Skip to main content

Advertisement

Log in

Enhanced visible-light-driven hydrogen evolution of ultrathin narrow-band-gap g-C3N4 nanosheets

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

To broaden the light response range of semiconductor photocatalysts and improve the efficiency of photocatalytic reaction are the focuses of the production of clean hydrogen energy through solar photocatalytic water splitting. Metal-free graphitic carbon nitride (g-C3N4) is an efficient visible-light-driven photocatalytic material. In this study, a kind of narrow-band-gap g-C3N4 has been synthesized at high synthesis temperature under hydrogen argon mixture. And then a two-step method of ultrasonication and calcination treatment was used to synthesize ultrathin g-C3N4 nanosheets with much bigger specific surface area. The results of characterization analysis indicate that the as-prepared ultrathin narrow-band-gap g-C3N4 nanosheets show great light absorbance in visible light and high photogenerated charge separation capability. And the as-prepared ultrathin g-C3N4 nanosheets exhibit significantly enhanced photocatalytic performance for photocatalytic hydrogen evolution under visible light (λ > 480 nm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Fujishima A, Honda K (1972) Electrochemical photocatalysis of water at semiconductor electrode. Nature 238:37–38

    CAS  Google Scholar 

  2. Al-Shahry M, Ingler WB (2002) Efficient photochemical water splitting by a chemically modified Sn–TiO2. Science 297:2243–2245

    Google Scholar 

  3. Jia L, Xin T, Tao Y, Zhen Z (2018) Enhanced photoelectrocatalytic performance of temperature-dependent 2D/1D BiOBr/TiO2−x nanotubes. Mater Res Bull 105:322–329

    CAS  Google Scholar 

  4. Lukowski MA, Daniel AS, Meng F, Forticaux A, Li L, Jin S (2013) Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J Am Chem Soc 135:10274–10277

    CAS  Google Scholar 

  5. Kim TW, Choi KS (2014) ChemInform abstract: nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 45:990–994

    Google Scholar 

  6. Tao Y, Luyang L, Hongmei W, Xin T (2018) Enhanced photocatalytic treatment of Cr(VI) and phenol by monoclinic BiVO4 with {010}-orientation growth. Mater Res Bull 107:248–254

    Google Scholar 

  7. Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M (2009) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8:76–80

    CAS  Google Scholar 

  8. Ou H, Lin L, Zheng Y, Yang P, Fang Y, Wang X (2017) Tri-s-triazine-based crystalline carbon nitride nanosheets for an improved hydrogen evolution. Adv Mater 29:1700008

    Google Scholar 

  9. Miller TS, Suter TM, Telford AM, Picco L, Payton OD, Russell-Pavier F, Cullen PL, Sella A, Shaffer MSP, Nelson J, Tileli V, McMillan PF, Howard CA (2017) Single crystal, luminescent carbon nitride nanosheets formed by spontaneous dissolution. Nano Lett 17:5891–5896

    CAS  Google Scholar 

  10. Hong Y, Li C, Fang Z, Luo B, Shi W (2017) Rational synthesis of ultrathin graphitic carbon nitride nanosheets for efficient photocatalytic hydrogen evolution. Carbon 121:463–471

    CAS  Google Scholar 

  11. Iqbal W, Qiu B, Lei J, Wang L, Zhang J, Anpo M (2017) One-step large-scale highly active g-C3N4 nanosheets for efficient sunlight-driven photocatalytic hydrogen production. Dalton Trans 46:10678–10684

    CAS  Google Scholar 

  12. Yang P, Ou H, Fang Y, Wang X (2017) A facile steam reforming strategy to delaminate layered carbon nitride semiconductors for photoredox catalysis. Angew Chem Int Ed Engl 56:3992–3996

    CAS  Google Scholar 

  13. Lu X, Xu K, Chen P, Jia K, Liu S, Wu C (2014) Facile one step method realizing scalable production of g-C3N4 nanosheets and study of their photocatalytic H2 evolution activity. J Mater Chem A 2:18924–18928

