Skip to main content

Advertisement

Log in

Optimization of seasonality and mother plant nutrition for vegetative propagation of Pinus pinaster Ait

  • Published:
New Forests Aims and scope Submit manuscript

Abstract

Due to the high economic importance of Pinus pinaster Ait., there is considerable interest in developing, improving and extending the use of its families for mass clonal propagation and in breeding programmes. In the current study, we evaluated shoot growth, rooting ability and mini-cuttings production of P. pinaster in response to nitrogen fertilization and seasons. We compared eight half-sib families of P. pinaster from Asturias and Galicia (Northern Iberian Peninsula), searching for useful parameters and growing conditions to be included in a mass propagation program for clonal family forestry. We fertilized P. pinaster seedling mother plants kept in a greenhouse with three levels of nitrogen: high (HN), medium (MN) and low (LN) to evaluate rooting ability of mini-cuttings. In addition, we evaluated the maximal potential production of rooted mini-cuttings considering nine cycles of propagation over 1 year, also using three levels of nitrogen. The HN treatment significantly influenced the rooting process, with length, area and volume of roots all being positively affected. Spring was the most favourable season for mini-cuttings in the HN treatment. This study provides valuable new information to optimize the clonal propagation protocol for P. pinaster and shows that the mini-cuttings technique has great potential in mass scale cloning, providing high quality sprout production and well-formed new plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alfenas AC, Zauza EAV, Mafia RG, Assis TF (2004) Clonagem e doenças do eucalipto. Universidade Federal de Viçosa, Viçosa

    Google Scholar 

  • Alvarez JM, Majada J, Ordas R (2009) Micropropagation from Pinus pinaster Ait. Forestry 82(2):175–184

    Article  Google Scholar 

  • Amri E, Lyaruu HVM, Nyomora AS, Kanyelka ZL (2010) Vegetative propagation of African Blackwood (Dalbergia melanoxylon Guill. & Perr.): effects of age of donor plant, IBA treatment and cutting position on rooting ability of stem cuttings. New For 39(2):183–194

    Article  Google Scholar 

  • Andersen AS (1986) Environmental influences on cuttings of non-woody species. In: Jackson MB (ed) New root formation in plants and cuttings. Martinus Nijhoff Publishers, Dordrecht, pp 223–253

    Chapter  Google Scholar 

  • Assis TF, Rosa OP, Gonçalves SI (1992) Propagação clonal de Eucalyptus por microestaquia. In: Congreso Florestal Estadual, vol 7. Anais, Nova Prata, p 824

  • Assis TF, Fett-Neto AG, Alfenas AC (2004) Current techniques and prospects for the clonal propagation of hardwoods: emphasis on eucalyptus. In: Walter C, Carson M (eds) Plantation forestry for the 21st century, 1 edn. Research SignPost, New Delhi, vol 1, pp 303–333

  • Baltunis BS, Huber DA, White TL, Goldfarb B, Stelzer HE (2005) Genetic effects of rooting loblolly pine stem cuttings from a partial diallel mating design. Can J For Res 35(5):1098–1108

    Article  Google Scholar 

  • Bentzer BG (1993) Strategies for clonal forestry with Norway spruce. In: Ahuja MR, Libby WJ (eds) Clonal forestry II. Conservation and application. Springer, Berlin, pp 120–138

    Google Scholar 

  • Black DK (1972) The influence of shoot origin on the rooting of Douglas-fir stem cuttings. Comb Proc Int Plant Prop Soc 22:142–157

    Google Scholar 

  • Bolstad PV, Libby WJ (1982) Comparisons of radiata pine cuttings of hedge and tree-form origin after seven growing seasons. Silvae Genetica 31:9–13

    Google Scholar 

  • Chambel MR, Climent J, Alia R, Valladares F (2005) Phenotypic plasticity: a useful framework for understanding adaptation in forest species. Invest Agric Sist Recur For 14:334–344

    Google Scholar 

  • Chung DY, Lee KJ (1994) Effects of clones, ortet age, crown position, and rooting substance upon the rooting of cuttings of Japanese larch (Larix leptolepis S. et Z. Gordon). For Genet Res Inst 83(2):205–210

    Google Scholar 

  • Cooney B (1999) Effects of family, shearing height, pruning intensity and time of shoot origin on shoot morphology and rooting of loblolly pine stem cuttings. MS Thesis, N.C. State University, Raleigh

  • Druege U, Zerche S, Kadner R, Ernst M (2000) Relation between nitrogen status, carbohydrate distribution and subsequent rooting of chrysanthemum cuttings as affected by pre-harvest nitrogen supply and cold-storage. Ann Bot 85:687–701

    Article  CAS  Google Scholar 

  • Ferreira BGA, Zuffellato-Ribas KC, Carpanezzi AA, Tavares FR, Boeger MRT, Koehler HS (2001) Enraizamento de Sapium glandulatum (Vell.) Pax. pela aplicação de ácido indol butírico e ácido bórico. Leandra 16:11–16

    Google Scholar 

  • Gocke MH (2006) Production system influences the survival and morphology of rooted stem cuttings of loblolly pine (Pinus taeda L.) and sweetgum (Liquidambar styraciflua L.). Master of Science in Forestry, Graduate Faculty of North Carolina State University, Raleigh, 136 p

  • Gravel-Grenier J, Lamhamedi MS, Beaulieu J, Carles S, Margolis HA, Rioux M, Stowe DC, Lapointe L (2011) Utilization of family genetic variability to improve the rooting ability of white spruce (Picea glauca) cuttings. Can J For Res 41(6):1308–1318

    Article  Google Scholar 

  • Guidi L, Lorefice G, Pardossi A, Malorgio F, Tognoni F, Soldatini GF (1998) Growth and photosynthesis of Lycopersicon esculentum (L.) plants as affected by nitrogen deficiency. Biol Plant 40:235–244

    Article  Google Scholar 

  • Haissig BE (1986) Metabolic processes in adventitious rooting of cuttings. In: Jackson MB (ed) New root formation in plants and cuttings. Martinus Nijhof, Dordrecht, pp 141–189

  • Hartmann HT, Kester DE, Davis FT, Geneve RL (2002) Hartmann and Kester’s plant propagation: principles and practices, 7th edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Henry PH, Blazich FA, Hinesley LE (1992) Nitrogen nutrition of containerized eastern red cedar. II. Infuence of stock plant fertility on adventitious rooting of stem cuttings. J Am Soc Hortic Sci 117:568–570

    CAS  Google Scholar 

  • Higashi EN, Silveira RLVA, Gonçalves AN (2000) Propagação vagetativa de Eucalyptus: Princípios básicos e a sua evolução no Brasil. (IPEF-ESALQ-USP). Circular Técnica 192:10

  • Hunt MA, Trueman SJ, Rasmussen A (2011) Indole-3-butyric acid accelerates adventitious root formation and impedes shoot growth of Pinus elliottii var. elliottii × P. caribaea var. hondurensis cuttings. New For 41(3):349–360

    Article  Google Scholar 

  • Iovieno P, Rutigliano FA, D’Ascoli R, Alfani A, Virzo De Santo A (2006) Effect of Pinus pinea afforestation on chemical and biological properties of three different soil types of southern Italy. In: Lafortezza R, Sanesi G (eds) Patterns and processes in forest landscapes. Consequences of human management. Accademia Italiana di Scienze Forestali (IUFRO 8.01.03 Landscape ecology)

  • Isik F, Li B, Frampton J, Goldfarb B (2004) Efficiency of seedlings and rooted cuttings for testing and selection in Pinus taeda. For Sci 50(1):44–53

    Google Scholar 

  • Kozlowki TT, Keller T (1966) Food relations of woody plants. Bot Rev 32:293–382

    Article  Google Scholar 

  • Landis TD, Tinus RW, McDonald SE, Barnett JP (1995) Nursery planning, development, and management, vol 1. The container tree nursery manual. Agricultural handbook 674. US Department of Agriculture, Forest Service, Washington, DC

