Skip to main content

Emerging Photocatalysts for Hydrogen Production

  • Chapter
  • First Online:
Green Photocatalytic Semiconductors

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

Abstract

Hydrogen has an enormous potential to become the ideal and promising energy source as it is a green, renewable and high energy density resource. It is efficiently storable and highly abundant in nature. Different approaches have been used to produce hydrogen; however, clean hydrogen production is not always green; i.e. only a few of these methods are environment-friendly. The photo-electrochemical water splitting for hydrogen production got great attention to reduce dependency on a non-renewable resource with waste minimization for clean hydrogen generation. This chapter gives a comprehensive view of different production methods and electrode materials for photocatalytic water splitting towards hydrogen production. The covered topics include different metal oxides (MOs), metal chalcogenides (MSs) and different shapes of nanocomposites, which are used for photoelectrocatalytic hydrogen production. Also, the advantages and disadvantages of the selected materials and methods for hydrogen evolution from water splitting are discussed along with their challenges and prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Muhammad R, Mubashar R, Irshad M, Gillani SSA, Tahir MBilal, Khalid NR, Yasmin A, Shehzad MA (2020) A comprehensive study on methods and materials for photocatalytic water splitting and hydrogen production as a renewable energy resource. J Inorg Organomet Polym Mater 30:3837–3861. https://doi.org/10.1007/s10904-020-01611-9

  2. Stambouli AB, Traversa E (2002) Fuel cells, an alternative to standard sources of energy. Renew Sustain Energy Rev 6:295–304. https://doi.org/10.1016/S1364-0321(01)00015-6

    Article  Google Scholar 

  3. Kumar A, Kumar K, Kaushik N, Sharma S, Mishra S (2010) Renewable energy in India: current status and future potentials. Renew Sustain Energy Rev 14:2434–2442. https://doi.org/10.1016/j.rser.2010.04.003

    Article  Google Scholar 

  4. Holladay JD, Hu J, King DL, Wang Y (2009) An overview of hydrogen production technologies. Catal Today 139:244–260. https://doi.org/10.1016/j.cattod.2008.08.039

    Article  CAS  Google Scholar 

  5. Nilsson M (2007) Red light for green paper: the EU policy on energy efficiency. Energy Policy 35:540–547. https://doi.org/10.1016/j.enpol.2005.12.023

    Article  Google Scholar 

  6. Singh S, Jain S, Venkateswaran PS, Tiwari AK, Nouni MR, Pandey JK, Goel S (2015) Hydrogen: a sustainable fuel for future of the transport sector. Renew Sustain Energy Rev 51:623–633. https://doi.org/10.1016/j.rser.2015.06.040

    Article  CAS  Google Scholar 

  7. Sanderson K (2011) It’s not easy being green. Nature 469:18–23. https://doi.org/10.1038/469018a

    Article  CAS  PubMed  Google Scholar 

  8. Pudukudy M, Yaakob Z, Mohammad M, Narayanan B, Sopian K (2014) Renewable hydrogen economy in Asia-opportunities and challenges: an overview. Renew Sustain Energy Rev 30:743–757. https://doi.org/10.1016/j.rser.2013.11.015

    Article  Google Scholar 

  9. Yao Y, Gao X, Li Z, Meng X (2020) Photocatalytic reforming for hydrogen evolution: a review. Catalysts 10:335–352. https://doi.org/10.3390/catal10030335

    Article  CAS  Google Scholar 

  10. Sobrino FH, Monroy CR, Perez JLH (2010) Critical analysis on hydrogen as an alternative to fossil fuels and biofuels for vehicles in Europe. Renew Sustain Energy Rev 14:772–780. https://doi.org/10.1016/j.rser.2009.10.021

    Article  CAS  Google Scholar 

  11. Dincer I, Acar C (2015) Review and evaluation of hydrogen production methods for better sustainability. Int J Hydrogen Energy 40:11094e117. https://doi.org/10.1016/j.ijhydene.2014.12.035

  12. Momirlan M, Veziroglu TN (2005) The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet. Int J Hydrogen Energy 30:795–802. https://doi.org/10.1016/j.ijhydene.2004.10.011