    CAS  Google Scholar 

  14. Wang Y, Silveri F, Bayazit MK, Ruan Q, Li Y, Xie J, Catlow CRA, Tang J (2018) Bandgap engineering of organic semiconductors for highly efficient photocatalytic water splitting. Adv Energy Mater 8:1801084

    Google Scholar 

  15. Wang Y, Bayazit MK, Moniz SJA, Ruan Q, Lau CC, Martsinovich N, Tang J (2017) Linker-controlled polymeric photocatalyst for highly efficient hydrogen evolution from water. Energy Environ Sci 10:1643–1651

    CAS  Google Scholar 

  16. Wang S, He F, Zhao X, Zhang J, Ao Z, Wu H, Yin Y, Shi L, Xu X, Zhao C, Wang S, Sun H (2019) Phosphorous doped carbon nitride nanobelts for photodegradation of emerging contaminants and hydrogen evolution. Appl Catal B 257:117931

    CAS  Google Scholar 

  17. Chava RK, Do J, Kang M (2019) Strategy for improving the visible photocatalytic H2 evolution activity of 2D graphitic carbon nitride nanosheets through the modification with metal and metal oxide nanocomponents. Appl Catal B 248:538–551

    CAS  Google Scholar 

  18. Babu B, Cho M, Byon C, Shim J (2018) Sunlight-driven photocatalytic activity of SnO2 QDs- g-C3N4 nanolayers. Mater Lett 212:327–331

    CAS  Google Scholar 

  19. Jiang Z, Wang B, Li Y, Chan HS, Sun H, Wang T, Li H, Yuan S, Leung MKH, Lu A, Wong PK (2019) Solar-light-driven rapid water disinfection by ultrathin magnesium titanate/carbon nitride hybrid photocatalyst: band structure analysis and role of reactive oxygen species. Appl Catal B 257:117898

    CAS  Google Scholar 

  20. Hang Z, Yu H, Luo L, Huai X (2019) Nanoporous g-C3N4/MOF: high-performance photoinitiator for UV-curable coating. J Mater Sci 54:13959–13972. https://doi.org/10.1007/s10853-019-03896-9

    Article  CAS  Google Scholar 

  21. Aleksandrzak M, Baranowska D, Kedzierski T, Sielicki K, Zhang S, Biegun M, Mijowska E (2019) Superior synergy of g-C3N4/Cd compounds and Al-MOF-derived nanoporous carbon for photocatalytic hydrogen evolution. Appl Catal B 257:117906

    CAS  Google Scholar 

  22. Babu B, Akkinepally B, Shim J, Yoo K (2019) Facile one-step synthesis of pellet-press-assisted saddle-curl-edge-like g-C3N4 nanosheets for improved visible-light photocatalytic activity. Ceram Int 45:15178–15187

    CAS  Google Scholar 

  23. Babu B, Shim J, Kadam AN, Yoo K (2019) Modification of porous g-C3N4 nanosheets for enhanced photocatalytic activity: in-situ synthesis and optimization of NH4Cl quantity. Catal Commun 124:123–127

    CAS  Google Scholar 

  24. Ba G, Liang Z, Li H, Du N, Liu J, Hou W (2019) Simultaneous formation of mesopores and homojunctions in graphite carbon nitride with enhanced optical absorption, charge separation and photocatalytic hydrogen evolution. Appl Catal B 253:359–368

    CAS  Google Scholar 

  25. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    CAS  Google Scholar 

  26. Ren Y, Xu Q, Zheng X, Fu Y, Wang Z, Chen H, Weng Y, Zhou Y (2018) Building of peculiar heterostructure of Ag/two-dimensional fullerene shell-WO3−x for enhanced photoelectrochemical performance. Appl Catal B 231:381–390

    CAS  Google Scholar 

  27. Guan Z, Xu Z, Li Q, Wang P, Li G, Yang J (2018) AgIn5S8 nanoparticles anchored on 2D layered ZnIn2S4 to form 0D/2D heterojunction for enhanced visible-light photocatalytic hydrogen evolution. Appl Catal B 227:512–518

