Skip to main content

Bio-Desulfurization of Coal Using Biotechnological Approach, Making Coal a Less Harmful Fuel

  • Chapter
  • First Online:
Clean Coal Technologies

Abstract

Combustion of raw coal can generate energy which can be used for commercial purpose. As energy from natural gas or crude oil is available in high price, the demand of harvesting of coal for energy is high. So many countries have high resource of coal but they cannot utilize it because of high amount of sulfur oxides emission which can be the cause of serious environmental problems. Combustion of coal generates high amount of sulfur dioxides which also incite the acid rain by mixing with in the atmosphere. To use the coal as energy it is required to reduce the emission of toxic sulfur oxides which can be useful to contribute in sustainable development. The removal of sulfur from coal is difficult for so many reasons, mainly for the complicated structures. Many technologies have been developed to clean coal for improving and encouraging the utilization of coal. Recently, biological process of desulfurization took a big step towards the development of clean coal technology. The basic concept of different technologies for desulfurization has been discussed in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdollahy, M., Moghaddam, A. Z., & Rami, K. (2006). Desulfurization of mezino coal using combination of “flotation” and “leaching with potassium hydroxide/methanol”. Fuel, 85. https://doi.org/10.1016/j.fuel.2005.10.011.

  • Acharya, C., Sukla, L. B., & Misra, V. N. (2004). Biodepyritisation of coal. Journal of Chemical Technology and Biotechnology, 79.

    Google Scholar 

  • Andrews, G. F., & Maczuga, J. (1984). Bacterial removal of pyrite from coal. Fuel, 63. https://doi.org/10.1016/0016-2361(84)90003-6.

  • Asai, S., Konishi, Y., & Yoshida, K. (1992). Kinetic model for batch bacterial dissolution of pyrite particles by Thiobacillus ferrooxidans. Chemical Engineering Science, 47. https://doi.org/10.1016/0009-2509(92)80207-S.

  • Bailey, A. D., & Hansford, G. S. (1993). Factors affecting bio-oxidation of sulfide minerals at high concentrations of solids: A review. Biotechnology and Bioengineering, 42. https://doi.org/10.1002/bit.260421006.

  • Bailey, A. D., & Hansford, G. S. (1994). Oxygen mass transfer limitation of batch bio-oxidation at high solids concentration. Minerals Engineering, 7. https://doi.org/10.1016/0892-6875(94)90071-X.

  • Barvinchak, G. (1980). Microbial desulfurization of coal, US Patent 4206288, United States.

    Google Scholar 

  • Beyer, M., Ebner, H. G., & Klein, J. (1986). Influence of pulp density and bioreactor design on microbial desulphurization of coal. Applied Microbiology and Biotechnology, 24. https://doi.org/10.1007/BF00257061.

  • Bezalel, L., Hadar, Y., Fu, P. P., et al. (1996). Initial oxidation products in the metabolism of pyrene, anthracene, fluorene, and dibenzothiophene by the white rot fungus Pleurotus ostreatus. Applied and Environmental Microbiology, 62. https://doi.org/10.1128/aem.62.7.2554-2559.1996.

  • Bhanjadeo, M. M., Rath, K., Gupta, D., et al. (2018). Differential desulfurization of dibenzothiophene by newly identified MTCC strains: Influence of operon array. PLoS One, 13. https://doi.org/10.1371/journal.pone.0192536.

  • Brierley, C. L., & Le Roux, N. W. (1978). Bacterial leaching. Critical Reviews in Microbiology, 6. https://doi.org/10.3109/10408417809090623.

  • Brunn, L. W., Montagna, A. A., Paraskos, J. A. (1976). Clean residual fuels from the Gulf HDS process. In: Preprints.

    Google Scholar 

  • Çelik, P. A., Aksoy, D., Koca, S., et al. (2019). The approach of biodesulfurization for clean coal technologies: A review. International journal of Environmental Science and Technology, 16, 2115–2132. https://doi.org/10.1007/s13762-019-02232-7.

    Article  Google Scholar 

  • Chander, A., Chen, X.-L., Naidu, D. G., et al. (2015). Subject index. Minerals Engineering, 10. https://doi.org/10.1007/978-3-642-13757-0.

  • Chiang, S.-H., Cobb, J. T. (2000). Coal conversion processes, cleaning and desulfurization. In: Kirk-Othmer Encyclopedia of Chemical Technology.