    Article  CAS  Google Scholar 

  13. Dey KK, Gahlawat S, Ingole PP (2019) BiVO4 optimized to nano-worm morphology for enhanced activity towards photoelectrochemical water splitting. J Mater Chem A 7:21207–21221. https://doi.org/10.1039/c9ta07353a

  14. García N, Mori K, Kuwahara Y, Yamashita H (2018) Recent strategies targeting efficient hydrogen production from chemical hydrogen storage materials over carbon-supported catalysts. NPG Asia Mater 10:277–292. https://doi.org/10.1038/s41427-018-0025-6

    Article  CAS  Google Scholar 

  15. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38. https://doi.org/10.1038/238037a0

    Article  CAS  Google Scholar 

  16. Hosseini SE, Wahid MA (2016) Hydrogen production from renewable and sustainable energy resources: promising green energy carrier for clean development. Renew Sust Energy Rev 57:850–866. https://doi.org/10.1016/j.rser.2015.12.112

    Article  CAS  Google Scholar 

  17. Balat H, Kırtay E (2010) Hydrogen from biomass-Present scenario and future prospects. Int J Hydrogen Energy 35:7416–7426. https://doi.org/10.1016/j.ijhydene.2010.04.137

    Article  CAS  Google Scholar 

  18. Ehteshami SMM, Chan SH (2014) The role of hydrogen and fuel cells to store renewable energy in the future energy network-potentials and challenges. Energy Policy 73:103–109. https://doi.org/10.1016/j.enpol.2014.04.046

    Article  CAS  Google Scholar 

  19. Abdalla AM, Hossain S, Nisfindy OB, Azad AT, Dawood M, Azad AK (2018) Hydrogen production, storage, transportation and key challenges with applications: a review. Energy Convers Manag 165:602–627. https://doi.org/10.1016/j.enconman.2018.03.088

    Article  CAS  Google Scholar 

  20. Rosen MA, Koohi-Fayegh S (2016) The prospects for hydrogen as an energy carrier:an overview of hydrogen energy and hydrogen energy systems. Energ Ecol Environ 1:10–29. https://doi.org/10.1007/s40974-016-0005-z

    Article  Google Scholar 

  21. Celik D, Yıldız M (2017) Investigation of hydrogen production methods in accordance with green chemistry principles. Int J Hydrog Energy 42:23395–23401. https://doi.org/10.1016/j.ijhydene.2017.03.104

    Article  CAS  Google Scholar 

  22. Kunturu PP, Huskens J (2019) Efficient solar water splitting photocathodes comprising a copper oxide heterostructure protected by a thin carbon layer. ACS Appl Energy Mater 2:7850–7860. https://doi.org/10.1021/acsaem.9b01290

    Article  CAS  Google Scholar 

  23. Fu CF, Wu X, Yang J (2018) Material design for photocatalytic water splitting from a theoretical perspective. Adv Mater 30:1802106–1802111. https://doi.org/10.1002/adma.201802106

    Article  CAS  Google Scholar 

  24. Cao S, Piao L, Chen X (2020) Emerging photocatalysts for hydrogen evolution. Trends Chem 2:57–70. https://doi.org/10.1016/j.trechm.2019.06.009

  25. Hisatomi T, Kubota J, Domen K (2014) Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem Soc Rev 43:7520–7535. https://doi.org/10.1039/C3CS60378D

    Article  CAS  PubMed  Google Scholar 

  26. Chen YC, Huang YS, Huang H, Su PJ, Perng TP, Chen LJ (2020) Photocatalytic enhancement of hydrogen production in water splitting under simulated solar light by band gap engineering and localized surface plasmon resonance of ZnxCd1-xS nanowires decorated by Au nanoparticles. Nano Energy 67:104225–110431. https://doi.org/10.1016/j.nanoen.2019.104225

    Article  CAS  Google Scholar 

  27. Tee SY, Win KY, Teo WS, Koh LD, Liu S, Teng CP, Han MY (2017) Recent progress in energy-driven water splitting. Adv Sci 13:1600337. 10.1002/advs.2016.00337