    CAS  Google Scholar 

  28. Tian H, Liu M, Zheng W (2018) Constructing 2D graphitic carbon nitride nanosheets/layered MoS2/graphene ternary nanojunction with enhanced photocatalytic activity. Appl Catal B 225:468–476

    CAS  Google Scholar 

  29. Sehnert J, Baerwinkel K, Senker J (2007) Ab initio calculation of solid-state NMR spectra for different triazine and heptazine based structure proposals of g-C3N4. J Phys Chem B 111:10671–10680

    CAS  Google Scholar 

  30. Dong X, Cheng F (2015) Recent development in exfoliated two-dimensional g-C3N4 nanosheets for photocatalytic applications. J Mater Chem A 3:23642–23652

    CAS  Google Scholar 

  31. Kroke E, Schwarz M, HorathBordon E, Kroll P, Noll B, Norman AD (2002) Tri-s-triazine derivatives: part I—from trichloro-tri-s-triazine to graphitic C3N4 structures. New J Chem 26:508–512

    CAS  Google Scholar 

  32. Li Y, Yang M, Xing Y, Liu X, Yang Y, Wang X, Song S (2017) Preparation of carbon-rich g-C3N4 nanosheets with enhanced visible light utilization for efficient photocatalytic hydrogen production. Small 13:1701552

    Google Scholar 

  33. Gholipour MR, Béland F, Do T-O (2016) Post-calcined carbon nitride nanosheets as an efficient photocatalyst for hydrogen production under visible light irradiation. ACS Sustain Chem Eng 5:213–220

    Google Scholar 

  34. Li X, Hartley G, Ward AJ, Young PA, Masters AF, Maschmeyer T (2015) Hydrogenated defects in graphitic carbon nitride nanosheets for improved photocatalytic hydrogen evolution. J Phys Chem C 119:14938–14946

    CAS  Google Scholar 

  35. Liang Q, Li Z, Huang Z-H, Kang F, Yang Q-H (2015) Holey graphitic carbon nitride nanosheets with carbon vacancies for highly improved photocatalytic hydrogen production. Adv FuncT Mater 25:6885–6892

    CAS  Google Scholar 

  36. Niu P, Zhang L, Liu G, Cheng H-M (2012) Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv Funct Mater 22:4763–4770

    CAS  Google Scholar 

  37. Tian J, Liu Q, Asiri AM, Al-Youbi AO, Sun X (2013) Ultrathin graphitic carbon nitride nanosheet: a highly efficient fluorosensor for rapid, ultrasensitive detection of Cu2+. Anal Chem 85:5595–5599

    CAS  Google Scholar 

  38. Zhao H, Yu H, Quan X, Chen S, Zhang Y, Zhao H, Wang H (2014) Fabrication of atomic single layer graphitic-C3N4 and its high performance of photocatalytic disinfection under visible light irradiation. Appl Catal B 152–153:46–50

    Google Scholar 

  39. Yang S, Gong Y, Zhang J, Zhan L, Ma L, Fang Z, Vajtai R, Wang X, Ajayan PM (2013) Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light. Adv Mater 25:2452–2456

    CAS  Google Scholar 

  40. Zhao H, Yu H, Quan X, Chen S, Zhao H, Wang H (2014) Atomic single layer graphitic-C3N4: fabrication and its high photocatalytic performance under visible light irradiation. RSC Adv 4:624–628

    CAS  Google Scholar 

  41. She X, Liu L, Ji H, Mo Z, Li Y, Huang L, Du D, Xu H, Li H (2016) Template-free synthesis of 2D porous ultrathin nonmetal-doped g-C3N4 nanosheets with highly efficient photocatalytic H2 evolution from water under visible light. Appl Catal B 187:144–153

    CAS  Google Scholar 

  42. Xu C-Q, Xiao Y-H, Yu Y-X, Zhang W-D (2017) The role of hydrogen bonding on enhancement of photocatalytic activity of the acidified graphitic carbon nitride for hydrogen evolution. J Mater Sci 53:409–422. https://doi.org/10.1007/s10853-017-1507-6

    Article  CAS  Google Scholar 

  43. Hong Y, Li C, Li D, Fang Z, Luo B, Yan X, Shen H, Mao B, Shi W (2017) Precisely tunable thickness of graphitic carbon nitride nanosheets for visible-light-driven photocatalytic hydrogen evolution. Nanoscale 9:14103–14110

    CAS  Google Scholar 

  44. Raevskaya AE, Panasiuk YV, Korzhak GV, Stroyuk OL, Kuchmiy SY, Dzhagan VM, Zahn DRT (2017) Photocatalytic H2 production from aqueous solutions of hydrazine and its derivatives in the presence of nitric-acid-activated graphitic carbon nitride. Catal Today 284:229–235

    CAS  Google Scholar 

  45. Du X, Zou G, Wang Z, Wang X (2015) A scalable chemical route to soluble acidified graphitic carbon nitride: an ideal precursor for isolated ultrathin g-C3N4 nanosheets. Nanoscale 7:8701–8706

    CAS  Google Scholar 

  46. Zhou Z, Wang J, Yu J, Shen Y, Li Y, Liu A, Liu S, Zhang Y (2015) Dissolution and liquid crystals phase of 2D polymeric carbon nitride. J Am Chem Soc 137:2179–2182

    CAS  Google Scholar 

  47. Chen HY, Ruan LW, Jiang X, Qiu LG (2015) Trace detection of nitro aromatic explosives by highly fluorescent g-C3N4 nanosheets. Analyst 140:637–643

    CAS  Google Scholar 

  48. Deifallah M, Mcmillan PF, Cora F (2008) Electronic and structural properties of two-dimensional carbon nitride graphenes. J Phys Chem C 112:5447–5453

    CAS  Google Scholar 

  49. Zhu Z, Pan H, Murugananthan M, Gong J, Zhang Y (2018) Visible light-driven photocatalytically active g-C3N4 material for enhanced generation of H2O2. Appl Catal B 232:19–25

    CAS  Google Scholar 

  50. Mao Z, Chen J, Yang Y, Bie L, Fahlman BD, Wang D (2017) Modification of surface properties and enhancement of photocatalytic performance for g-C3N4 via plasma treatment. Carbon 123:651–659

    CAS  Google Scholar 

  51. Zuluaga S, Liu LH, Shafiq N, Rupich SM, Veyan JF, Chabai YJ, Thonhauser T (2014) Structural band-gap tuning in g-C3N4. Phys Chem Chem Phys 17:957–962

    Google Scholar 

  52. Zhang G, Zhang J, Zhang M, Wang X (2012) Polycondensation of thiourea into carbon nitride semiconductors as visible light photocatalysts. J Mater Chem 22:8083–8091

    CAS  Google Scholar 

  53. Dong F, Wu L, Sun Y, Fu M, Wu Z, Lee SC (2011) Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts. J Mater Chem 21:15171–15174

    CAS  Google Scholar 

  54. Chen Y, Wang B, Lin S, Zhang Y, Wang X (2014) Activation of n → π* transitions in two-dimensional conjugated polymers for visible light photocatalysis. J Phys Chem C 118:29981–29989

    CAS  Google Scholar 

  55. Jorge AB, Martin DJ, Dhanoa MTS, Rahman AS, Makwana N, Tang J, Sella A, Corà F, Firth S, Darr JA, McMillan PF (2013) H2 and O2 evolution from water half-splitting reactions by graphitic carbon nitride materials. J Phys Chem C 117:7178–7185

    CAS  Google Scholar 

  56. Zhang G, Savateev A, Zhao Y, Li L, Antonietti M (2017) Advancing the n → π* electron transition of carbon nitride nanotubes for H2 photosynthesis. J Mater Chem A 5:12723–12728

    CAS  Google Scholar 

  57. Wang H, Wei Z, Peng L, Xin T, Liu Y, Hu W, Ye J, Tao Y (2018) Enhanced visible-light-driven hydrogen production of carbon nitride by band structure tuning. J Phys Chem C 122:17261–17267

    CAS  Google Scholar 

  58. Lin Q, Li L, Liang S, Liu M, Bi J, Wu L (2015) Efficient synthesis of monolayer carbon nitride 2D nanosheet with tunable concentration and enhanced visible-light photocatalytic activities. Appl Catal B 163:135–142

    CAS  Google Scholar 

  59. Jin Z, Zhang Q, Chen J, Huang S, Hu L, Zeng YJ, Zhang H, Ruan S, Ohno T (2018) Hydrogen bonds in heterojunction photocatalysts for efficient charge transfer. Appl Catal B 234:198–205

    CAS  Google Scholar 

  60. Lan H, Li L, An X, Liu F, Chen C, Liu H, Qu J (2017) Microstructure of carbon nitride affecting synergetic photocatalytic activity: hydrogen bonds vs. structural defects. Appl Catal B Environ 204:49–57

    CAS  Google Scholar 

  61. Qiu P, Chen H, Xu C, Zhou N, Jiang F, Wang X, Fu Y (2015) Fabrication of an exfoliated graphitic carbon nitride as a highly active visible light photocatalyst. J Mater Chem A 3:24237–24244

    CAS  Google Scholar 

  62. Zhang Y, Zong S, Cheng C, Shi J, Guo P, Guan X, Luo B, Shen S, Guo L (2018) Rapid high-temperature treatment on graphitic carbon nitride for excellent photocatalytic H2 -evolution performance. Appl Catal B 233:80–87

    CAS  Google Scholar 

  63. Dong F, Wang Z, Sun Y, Ho WK, Zhang H (2013) Engineering the nanoarchitecture and texture of polymeric carbon nitride semiconductor for enhanced visible light photocatalytic activity. J Colloid Interface Sci 401:70–79

    CAS  Google Scholar 

  64. Kang S, Zhang L, Yin C, Li Y, Cui L, Wang Y (2017) Fast flash frozen synthesis of holey few-layer g-C3N4 with high enhancement of photocatalytic reactive oxygen species evolution under visible light irradiation. Appl Catal B 211:266–274

    CAS  Google Scholar 

  65. Tian J, Zhang L, Wang M, Jin X, Zhou Y, Liu J, Shi J (2018) Remarkably enhanced H2 evolution activity of oxidized graphitic carbon nitride by an extremely facile K2CO3-activation approach. Appl Catal B 232:322–329

    CAS  Google Scholar 

  66. Iqbal W, Qiu B, Zhu Q, Xing M, Zhang J (2018) Self-modified breaking hydrogen bonds to highly crystalline graphitic carbon nitrides nanosheets for drastically enhanced hydrogen production. Appl Catal B 232:306–313

    CAS  Google Scholar 

  67. Kang S, Huang W, Zhang L, He M, Xu S, Sun D, Jiang X (2018) Moderate bacterial etching allows scalable and clean delamination of g-C3N4 with enriched unpaired electrons for highly improved photocatalytic water disinfection. ACS Appl Mater Interfaces 10:13796–13804

    CAS  Google Scholar 

  68. Yan SC, Li ZS, Zou ZG (2009) Photodegradation performance of g-C3N4 fabricated by directly heating melamine. Langmuir 25:10397–10401

    CAS  Google Scholar 

  69. Kang S, He M, Chen M, Liu Y, Wang Y, Wang Y, Dong M, Chang X, Cui L (2019) Surface amino group regulation and structural engineering of graphitic carbon nitride with enhanced photocatalytic activity by ultrafast ammonia plasma immersion modification. ACS Appl Mater Interfaces 11:14952–14959

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Youth Science Foundation Project, 21706188) and the Natural Science Foundation of Tianjin City (No. 18JCYBJC17700).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Yu.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, T., Hu, Z., Wang, H. et al. Enhanced visible-light-driven hydrogen evolution of ultrathin narrow-band-gap g-C3N4 nanosheets. J Mater Sci 55, 2118–2128 (2020). https://doi.org/10.1007/s10853-019-04082-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-04082-7

Navigation