    Google Scholar 

  • Clark, T. R., Baldi, F., & Olson, G. J. (1993). Coal depyritization by the thermophilic archaeon Metallosphaera sedula. Applied and Environmental Microbiology, 59. https://doi.org/10.1128/aem.59.8.2375-2379.1993.

  • Cooney, C. L. (2019). Bioreactors: Design and operation. In: Biotechnology and Biological Frontiers.

    Google Scholar 

  • Crawford, D. L., & Gupta, R. K. (1990). Oxidation of dibenzothiophene by Cunninghamella elegans. Current Microbiology, 21. https://doi.org/10.1007/BF02092161.

  • Darmawan, D. (2019). Journal of Chemical Information and Modeling, 53, 1689–1699. https://doi.org/10.1017/CBO9781107415324.004.

    Article  Google Scholar 

  • Dastidar, M. G., Malik, A., & Roychoudhury, P. K. (2000). Biodesulphurization of Indian (Assam) coal using Thiobacillus ferrooxidans (ATCC 13984). Energy Convers Management, 41. https://doi.org/10.1016/S0196-8904(99)00085-0.

  • De Rosa, M., Gambacorta, A., & Bu’lock, J. D. (1975). Extremely thermophilic acidophilic bacteria convergent with Sulfolobus acidocaldarius. Journal of General Microbiology, 86. https://doi.org/10.1099/00221287-86-1-156.

  • Fakoussa, R. M., & Hofrichter, M. (1999). Biotechnology and microbiology of coal degradation. Applied Microbiology and Biotechnology, 52.

    Google Scholar 

  • Fan, C. (1984). Coal desulfurization and demineralization by chemical/physical treatments, IIUM-I, Iowa State University.

    Google Scholar 

  • Gallagher, J. R., Olson, E. S., & Stanley, D. C. (1993). Microbial desulfurization of dibenzothiophene: A sulfur-specific pathway. FEMS Microbiology Letters, 107. https://doi.org/10.1111/j.1574-6968.1993.tb05999.x.

  • Ghosh, A., Sujata, A., Pandey, B. D. (2015). Microbial biodesulphurisation of coal. In: Microbiology for Minerals, Metals, Materials and the Environment.

    Google Scholar 

  • Gupta, N., Roychoudhury, P. K., & Deb, J. K. (2005). Biotechnology of desulfurization of diesel: Prospects and challenges. Applied Microbiology and Biotechnology, 66.

    Google Scholar 

  • Gutell, R. R., & Woese, C. R. (1990). Higher order structural elements in ribosomal RNAs: Pseudo-knots and the use of noncanonical pairs. Proceedings of the National Academy of Sciences of the United States of America, 87. https://doi.org/10.1073/pnas.87.2.663.

  • Harrison, J. S. (1983). Cleaning up coal: A study of coal cleaning and the use of cleaned coal. Fuel, 62. https://doi.org/10.1016/0016-2361(83)90322-8.

  • Huber, G., Spinnler, C., Gambacorta, A., & Stetter, K. O. (1989). Metallosphaera sedula gen, and sp. nov. represents a new genus of aerobic, metal-mobilizing, Thermoacidophilic Archaebacteria. Systematic and Applied Microbiology, 12. https://doi.org/10.1016/S0723-2020(89)80038-4.

  • Huber, T. F., Ras, C. and Kossen, N. W. F. (1984). “Design and scale-up of a reactor for the microbial desulphurization of coal: A kinetic model for bacterial growth and pyrite oxidation” in Third European Congress on Biotechnology, Munich, September 10–14, Verlag Chemie, Weinheim, Germany, pp. 151–159.

    Google Scholar 

  • Ismagilov, Z., Yashnik, S., Kerzhentsev, M., et al. (2011). Oxidative desulfurization of hydrocarbon fuels. Catal Rev - Sci Eng, 53. https://doi.org/10.1080/01614940.2011.596426.

  • Ju, L. K. (1992). Microbial desulfurization of coal. Fuel Science and Technology International, 10, 1251–1290. https://doi.org/10.1080/08843759208916050.

    Article  Google Scholar 

  • Kargi, F. (1987). Biological oxidation of thianthrene, thioxanthene and dibenzothiophene by the thermophilic organism Sulfolobusacidocaldarius. Biotechnology Letters, 9. https://doi.org/10.1007/BF01027456.

  • Kargi, F., & Robinson, J. M. (1985). Biological removal of pyritic sulfur from coal by the thermophilic organism Sulfolobus acidocaldarius. Biotechnology and Bioengineering, 27. https://doi.org/10.1002/bit.260270107.