    Google Scholar 

  28. Hussain M (2010) Synthesis, characterization, and photocatalytic application of novel TiO2 nanoparticles. Chem Eng J 157:45–51. https://doi.org/10.1016/j.cej.2009.10.043

    Article  CAS  Google Scholar 

  29. Tamirat AG, John Rick, Dubale AA, Su WN, Hwang BJ (2016) Using hematite for photoelectrochemical water splitting: a review of current progress and challenges. Nanoscale Horiz 1:243–267. https://doi.org/10.1039/c5nh00098j

  30. Wang H, Rogach AL (2013) Hierarchical SnO2 nanostructures: recent advances in design, synthesis, and applications. Chem Mater 26:123–133. https://doi.org/10.1021/cm4018248

  31. Khan MM, Adil SF, Mayouf AA (2015) Metal oxides as photocatalysts. J Saudi Chem Soc 19:462–464. https://doi.org/10.1016/j.jscs.2015.04.003

    Article  Google Scholar 

  32. Wang F, Shifa TA, Zhan X, Huang Y, Liu K, Cheng Z, Jiang C, He J (2015) Recent advances in transition-metal dichalcogenide based nanomaterials for water splitting. Nanoscale 7:19764–19788. https://doi.org/10.1039/C5NR06718A

    Article  CAS  PubMed  Google Scholar 

  33. Pandey P, Gahlawat S, Ingole Pravin P (2020) Physical barricading at the nanoscale: protecting pyrite from weathering toward efficient and stable electrocatalysis of the oxygen evolution reaction. ACS Sustain Chem Eng 8:15584–15594. 10.1021/acssuschemeng.0c04756

    Google Scholar 

  34. Di T, Xu Q, Ho WK, Tang H, Xiang Q, Yu J (2019) Review on metal sulphide-based Z-scheme photocatalysts. Chem Cat Chem 11:1394–1411. https://doi.org/10.1002/cctc.201802024

  35. Yin J, Jin J, Lin H, Yin Z, Li J, Lu M, Guo L, Xi Pin, Yu Tang, Yan CH (2020) Optimized metal chalcogenides for boosting water splitting. Adv Sci 7:1903070–1903100. https://doi.org/10.1002/advs.201903070

  36. Zhang K, Guo L (2013) Metal sulphide semiconductors for photocatalytic hydrogen production. Catal Sci Technol 3:1672–1690. https://doi.org/10.1039/C3CY00018D

    Article  CAS  Google Scholar 

  37. Kato T, Hakari Y, Ikeda S, Jia Q, Iwase A, Kudo A (2015) Utilization of metal sulfide material of (CuGa)1–xZn2xS2 solid solution with visible light response in photocatalytic and photoelectrochemical solar water splitting systems. J Phys Chem Lett 6:1042–1047. https://doi.org/10.1021/acs.jpclett.5b00137

    Article  CAS  PubMed  Google Scholar 

  38. Hassan MS, Jana A, Gahlawat S, Bhandary N, S Bera, Ingole PP, Sapra S (2019) Colloidally synthesized defect-rich MoSe2 nanosheets for superior catalytic activity. Bull Mater Sci 42:74–85. https://doi.org/10.1007/s12034-019-1774-8

  39. Shuo XU, Jing LIU (2019) Metal-based direct hydrogen generation as unconventional high density energy. Front Energy 13:27–53. https://doi.org/10.1007/s11708-018-0603-x

  40. Konieczny A, Mondal K, Wiltowski T, Dydo P (2008) Catalyst development for thermocatalytic decomposition of methane to hydrogen. Inte J Hydrog Energy 33:264–272. https://doi.org/10.1016/j.ijhydene.2007.07.054

    Article  CAS  Google Scholar 

  41. Farid S, Dincer I (2020) A review and comparative evaluation of thermochemical water splitting cycles for hydrogen production. Energy Convers Managem 205: https://doi.org/10.1016/j.enconman.2019.112182

    Article  CAS  Google Scholar 

  42. Lukajtis R, Holowacz I, Kucharska K, Glinka M, Rybarczyk P, Przyjazny A, Kaminski Marian (2018) Hydrogen production from biomass using dark fermentation. Renew Sustain Energy Rev 91:665–694. https://doi.org/10.1016/j.rser.2018.04.043

  43. Krummenacher JJ, West K, Schmidt LD (2003) Catalytic partial oxidation of higher hydrocarbons at millisecond contact times: decane, hexadecane, and diesel fuel. J Catal 215:332–343. https://doi.org/10.1016/S0021-9517(03)00011-3

    Article  CAS  Google Scholar 

  44. Yan Y, Guo H, Zhang L, Zhu J, Yang Z, Tang Q, Xin J (2014) Effect of catalytic cylinders on autothermal reforming of methane for hydrogen production in a microchamber reactor. Scie World J 2014:451919–451928. https://doi.org/10.1155/2014/451919

    Article  CAS  Google Scholar 

  45. Geissler K, Newson E, Vogel F, Truong TB, Hottingera P, Wokaun A (2001) Autothermal methanolreforming for hydrogen production in fuel cell applications. Phys Chem Chem Phys 3:289–293. https://doi.org/10.1039/B004881J

    Article  CAS  Google Scholar 

  46. Vita A, Pino L, Italiano C, Palella A (2019) Steam reforming, partial oxidation, and autothermal reforming of ethanol for hydrogen production in conventional reactors. Ethanol Sci Eng Chapter 6:159–191. https://doi.org/10.1016/B978-0-12-811458-2.00006-7

    Article  Google Scholar 

  47. Maqbool W, Lee ES (2014) Syngas production process development and economic evaluation for gas-to-liquid applications. Chem Eng Technol 37:995–1001. https://doi.org/10.1002/ceat.201300579

    Article  CAS  Google Scholar 

  48. Castro JD, Tinoco RR, Bouallou C (2010) Hydrogen production from natural gas: auto-thermal reforming and CO2 capture. Chem Eng Trans 21:163–168. https://doi.org/10.3303/CET1021028

    Article  Google Scholar 

  49. Voldsund M, Jordal K, Anantharaman R (2016) Hydrogen production with CO2 capture. Int J Hydrogen Energy 41:4969–4992. https://doi.org/10.1016/j.ijhydene.2016.01.009

    Article  CAS  Google Scholar 

  50. Menendez M, Herguido J, Berard A, Patience GS (2019) Experimental methods in chemical engineering: reactors-fluidized beds. Can J Chem Eng 97:2383–2394. https://doi.org/10.1002/cjce.23517

    Article  CAS  Google Scholar 

  51. Gnanapragasam NV, Rosen MA (2017) A review of hydrogen production using coal, biomass and other solid fuels. Biofuels 8:725–745. https://doi.org/10.1080/17597269.2017.1302662

    Article  CAS  Google Scholar 

  52. Ail SS, Dasappa S (2016) Biomass to liquid transportation fuel via Fischer Tropsch synthesis—technology review and current scenario. Renew Sust Energ Rev 58:267–286. https://doi.org/10.1016/j.rser.2015.12.143

  53. Singh SV, Zhao M, Paul SF, Shah N, Anthony EJ (2017) Progress in biofuel production from gasification. Prog Energy Combust Sci 61:189–248. https://doi.org/10.1016/j.pecs.2017.04.001

    Article  Google Scholar 

  54. Liu X, Zhang S, Dong J, Xu X (2016) A short-term analysis of hydrogen demand and refueling station cost in Shenzhen China. Energy Procedia 104:317–322. https://doi.org/10.1016/j.egypro.2016.12.054

    Article  Google Scholar 

  55. Chen L, Dong X, Wang Y, Xia Y (2016) Separating hydrogen and oxygen evolution in alkaline water electrolysis using nickel hydroxide. Nat Commun 7:11741–11748. https://doi.org/10.1038/ncomms11741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dincer I, Acar C (2015) Review and evaluation of hydrogen production methods for better sustainability. Int J Hydrogen Energy 40:11094–11111. https://doi.org/10.1016/j.ijhydene.2014.12.035

    Article  CAS  Google Scholar 

  57. Hosseini SE, Wahid MA (2016) Hydrogen production from renewable and sustainable energy resources: promising green energy carrier for clean development. Renew Sustain Energy Rev 57:850–866. https://doi.org/10.1016/j.rser.2015.12.112

    Article  CAS  Google Scholar 

  58. Sapountzia FM, Gracia JM, Weststrate CJ, Fredriksson HOA, Niemantsverdriet JW (2017) Electrocatalysts for the generation of hydrogen, oxygen and synthesis gas. Prog Energy Combust Sci 58:1–35. https://doi.org/10.1016/j.pecs.2016.09.001

    Article  Google Scholar 

  59. Dhruba JD, Seval G, Jaesung K, Taylor F, Yingjie S, Anne CC, Umit SO (2019) Hydrogen production from water in a solid oxide electrolysis cell: effect of Ni doping on lanthanum strontium ferrite perovskite cathodes. Ind Eng Chem Res 58:22497–22505. https://doi.org/10.1021/acs.iecr.9b03731

    Article  CAS  Google Scholar 

  60. Peneva M, Zuboy J, Hunter C (2019) Economic analysis of a high-pressure urban pipeline concept (HyLine) for delivering hydrogen to retail fueling stations. Transp Res D Transp Environ 77:92–105. https://doi.org/10.1016/j.trd.2019.10.005

    Article  Google Scholar 

  61. Zhang Y, Heo YJ, Lee JW, Lee JH, Bajgai J, Lee KJ, Park SJ (2018) Photocatalytic hydrogen evolution via water splitting: a short review. Catalysts 8:655. https://doi.org/10.3390/catal8120655

    Article  CAS  Google Scholar 

  62. Hsieh PY, Wu JY, Chang TFMark, Chen CY, Sone M, Hsu YJ (2020) Near infrared-driven photoelectrochemical water splitting: review and future prospects. Arabian J Chem 13:8372–8387. https://doi.org/10.1016/j.arabjc.2020.05.025

  63. Ibhadon AO, Fitzpatrick P (2013) Heterogeneous photocatalysis: recent advances and applications. Catalysts 3:189–218. https://doi.org/10.3390/catal3010189

    Article  CAS  Google Scholar 

  64. Serpone N, Emeline AV (2012) Semiconductor photocatalysis-past, present, and future outlook. J Phys Chem Lett 3:673–677. https://doi.org/10.1021/jz300071j

    Article  CAS  PubMed  Google Scholar 

  65. Babu VJ, Vempati S, Uyar T, Ramakrishna S (2015) Review of one-dimensional and two-dimensional nanostructured materials for hydrogen generation. Phys Chem Chem Phys 17:2960–2986. https://doi.org/10.1039/c4cp04245j

    Article  CAS  PubMed  Google Scholar 

  66. Salcedo-Abraira P, Sergio MFV, Babaryk AA, Cabrero-Antonino M, Gregorio P, Salles F, Navalon S, Garcia H, Horcajada P (2020) Nickel phosphonate MOF as efficient water splitting photocatalyst. Nano Res 14:450–457. https://doi.org/10.1007/s12274-020-3056-6

    Article  CAS  Google Scholar 

  67. Guerrero A, Bisquert J (2017) Perovskite semiconductors for photoelectrochemical water splitting applications. Curr Opin Electrochem 2:144–147. https://doi.org/10.1016/j.coelec.2017.04.003

    Article  CAS  Google Scholar 

  68. Yang J, Yan H, Zong X, Wen F, Liu M, Li C (2013) Roles of cocatalysts in semiconductor-based photocatalytic hydrogen production. Phil Trans R Soc A 371:20110430–20110445. https://doi.org/10.1098/rsta.2011.0430

  69. Tan C, Cao X, Wu XJ, He Q, Yang J, Zhang X, Chen J, Zhao W, Han S, Nam GH, Sindoro M, Zhang H (2017) Recent advances in ultrathin two-dimensional nanomaterials. Chem Rev 117:6225–6331. https://doi.org/10.1021/acs.chemrev.6b00558

    Article  CAS  PubMed  Google Scholar 

  70. Low J, Cao S, Yu J, Wageh S (2014) Two-dimensional layered composite photocatalysts. Chem Commun 50:10768–10777. https://doi.org/10.1039/c4cc02553a

    Article  CAS  Google Scholar 

  71. Kouser S, Thannikoth A, Gupta U, Waghmare UV, Rao CNR (2015) 2D-GaS as a photocatalyst for water splitting to produce H2. Small 11:4723–4730. https://doi.org/10.1002/smll.2015.01077

    Article  CAS  PubMed  Google Scholar 

  72. Dong F, Li Y, Wang Z, Ho, Ho WK (2015) Enhanced visible light photocatalytic activity and oxidation ability of porous graphene-like g-C3N4 nanosheets via thermal exfoliation. Appl Surf Sci 358:393–403. https://doi.org/10.1016/j.apsusc.2015.04.034

  73. Yu T, Hu Z, Wang H, Tan X (2020) Enhanced visible-light-driven hydrogen evolution of ultrathin narrow-band-gap g-C3N4 nanosheets. J Mater Sci 55:2118–2128. https://doi.org/10.1007/s10853-019-04082-7

  74. Haque F, Daeneke T, Kalantar-zadeh K, Ou JZ (2018) Two-dimensional transition metal oxide and chalcogenide-based photocatalysts. Nano Micro Lett 10:23–50. https://doi.org/10.1007/s40820-017-0176-y

    Article  CAS  Google Scholar 

  75. Rufino M. Yerga N, Galvan MCA, lvarez, del Valle F, Jose A. de la Mano Villoria, Fierro JLG (2009) Water splitting on semiconductor catalysts under visible-light irradiation. ChemSusChem 2:471–485. https://doi.org/10.1002/cssc.200900018

  76. Ganguly P, Harb M, Cao Z, Cavallo L, Breen A, Dervin S, Dionysiou DD, Pillai SC (2019) 2D nanomaterials for photocatalytic hydrogen production. ACS Energy Lett 4:1687–1709. https://doi.org/10.1021/acsenergylett.9b00940

    Article  CAS  Google Scholar 

  77. Zhang K, Fujitsuka M, Du Y, Majima T (2018) 2D/2D Heterostructured CdS/WS2 with efficient charge separation improving H2 evolution under visible light irradiation. ACS Appl Mater Interfaces 10:20458–20466. https://doi.org/10.1021/acsami.8b04080

  78. Heift D (2019) Iron sulfide materials: catalysts for electrochemical hydrogen evolution. Inorganics 7:75–94. https://doi.org/10.3390/inorganics7060075

    Article  CAS  Google Scholar 

  79. Giovanni D, Wang C, Nowak WA, Greneche S, Lecoq JM, Mouton H, Giraud L, Tard MC (2014) Bioinspired iron sulfide nanoparticles for cheap and long-lived electrocatalytic molecular hydrogen evolution in neutral water. ACS Catal 4:681–687. https://doi.org/10.1021/cs4011698

    Article  CAS  Google Scholar 

  80. Xu H, Ouyang S, Li P, Kako T, Ye J (2013) High-active anatase TiO2 nanosheets exposed with 95% 100 facets toward efficient H2 evolution and CO2 photoreduction. ACS Appl Mater Interfaces 5:1348–1354. https://doi.org/10.1021/am302631b

    Article  CAS  PubMed  Google Scholar 

  81. Chen X, Zhou Y, Liu Q, Li Z, Liu J, Zou Z (2012) Ultrathin, single-crystal WO3 nanosheets by two-dimensional oriented attachment toward enhanced photocatalystic reduction of CO2 into hydrocarbon fuels under visible light. ACS Appl Mater Interfaces 4:3372–3377. https://doi.org/10.1021/am300661s

    Article  CAS  PubMed  Google Scholar 

  82. Alsaif MM, Latham K, Field MR, Yao DD, Medehkar NV, Beane GA, Kaner RB. Russo SP, Ou JZ, Kalantar‐zadeh K (2014) Tunable plasmon resonances in two-dimensional molybdenum oxide nanoflakes. Adv Mater 26:3931–3937. https://doi.org/10.1002/adma.201306097

  83. Bhandari C, Lambrecht WR, van Schilfgaarde M (2015) Quasiparticle self-consistent GW calculations of the electronic band structure of bulk and monolayer V2O5. Phys Rev B 91(12):125116. https://doi.org/10.1103/PhysRevB.91.125116

    Article  CAS  Google Scholar 

  84. Puangpetch T, Chavadej S, Sreethawong T (2011) Mesoporous assembled V2O5 nanosheet synthesized via a surfactant-modified sol-gel technique and its photocatalytic H2 production activity under visible light irradiation. Powder Technol 208:37–41. https://doi.org/10.1016/j.powtec.2010.11.039

  85. Jasion D, Barforoush JM, Qiao Q, Zhu Y, Ren S, Leonard KC (2015) Low-dimensional hyperthin FeS2 nanostructures for efficient and stable hydrogen evolution electrocatalysis. ACS Catal 5:66536657. https://doi.org/10.1021/acscatal.5b01637

    Article  CAS  Google Scholar 

  86. Pang J, Mendes RG, Bachmatiuk A, Zhao L, Ta HQ, Gemming T, Liu H, Liu Z, Rummeli MH (2019) Applications of 2D MXenes in energy conversion and storage systems. Chem Soc Rev 48:72–133. https://doi.org/10.1039/c8cs00324f

  87. Guo Z, Zhou J, Zhua L, Sun Z (2016) MXene: a promising photocatalyst for water splitting. J Mater Chem A 4:11446–11452. https://doi.org/10.1039/c6ta04414j

    Article  CAS  Google Scholar 

  88. Yuan W, Cheng L, An Y, Lv S, Wu H, Fan X, Zhang Y, Guo X, Tang J (2018) Laminated hybrid junction of sulfur-doped TiO2 and a carbon substrate derived from Ti3C2 MXenes: toward highly visible light-driven photocatalytic hydrogen evolution. Adv Sci 5:1700870–1700880. https://doi.org/10.1002/advs.201700870

    Article  CAS  Google Scholar 

  89. Su T, Peng R, Hood Z, Naguib M, Ivanov I, Keum J, Qin Z, Guo Z, Wu Z (2017) One-step synthesis of Nb2O5/C/Nb2C (MXene) composites and their use as photocatalysts for hydrogen evolution. Chem Sus Chem 11:688–699. https://doi.org/10.1002/cssc.201702317

    Article  CAS  Google Scholar 

  90. Ran J, Gao G, Li FT, Ma TY, Du A, Qiao SZ (2017) Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nat Commun 8:13907–139017. 10.1038/ncomms13907

    Google Scholar 

  91. Silva GC, Luz I, Xamena LFX, Corma A, Garcia H (2010) Water stable Zr-benzenedicarboxylate metal-organic frameworks as photocatalysts for hydrogen generation. Chemistry 16:11133–11138. https://doi.org/10.1002/chem.200903526

  92. Horiuchi Y, Toyao T, Saito M, Mochizuki K, Iwata M, Higashimura H, Anpo M, Matsuoka M (2012) Visible-light-promoted photocatalytic hydrogen production by using an amino-functionalized Ti(IV) metal-organic framework. J Phys Chem C 116:20848–20853. https://doi.org/10.1021/jp3046005

    Article  CAS  Google Scholar 

  93. He J, Yan Z, Wang J, Xie J, Jiang L, Shi Y, Yuan F, Yu F, Sun Y (2013) Significantly enhanced photocatalytic hydrogen evolution under visible light over CdS embedded on metal-organic frameworks. Chem Commun 49:6761–6763. https://doi.org/10.1039/C3CC43218A

    Article  CAS  Google Scholar 

  94. Shen L, Luo M, Huang L, Feng P, Wu L (2015) A clean and general strategy to decorate a titanium metal organic framework with noble-metal nanoparticles for versatile photocatalytic applications. Inorg Chem 54:1191–1193. https://doi.org/10.1021/ic502609a

    Article  CAS  PubMed  Google Scholar 

  95. Tilgner D, Kempe R (2017) A plasmonic colloidal photocatalyst composed of a metal-organic framework core and a gold/anatase shell for visible-light-driven wastewater purification from antibiotics and hydrogen evolution. Chem Eur J 23:3184–3190. https://doi.org/10.1002/chem.201605473

    Article  CAS  PubMed  Google Scholar 

  96. Gao H, Zhen W, Ma J, Lu G (2017) High efficient solar hydrogen generation by modulation of Co-Ni sulfide (220) surface structure and adjusting adsorption hydrogen energy. Appl Catal B 206:353–363. https://doi.org/10.1016/j.apcatb.2017.01.048

    Article  CAS  Google Scholar 

  97. Guo HL, Du H, Jiang YF, Jiang N, Shen CC, Zhou X, Liu YN, Xu AW ()2017 Artificial photosynthetic Z‑scheme photocatalyst for hydrogen evolution with high quantum efficiency. J Phys Chem C 121:107–114. https://doi.org/10.1021/acs.jpcc.6b10013

  98. Yugo M, Fujiyoshi S, Gunji T, Sayama K (2017) Photocatalytic Z‑scheme water splitting for independent H2/O2 production via a stepwise operation employing a vanadate redox mediator under visible light. J Phys Chem C 121:9691–9697. https://doi.org/10.1021/acs.jpcc.7b00905

  99. Jones W, Martin DJ, Caravaca A, Beale AM, Bowker M, Maschmeyer T, Hartley G, Masters A (2019) A comparison of photocatalytic reforming reactions of methanol and triethanolamine with Pd supported on titania and graphitic carbon nitride. Appl Catal B Environ 240:373–379. https://doi.org/10.1016/j.apcatb.2017.01.042

    Article  CAS  Google Scholar 

  100. Wang Y, Suzuki H, Xie J, Tomita O, Martin DJ, Higashi M, Kong D, Abe R, Tang J (2018) Mimicking natural photosynthesis: solar to renewable H2 fuel synthesis by Z-scheme water splitting systems. Chem Rev 118:5201–5241. https://doi.org/10.1021/acs.chemrev.7b00286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Liang YH, Liao MW, Mishra M, Perng TP (2019) Fabrication of Ta3N5eZnO direct Z-scheme photocatalyst for hydrogen generation. Inter J Hydro Energy 44:19162–19167. https://doi.org/10.1016/j.ijhydene.2018.07.117

    Article  CAS  Google Scholar 

  102. Yu J, Wang S, Low J, Xiao W (2013) Enhanced photocatalytic performance of direct Z-scheme g-C3N4-TiO2 photocatalysts for the decomposition of formaldehyde in air. Phys Chem Chem Phys 15:16883–16890. https://doi.org/10.1039/c3cp53131g

    Article  CAS  PubMed  Google Scholar 

  103. Xing X, Zhang M, Hou L, Xiao L, Li Q, Yang J (2017) Z-scheme BCN-TiO2 nanocomposites with oxygen vacancy for hydrogen production. Int J Hydrogen Energy 42:28434–28444. https://doi.org/10.1016/j.ijhydene.2017.09.125

    Article  CAS  Google Scholar 

  104. Ng BJ, Putri LK, Kong XY, Teh YW, Pasbakhsh P, Chai SP (2020) Z-scheme photocatalytic systems for solar water splitting. Adv Sci 7:1903171–1903213. https://doi.org/10.1002/advs.201903171

    Article  CAS  Google Scholar 

  105. Deshpande A, Shah P, Gholap RS, Gupta NM (2009) Interfacial and physico-chemical properties of polymer-supported CdSZnS nanocomposites and their role in the visible-light mediated photocatalytic splitting of water. J Colloid Interface Scie. 333:263–268. https://doi.org/10.1016/j.jcis.2009.01.037

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Priyanka Pandey is thankful to DST, New Delhi, India, for the funded project (SR/WOS-A/CS-90/2016) under the WOS-A scheme. Pravin P. Ingole is thankful to SERB-DST for the funded projects (SB/FT/CS-047/2014 and SB/EMEQ-339/2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pravin P. Ingole .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pandey, P., Ingole, P.P. (2022). Emerging Photocatalysts for Hydrogen Production. In: Garg, S., Chandra, A. (eds) Green Photocatalytic Semiconductors. Green Chemistry and Sustainable Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-77371-7_21

Download citation

Publish with us

Policies and ethics