  • Lazcano C, Sampedro L, Zas R, Dominguez J (2010) Vermicompost enhances germination of the maritime pine (Pinus pinaster Ait.). New For 39(3):387–400

    Article  Google Scholar 

  • Libby WJ, Brown AG, Fielding JM (1972) Effects of hedging radiata pine on production, rooting, and early growth of cuttings. N Z J For Sci 2(2):263–283

    Google Scholar 

  • Majada J, Martínez-Alonso C, Feito I, Kidelman A, Aranda I, Alía R (2011) Mini-cuttings: an effective technique for the propagation of Pinus pinaster Ait. New For 41:399–412

    Article  Google Scholar 

  • Martins P, Sampedro L, Moreira X, Zas R (2009) Nutritional status and genetic variation in the response to nutrient availability in Pinus pinaster. A multisite field study in Northwest Spain. For Ecol Manage 258:1429–1436

    Article  Google Scholar 

  • McKeand ST, Mullin T, White T (2003) Deployment of genetically improved loblolly and slash pine in the South. J For 101(3):32–37

    Google Scholar 

  • Nams VO, Folkard FG, Smith JNM (1992) Effects of nitrogen fertilization on several woody and nonwoody boreal forest species. Can J Bot 71:93–97

    Article  Google Scholar 

  • Oliet JA, Planelles R, Segura ML, Artero F, Jacobs D (2005) Mineral nutrition and growth of containerized Pinus halepensis seedlings under controlled-release fertilization. Sci Hortic 103(1):113–129

    Article  Google Scholar 

  • Oliet JA, Salazar JM, Villar R, Robredo E, Valladares F (2011) Fall fertilization of Holm oak affects N and P dynamics, root growth potential, and post-planting phenology and growth. Ann For Sci 68(3):647–656

    Article  Google Scholar 

  • Pigliucci M (2005) Evolution of phenotypic plasticity: where are we going now? Trends Ecol Evol 20:481–486

    Article  PubMed  Google Scholar 

  • Read PE (1987) Introduction to the symposium. Hort Sci 22(2):736–737

    Google Scholar 

  • Reddy AR, Reddy KR, Padjung R, Hodges HF (1996) Nitrogen nutrition and photosynthesis in leaves of Pima cotton. J Plant Nutr 19:755–770

    Article  CAS  Google Scholar 

  • Rieckermann H, Goldfarb B, Cunningham MW, Kellison RC (1999) Influence of nitrogen, photoperiod, cutting type, and clone on root and shoot development of rooted stem cuttings of sweetgum. New For 18:231–244

    Article  Google Scholar 

  • Roeber R, Reuther G (1982) Der Ein_uss unterschiedlicher N-Formen und -Konzentrationen auf den Ertrag und die QualitaÈt von Chrysanthemen-Stecklingen. Gartenbauwissenschaft 47:182–188

    CAS  Google Scholar 

  • Rowe DB, Blazich FA, Raper CD (2002a) Nitrogen nutrition of hedged stock plants of Loblolly Pine. I. Tissue nitrogen concentrations and carbohydrate status. New For 24(1):39–51

    Article  Google Scholar 

  • Rowe DB, Blazich FA, Goldfarb B, Wise FC (2002b) Nitrogen nutrition of hedged stock plants of Loblolly Pine. II. Influence of carbohydrate and nitrogen status on adventitious rooting of stem cuttings. New For 24(1):53–65

    Article  Google Scholar 

  • Ruano I, Pando V, Bravo F (2009) How do light and water influence Pinus pinaster Ait. germination and early seedling development? For Ecol Manage 258(12):2647–2653

    Article  Google Scholar 

  • Rufty TW, Huber SC, Volk RJ (1988) Alterations in leaf carbohydrate metabolism in response to nitrogen stress. Plant Physiol 88:725–730

    Article  PubMed  CAS  Google Scholar 

  • Sharma SK, Verma SK (2011) Seasonal influences on the rooting response of Chir pine (Pinus roxburghii Sarg.). Ann For Res 54(2): 241–247

    Google Scholar 

  • Shepherd M, Mellicka R, Toonb P, Dalec G, Dietersb M (2005) Genetic control of adventitious rooting on stem cuttings in two Pinus elliottii × P. caribaea hybrid families. Ann For Sci 62:403–412

    Article  Google Scholar 

  • Timmer VR, Amstrong G, Miller BD (1991) Steady-state nutrient preconditioning and early outplanting performance of containerized black spruce seedlings. Can J For Res 21:585–594

    Article  CAS  Google Scholar 

  • Titon M, Xavier A, Otoni WC (2006) Clonal propagation of Eucaliptus grandis using the mini cutting and micro-cutting techniques. Sci For 71:109–117

    Google Scholar 

  • Van den Driessche R (1988) Nursery growth of conifer seedlings using fertilizes of different solubilities and application time, and their forest growth. Can J For Res 18:172–180

    Article  Google Scholar 

  • Van den Driessche R (1991) New root growth of Douglas-fir seedlings at low carbon dioxide concentration. Tree Physiol 8:289–329

    Google Scholar 

  • Van den Driessche R (1992) Changes in drought resistance and root growth capacity of container seedlings in response to nursery drought, nitrogen, and potassium. Can J For Res 22:740–749

    Article  Google Scholar 

  • Villar-Salvador P, Planelles R, Enriquez E, Peñuelas Rubira J (2004) Nursery cultivation regimes, plant functional attributes, and field performance relationships in the Mediterranean oak (Quercus ilex L.). For Ecol Manage 196:257–266

    Article  Google Scholar 

  • Villar-Salvador P, Puértolas J, Peñuelas JL, Planelles R (2005) Effect of nitrogen fertilization in the nursery on the drought and frost resistance of Mediterranean forest species. Invest Agrar Sist Recur For 14(3):408–418

    Google Scholar 

  • Wendling I, Dutra LF, Grossi F (2007) Sistema semi-hidropônico para condução de minicepas de erva-mate (Ilex paraguariensis St Hil.) e miniestaquia. Pesq Agropec Bras 42:289–292

    Article  Google Scholar 

  • Wendling I, Brondani GE, Dutra LF, Hansel FA (2010) Mini-cuttings technique: a new ex vitro method for clonal propagation of Sweetgum. New For 39(3):343–353

    Article  Google Scholar 

  • Wise FC, Blazich FA, Hinesley LE (1985) Propagation of Abies fraseri by cuttings: orthotropic shoot reduction form hedged stock plants. Can J Forest Res 16:226–231

    Article  Google Scholar 

  • Xavier A, Santos GA, Oliveira ML (2003) Enraizamento de miniestaca caulinar e foliar na propagacão vegetativa de cedro-rosa (Cedrela fissilis Vell.). Rev Arvore 27:351–356

    Google Scholar 

  • Zas R, Pichel F, Martíns P, Fernández-López J (2006) Fertilization × genotype interaction in Pinus radiata open pollinated seedlings planted in three locations in Galicia (Northwest Spain). New For 32:253–263

    Article  Google Scholar 

Download references

Acknowledgments

Special thanks to Inmaculada García, Enrique Fernández, Dolores Busto and Manuel Zapico for their technical support during the experiments. This study was supported by funding from the European Project TREESNIP-QLK3-CT2002-01973 and the project “Heterogeneidad ambiental y adaptabilidad en respuesta a la sequía en colecciones clonales de Pinus pinaster”, ref RTA-2007-00084-00-00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Celia Martínez-Alonso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martínez-Alonso, C., Kidelman, A., Feito, I. et al. Optimization of seasonality and mother plant nutrition for vegetative propagation of Pinus pinaster Ait. New Forests 43, 651–663 (2012). https://doi.org/10.1007/s11056-012-9333-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11056-012-9333-9

Keywords

Navigation