  • Kargi., F., & Robinson, J. M. (1986). Removal of organic Sulphur from bituminous coal. Use of the thermophilic organism Sulfolobus acidocaldarius. Fuel, 65. https://doi.org/10.1016/0016-2361(86)90302-9.

  • Kasmiarno, L. D., & Chang, J. S. (2020). Adsorption of gold from aqueous systems using microbial thermophilic proteins. Journal of Engineering Technology Science, 52. https://doi.org/10.5614/j.eng.technol.sci.2020.52.1.9.

  • Keller, L., & Murr, L. E. (1982). Acid-bacterial and ferric sulfate leaching of pyrite single crystals. Biotechnology and Bioengineering, 24. https://doi.org/10.1002/bit.260240108.

  • Kilbane, J. J. (1989). Desulfurization of coal: The microbial solution. Trends in Biotechnology, 7.

    Google Scholar 

  • Kilbane, J. J. (2017). Microbial removal of organic sulfur from coal: Current status and research needs. In: Bioprocessing and Biotreatment of Coal.

    Google Scholar 

  • Kirimura, K., Furuya, T., Sato, R., et al. (2002). Biodesulfurization of naphthothiophene and benzothiophene through selective cleavage of carbon-sulfur bonds by Rhodococcus sp. strain WU-K2R. Applied and Environmental Microbiology, 68. https://doi.org/10.1128/AEM.68.8.3867-3872.2002.

  • Kodama, K., Umehara, K., Shimizu, K., et al. (1973). Identification of microbial products from dibenzothiophene and its proposed oxidation pathway. Agricultural and Biological Chemistry, 37. https://doi.org/10.1080/00021369.1973.10860640.

  • Koizumi, J. (1994). Genetically engineered microorganisms exploitation for biocleaning of coal: A countermeasure to acid rain. Fuel Energy Abstr 36. https://doi.org/10.1016/0140-6701(95)95322-1.

  • Konishi, J., Ishii, Y., Onaka, T., et al. (1997). Thermophilic carbon-sulfur-bond-targeted biodesulfurization. Applied and Environmental Microbiology, 63. https://doi.org/10.1128/aem.63.8.3164-3169.1997.

  • Konishi, Y., Asai, S., & Katoh, H. (1990). Bacterial dissolution of pyrite by Thiobacillus ferrooxidans. Bioprocess Engineering, 5. https://doi.org/10.1007/BF00376230.

  • Laborde, A. L., & Gibson, D. T. (1977). Metabolism of dibenzothiophene by a Beijerinckia species. Applied and Environmental Microbiology, 34. https://doi.org/10.1128/aem.34.6.783-790.1977.

  • Larsson, L., Olsson, G., Holst, O., & Karlsson, H. T. (1990). Pyrite oxidation by thermophilic archaebacteria. Applied and Environmental Microbiology, 56. https://doi.org/10.1128/aem.56.3.697-701.1990.

  • Leonard, W. G., Greer, R. T., Markuszewski, R., & Wheelock, T. D. (1981). Coal desulfurization and Deashing by oil agglomeration. Separation Science and Technology, 16. https://doi.org/10.1080/01496398108058317.

  • Li, F. L., Xu, P., Ma, C. Q., et al. (2003). Deep desulfurization of hydrodesulfurization-treated diesel oil by a facultative thermophilic bacterium Mycobacterium sp. X7B. FEMS Microbiology Letters, 223. https://doi.org/10.1016/S0378-1097(03)00397-5.

  • Li, W., & Cho, E. H. (2005). Coal desulfurization with sodium hypochlorite. Energy and Fuels, 19. https://doi.org/10.1021/ef0400767.

  • Lovás M, Znamenáčková I, Zubrik A, et al. (2011). The application of microwave energy in mineral processing – a review. Acta Montan. Slovaca 16.

    Google Scholar 

  • Malik, A., Dastidar, M. G., & Roychoudhury, P. K. (2000). Biodesulphurization of coal: Rate enhancement by Sulphur-grown cells. Biotechnology Letters, 22. https://doi.org/10.1023/A:1005603021710.

  • Martínez, O., Aller, A., Alonso, J., et al. (1995). Biodesulphurization of coals from the north of león (Spain). Optimization of process variables. Coal Science Technology, 24. https://doi.org/10.1016/S0167-9449(06)80153-9.

  • Meyers, R. A., Van Nice, L. J., & Santy, M. J. (1979). Coal desulfurization (p. 51). New York, NY: Combust.

