GT, Ebler J, Fungtammasan A, Kolesnikov A, Olson ND, Töpfer A, Alonge M, Mahmoud M, Qian Y, Chin C-S, Phillippy AM, Schatz MC, Myers G, DePristo MA, Ruan J, Marschall T, Sedlazeck FJ, Zook JM, Li H, Koren S, Carroll A, Rank DR, Hunkapiller MW (2019) Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. Nat Biotechnol 37:1155–1162. https://doi.org/10.1038/s41587-019-0217-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wingfield MJ, Brockerhoff EG, Wingfield BD, Slippers B (2015) Planted forest health: the need for a global strategy. Science 349(6250):832–836. https://doi.org/10.1126/science.aac6674

    Article  CAS  PubMed  Google Scholar 

  • Wingfield MJ, Hammerbacher A, Ganley RJ, Steenkamp ET, Gordon TR, Wingfield BD, Coutinho TA (2008) Pitch canker caused by Fusarium circinatum—a growing threat to pine plantations and forests worldwide. Australas Plant Pathol 37(4):319. https://doi.org/10.1071/AP08036

    Article  Google Scholar 

  • Wisser RJ, Fang Z, Holland JB, Teixeira JEC, Dougherty J, Weldekidan T, de Leon N, Flint-Garcia S, Lauter N, Murray SC, Xu W, Hallauer A (2019) The genomic basis for short-term evolution of environmental adaptation in maize. Genetics 213(4):1479–1494. https://doi.org/10.1534/genetics.119.302780

    Article  PubMed Central  Google Scholar 

  • Woodcock P, Cottrell JE, Buggs RJA, Quine CP (2018) Mitigating pest and pathogen impacts using resistant trees: a framework and overview to inform development and deployment in Europe and North America. For an Int J For Res 91(1):1–16. https://doi.org/10.1093/forestry/cpx031

    Article  Google Scholar 

  • Workman R, Fedak R, Kilburn D, Hao S, Liu K, Timp W (2018) High molecular weight DNA extraction from recalcitrant plant species for third generation sequencing. Protoc Exch Version 1:1–15. https://doi.org/10.1038/protex.2018.059

    Article  Google Scholar 

  • Xu L, Huang H (2014) Genetic and epigenetic controls of plant regeneration. Curr Top Dev Biol 108:1–33

    Article  PubMed  Google Scholar 

  • Xu L, Zhang J, Gao J, Chen X, Jiang C, Hao Y (2012) Study on the disease resistance of candidate clones in Pinus massoniana to Bursaphelenchus xylophilus. China For Sci Technol 26:27–30

    CAS  Google Scholar 

  • Xu S (2003) Theoretical basis of the beavis effect. Genetics 165(4):2259–2268

    Article  PubMed  PubMed Central  Google Scholar 

  • Yakovlev IA, Fossdal CG, Johnsen Ø (2010) MicroRNAs, the epigenetic memory and climatic adaptation in Norway spruce. New Phytol 187(4):1154–1169. https://doi.org/10.1111/j.1469-8137.2010.03341.x

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi M, Demura T (2010) Transcriptional regulation of secondary wall formation controlled by NAC domain proteins. Plant Biotechnol 27(3):237–242. https://doi.org/10.5511/plantbiotechnology.27.237

    Article  CAS  Google Scholar 

  • Yandell M, Ence D (2012) A beginner’s guide to eukaryotic genome annotation. Nat Rev Genet 13(5):329–342. https://doi.org/10.1038/nrg3174

    Article  CAS  PubMed  Google Scholar 

  • Yi L, Liang Z-T, Peng Y, Yao X, Chen H-B, Zhao Z-Z (2012) Tissue-specific metabolite profiling of alkaloids in Sinomenii caulis using laser microdissection and liquid chromatography-quadrupole/time of flight-mass spectrometry. J Chromatogr A 1248:93–103. https://doi.org/10.1016/j.chroma.2012.05.058

    Article  CAS  PubMed  Google Scholar 

  • Zapata-Valenzuela J, Isik F, Maltecca C, Wegrzyn J, Neale D, McKeand S, Whetten R (2012) SNP markers trace familial linkages in a cloned population of Pinus taeda-prospects for genomic selection. Tree Genet Genomes 8(6):1307–1318. https://doi.org/10.1007/s11295-012-0516-5

    Article  Google Scholar 

  • Zas R, Merlo E, Fernández-López J (2004) Juvenile—mature genetic correlations in Pinus pinaster ait. under different nutrient x water regimes. Silvae Genet 53(1–6):124–129. https://doi.org/10.1515/sg-2004-0022

  • Zas R, Moreira X, Ramos M, Lima MRM, Nunes da Silva M, Solla A, Vasconcelos MW, Sampedro L (2015) Intraspecific variation of anatomical and chemical defensive traits in maritime pine (Pinus pinaster) as factors in susceptibility to the pinewood nematode (Bursaphelenchus xylophilus). Trees 29(3):663–673. https://doi.org/10.1007/s00468-014-1143-6

    Article  Google Scholar 

  • Zas R, Sampedro L, Prada E, Fernández-López J (2005) Genetic variation of Pinus pinaster Ait. seedlings in susceptibility to the pine weevil Hylobius abietis L. Ann For Sci 62(7):681–688. https://doi.org/10.1051/forest:2005064

  • Zas R, Solla A, Sampedro L (2007) Variography and kriging allow screening Pinus pinaster resistant to Armillaria ostoyae in field conditions. Forestry 80(2):201–209. https://doi.org/10.1093/forestry/cpl050

    Article  Google Scholar 

  • Zeng J, de Vlaming R, Wu Y, Robinson MR, Lloyd-Jones LR, Yengo L, Yap CX, Xue A, Sidorenko J, McRae AF, Powell JE, Montgomery GW, Metspalu A, Esko T, Gibson G, Wray NR, Visscher PM, Yang J (2018) Signatures of negative selection in the genetic architecture of human complex traits. Nat Genet 50(5):746–753. https://doi.org/10.1038/s41588-018-0101-4

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Wu T, Li L, Han S, Li X, Zhang S, Qi L (2013) Dynamic expression of small RNA populations in larch (Larix leptolepis). Planta 237(1):89–101. https://doi.org/10.1007/s00425-012-1753-4

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Zhang Y, Scheuring CF, Wu C-C, Dong JJ, Zhang H-B (2012) Preparation of megabase-sized DNA from a variety of organisms using the nuclei method for advanced genomics research. Nat Protoc 7(3):467–478. https://doi.org/10.1038/nprot.2011.455

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Gao S, Zhou X, Xia J, Chellappan P, Zhou X, Zhang X, Jin H (2010) Multiple distinct small RNAs originate from the same microRNA precursors. Genome Biol 11(8):R81. https://doi.org/10.1186/gb-2010-11-8-r81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Y, Li H, Bhatti S, Zhou S, Yang Y, Fish T, Thannhauser TW (2016) Development of a laser capture microscope-based single-cell-type proteomics tool for studying proteomes of individual cell layers of plant roots. Hortic Res 3(1):16026. https://doi.org/10.1038/hortres.2016.26

    Article  CAS  PubMed Central  Google Scholar 

  • Zimin A, Stevens KA, Crepeau MW, Holtz-Morris A, Koriabine M, Marçais G, Puiu D, Roberts M, Wegrzyn JL, de Jong PJ, Neale DB, Salzberg SL, Yorke JA, Langley CH (2014) Sequencing and assembly of the 22-Gb loblolly pine genome. Genetics 196(3):875–890. https://doi.org/10.1534/genetics.113.159715

    Article  CAS  PubMed  Google Scholar 

  • Zimmer A, Lang D, Richardt S, Frank W, Reski R, Rensing SA (2007) Dating the early evolution of plants: detection and molecular clock analyses of orthologs. Mol Genet Genomics 278(4):393–402. https://doi.org/10.1007/s00438-007-0257-6

    Article  CAS  PubMed  Google Scholar 

  • Zonneveld BJM (2012) Conifer genome sizes of 172 species, covering 64 of 67 genera, range from 8 to 72 picogram. Nord J Bot 30(4):490–502. https://doi.org/10.1111/j.1756-1051.2012.01516.x

    Article  Google Scholar 

  • Zwaenepoel A, Van de Peer Y (2019) Inference of ancient whole-genome duplications and the evolution of gene duplication and loss rates. Mol Biol Evol 36(7):1384–1404. https://doi.org/10.1093/molbev/msz088

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the EU FP5 programme grant agreement QLK3-CT2002-01973 (TREESNIPS). The EU FP7 programme under REA grant agreements no 289841 (ProCoGen). The EU H2020 programme grant agreements no 676876 (GenTree); no 773383 (B4EST); no 676559 (ELIXIR-EXCELERATE); no 824110 (EASI-Genomics. PID 7825-ImPiONT); People Programme (Marie Curie Actions) of the EU FP7 is acknowledged under REA grant agreement PIEF-GA-2013-627761; Cost Action FP1406; Plant KBBE programme, Scientific and Technological Cooperation in Plant Genome Research PLE2009-0016 (SUSTAINPINE); ERA-NET Cofund ForestValue project MULTIFOREVER supported by ANR (France, ANR-19-SUM2-0002-01), FNR (Germany), MINCyT (Argentina), MINECO-AEI, RTA-2007-00084-00-00 and RTA2010-00120-C02 (Spain), MMM (Finland) and VINNOVA (Sweden) and EU H2020 programme grant agreements no 773324. Fundação para a Ciência e a Tecnologia (FCT) through grants BioISI (UIDB/04046/2020 and UIDP/04046/2020), the doctoral fellowships SFRH/BD/111687/2015 (I. Modesto), SFRH/BD/128827/2017 (A. Alves) and SFRH/BD/79779/2011 (A. Rodrigues), and project PTDC/BAA-MOL/28379/2017—LISBOA-01-0145-FEDER-028379 (FCT/MCTES and FEDER)); Conseil de la Région Nouvelle Aquitaine, France, through grant EMBRYOsoMATURE (17006494-0741); Spanish Ministries MEC, MICINN, MINECO and MICIU (BIO2007-29814-E; BIO2010-12302-E; AGL2014-54698R; BIO2015-69285-R; AGL2015-66048-C2; RTI2018-094041-B-I00; RTI2018-094691-B-C3; RTI2018-098015-B-I00), Junta de Andalucía grants (BIO-474 and BIO-114) and University of Alcalá grant (UAH-AE 2017-2), the doctoral contracts BES-2016-077347 (M. Callejas-Díaz), BES-2016-076833 (M. López-Hinojosa), PRE2019-090357 (L.F. Manjarrez) and 49-FPI-INIA-2014 (L. Hernández-Escribano) are also acknowledged for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Teresa Cervera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sterck, L. et al. (2022). Maritime Pine Genomics in Focus. In: De La Torre, A.R. (eds) The Pine Genomes. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-93390-6_5

Download citation

Publish with us

Policies and ethics