    Google Scholar 

  • Olson, G. J., & Brinckman, F. E. (1986). Bioprocessing of coal. Fuel, 65.

    Google Scholar 

  • Olsson, G., Pott, B. M., Larsson, L., et al. (1995). Microbial desulfurization of coal and oxidation of pure pyrite by Thiobacillus ferrooxidans and Acidianus brierleyi. Journal of Industrial Microbiology, 14. https://doi.org/10.1007/BF01569961.

  • Pan, J., Zhou, C., Tang, M., et al. (2019). Study on the modes of occurrence of rare earth elements in coal fly ash by statistics and a sequential chemical extraction procedure. Fuel, 237. https://doi.org/10.1016/j.fuel.2018.09.139.

  • Patterson, E. C., Le, H. V., Ho, T. K., & Wheelock, T. D. (1979). Better separation by froth flotation and oil agglomeration. Coal Process Technology, 5.

    Google Scholar 

  • Patzek, T. W., & Croft, G. D. (2010). A global coal production forecast with multi-Hubbert cycle analysis. Energy, 35, 3109–3122. https://doi.org/10.1016/j.energy.2010.02.009.

    Article  Google Scholar 

  • Quackenbush, V. C., Maddocks, R. R., & Higginson, G. W. (1979). Chemical communication: An improved route to clean coal. Coal Min Process, 16.

    Google Scholar 

  • Rai, C., Reyniers, J. P. (1988). Microbial desulfurization of coals by organisms of the genus pseudomonas. Biotechnol Prog 4. https://doi.org/10.1002/btpr.5420040406.

  • Rajendran, A., Cui, T. Y., Fan, H. X., et al. (2020). A comprehensive review on oxidative desulfurization catalysts targeting clean energy and environment. Journal of Materials Chemistry A, 8, 2246–2285. https://doi.org/10.1039/c9ta12555h.

    Article  Google Scholar 

  • Rhee, S. K., Chang, J. H., Chang, Y. K., & Chang, H. N. (1998). Desulfurization of dibenzothiophene and diesel oils by a newly isolated Gordona strain, CYKS1. Applied Environment Microbiology, 64. https://doi.org/10.1128/aem.64.6.2327-2331.1998.

  • Rohwerder, T., Sand, W. (2007). Mechanisms and biochemical fundamentals of bacterial metal sulfide oxidation. In: Microbial Processing of Metal Sulfides.

    Google Scholar 

  • Rossi, G. (1999). The design of bioreactors. Process Metallurgy, 9. https://doi.org/10.1016/S1572-4409(99)80006-6.

  • Rossi, G. (2014). The microbial desulfurization of coal. Advances in Biochemical Engineering/Biotechnology, 142. https://doi.org/10.1007/10_2013_178.

  • Silverman, M. P., Rogoff, M. H., & Wender, I. (1961). Bacterial oxidation of pyritic materials in coal. Applied Microbiology, 9. https://doi.org/10.1128/aem.9.6.491-496.1961.

  • Steel, K. M., & Patrick, J. W. (2001). The production of ultra clean coal by chemical demineralisation. Fuel, 80. https://doi.org/10.1016/S0016-2361(01)00092-8.

  • Wise, Kilbane, J. J. (2018). Microbial removal of organic sulfur from coal: Current status and research needs. In: Bioprocessing and Biotreatment of Coal.

    Google Scholar 

  • Woese, C. R., Kandler, O., & Wheelis, M. L. (1990). Towards a natural system of organisms: Proposal for the domains archaea, bacteria, and eucarya. Proceedings of the National Academy of Sciences of the United States of America, 87. https://doi.org/10.1073/pnas.87.12.4576.

  • Wynter, C. I., May, L., Oliver, F. W., et al. (2004). Correlation of coal calorific value and Sulphur content with 57Fe Mössbauer spectral absorption. Hyperfine Interactions, 153, 147–152. https://doi.org/10.1023/B:HYPE.0000024719.48753.af.

    Article  Google Scholar 

  • Xuehui, M., Jinming, H. (2009). Coal, oil shale, natural bitumen, heavy oil and peat. In: Coal, Oil Shale, Natural Bitumen, Heavy Oil and Peat.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ishfaq, H.A., Banerjee, A., Qamar, S. (2021). Bio-Desulfurization of Coal Using Biotechnological Approach, Making Coal a Less Harmful Fuel. In: Jyothi, R.K., Parhi, P.K. (eds) Clean Coal Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-68502-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68502-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68501-0

  • Online ISBN: 978-3-030-68502-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics