Skip to main content

Advertisement

Log in

The approach of biodesulfurization for clean coal technologies: a review

  • Review
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Coal continues to be a significant source of energy in the world. It is very important to utilize this energy source as much as possible, to operate unutilized loss reserves due to its characteristics. In this context, the necessity to continue studying on clean coal technologies was emphasized in terms of sustainability in energy production and its use, safety and environmental issues. Since approximately 50% of total coal deposits of the world are low rank, it is required to clean them by implementing different and efficient technologies to improve the utilization of low-rank coals. This review summarized the importance of clean coal technology, biological treatments until now, recent advances and future trends in coal biobeneficiation technologies as energy-conserving and environmentally friendly processes. Finally, in light of the data obtained from all studies, the basic steps for the possible use of biocleaning methods in industrial scale are also summarized in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

(Modified from Rossi 2013, Copyright 2013 with permission from Springer Nature)

Fig. 4

(Modified from Rossi 2013, Copyright 2013 with permission from Springer Nature)

Fig. 5

(Reprinted from Koca et al. 2017-Copyright [2017] with permission from Elsevier)

Fig. 6

(Reprinted from Handayani et al. 2017-Copyright [2017] with permission from Elsevier)

Similar content being viewed by others

References

  • Abbasian F, Lockington R, Megharaj M, Naidu RJE (2016) Identification of a new operon involved in desulfurization of dibenzothiophenes using a metagenomic study and cloning and functional analysis of the genes. Enzyme Microb Technol 87:24–28

    Article  CAS  Google Scholar 

  • Abdel-Khalek M, El-Midany A (2013) Application of Bacillus subtilis for reducing ash and sulfur in coal. Environ Earth Sci 70(2):753–760

    Article  CAS  Google Scholar 

  • Acevedo F (2000) The use of reactors in biomining processes. Electron J Biotechnol 3:10–11

    Article  Google Scholar 

  • Acharya C, Kar R, Sukla L (2001) Bacterial removal of sulphur from three different coals. Fuel 80:2207–2216

    Article  CAS  Google Scholar 

  • Acharya C, Sukla L, Misra V (2005) Biological elimination of sulphur from high sulphur coal by Aspergillus-like fungi. Fuel 84:1597–1600

    CAS  Google Scholar 

  • Akhtar N, Ghauri MA, Akhtar K (2016) Exploring coal biodesulfurization potential of a novel organic sulfur metabolizing Rhodococcus spp. (Eu-32)—a case study. Geomicrobiol J 33:468–472

    Article  CAS  Google Scholar 

  • Aksoy DO, Koca S, Koca H (2010) Cleaning of Eskisehir Koyunağılı region lignite fines with high ash and high sulphur content by flotation. In: Proceedings of the XIIth international mineral processing symposium. Hacettepe University, pp 911–919

  • Aksoy DO, Aytar P, Toptaş Y, Çabuk A, Koca S, Koca H (2014) Physical and physicochemical cleaning of lignite and the effect of cleaning on biodesulfurization. Fuel 132:158–164

    Article  CAS  Google Scholar 

  • Aller Á, Martı́nez O, de Linaje JA, Méndez R, Morán A (2001) Biodesulphurisation of coal by microorganisms isolated from the coal itself. Fuel Process Technol 69:45–57

    Article  CAS  Google Scholar 

  • Andrews G, Noah K, Glenn A, Stevens C (1994) Combined physical/microbial beneficiation of coal using the flood/drain bioreactor. Fuel Process Technol 40:283–296

    Article  CAS  Google Scholar 

  • Attia YA (1990) Feasibility of selective biomodification of pyrite floatability in coal desulfurization by froth flotation. Resour Conserv Recy 3:169–175

    Article  Google Scholar 

  • Aytar P, Sam M, Çabuk A (2008) Microbial desulphurization of Turkish lignites by white rot fungi. Energy Fuels 22:1196–1199

    Article  CAS  Google Scholar 

  • Aytar P, Gedikli S, Şam M, Ünal A, Çabuk A, Kolankaya N, Yürüm A (2011) Desulphurization of some low-rank Turkish lignites with crude laccase produced from Trametes versicolor ATCC 200801. Fuel Process Technol 92:71–76

    Article  CAS  Google Scholar 

  • Aytar P, Kay CM, Mutlu MB, Çabuk A (2013) Coal desulfurization with Acidithiobacillus ferrivorans, from Balya acidic mine drainage. Energy Fuels 27:3090–3098

    Article  CAS  Google Scholar 

  • Aytar P, Aksoy DO, Toptas Y, Çabuk A, Koca S, Koca H (2014) Isolation and characterization of native microorganism from Turkish lignite and usability at fungal desulphurization. Fuel 116:634–641

    Article  CAS  Google Scholar 

  • Bayram Z, Bozdemir T, Durusoy T, Yürüm Y (2002) Biodesulfurization of Mengen lignite with Rhodoccocus rhodochrous: effects of lignite concentration and retreatment. Energy Source 24(7):625–631

    Article  CAS  Google Scholar 

  • Beyer M, Ebner HG, Klein J (1986) Influence of pulp density and bioreactor design on microbial desulphurization of coal. Appl Microbiol Biotechnol 24:342–346

    Article  CAS  Google Scholar 

  • Bhanjadeo MM, Rath K, Gupta D, Pradhan N, Biswal SK, Mishra BK, Subudhi U (2018) Differential desulfurization of dibenzothiophene by newly identified MTCC strains: influence of Operon Array. PLoS ONE 13:e0192536

    Article  CAS  Google Scholar 

  • Bos P, Huber T, Kos C, Ras C, Kuenen JA (1986) Dutch feasibility study on microbial coal desulfurization. In: Lawrence RW, Brannion RMN, Ebner HG (eds) Fundamental and applied biohydrometallurgy: proceedings on 6th international symposium on biohydrometallurgy, Elsevier, Amsterdam, pp 129–150

    Google Scholar 

  • Bozdemir TÖ, Durusoy T, Erincin E, Yürüm Y (1996) Biodesulfurization of Turkish lignites: 1. Optimization of the growth parameters of Rhodococcus rhodochrous, a sulfur-removing bacterium. Fuel 75:1596–1600

    Article  Google Scholar 

  • Calkins WH (1994) The chemical forms of sulfur in coal: a review. Fuel 73:475–484

    Article  CAS  Google Scholar 

  • Cara J, Carballo M, Morán A, Bonilla D, Escolano O, Frutos FG (2005) Biodesulphurisation of high sulphur coal by heap leaching. Fuel 84:1905–1910

    Article  CAS  Google Scholar 

  • Cara J, Vargas M, Morán A, Gómez E, Martínez O, Frutos FG (2006) Biodesulfurization of a coal by packed-column leaching. Simultaneous thermogravimetric and mass spectrometric analyses. Fuel 85:1756–1762

    Article  CAS  Google Scholar 

  • Caro A, Boltes K, Letón P, García-Calvo E (2007) Dibenzothiophene biodesulfurization in resting cell conditions by aerobic bacteria. Biochem Eng J 35:191–197

    Article  CAS  Google Scholar 

  • Chenu C (1993) Clay- or sand-polysaccharide associations as models for the interface between micro-organisms and soil: water related properties and microstructure. Geoderma 56:143–156

    Article  CAS  Google Scholar 

  • Dastidar MG, Malik A, Roychoudhury PK (2000) Biodesulfurization of Indian (Assam) coal using Thiobacillus ferrooxidans (ATCC 13984). Energy Convers Manag 41:375–388

    Article  CAS  Google Scholar 

  • Demirbilek S (1987) Kömür kullanımı ve ilgili çevre kirlenmesi. Bilimsel Madencilik Dergisi 26:33–43

    CAS  Google Scholar 

  • Detz C, Barvinchak G (1979) Microbial desulfurization of coal. Min Congr J 65:75–86

    CAS  Google Scholar 

  • Dohnalkova AC, Marshall MJ, Arey BW, Williams KH, Buck EC, Fredrickson JK (2011) Imaging hydrated microbial extracellular polymers: comparative analysis by electron microscopy. Appl Environ Microbiol 77:1254–1262

    Article  CAS  Google Scholar 

  • Durusoy T, Ozbas T, Tanyolac A, Yurum Y (1992) Biodesulfurization of some Turkish lignites by Sulfolobus solfataricus. Energy Fuels 6:804–808

    Article  CAS  Google Scholar 

  • Durusoy T, Özbaş Bozdemir T, Erincin E, Yürüm Y (1997) Biodesulfurization of Turkish lignites: 2. Microbial desulfurization of Mengen lignite by the mesophilic microorganism Rhodococcus rhodochrous. Fuel 76:341–344

    Article  CAS  Google Scholar 

  • Erincin E, Durusoy T, Bozdemir TÖ, Yürüm Y (1998) Biodesulfurization of Turkish lignites. 3. The effect of lignite type and particle size on microbial desulphurization by Rhodococcus rhodochrous. Fuel 77:1121–1124

    Article  CAS  Google Scholar 

  • Etemadifar Z, Etemadzadeh SS, Emtiazi GJGJ (2018) A novel approach for bioleaching of sulfur, iron, and silica impurities from coal by growing and resting cells of Rhodococcus spp. Geomicrobiol J. https://doi.org/10.1080/01490451.2018.1514441

    Article  Google Scholar 

  • Etemadzadeh SS, Emtiazi G, Etemadifar Z (2016) Heterotrophic bioleaching of sulfur, iron, and silicon impurities from coal by Fusarium oxysporum FE and Exophiala spinifera FM with growing and resting cells. Curr Microbiol 72:707–715

    Article  CAS  Google Scholar 

  • Galán SB, Díaz FE, Ferrández BA, Prıeto JMA, García LJL, Garcıa-Ochoa SF, García CE (2001) Method for desulfurization of dibenzothiophene using a recombinant Pseudomonas putida strain as biocatalyst. Google Patents, WO/2001/070996

  • Gomez F, Amils R, Marin I (1997) Microbial ecology studies for the desulfurization of Spanish coals. Fuel Process Technol 52:183–189

    Article  CAS  Google Scholar 

  • Gonsalvesh L et al (2008) Biodesulphurized subbituminous coal by different fungi and bacteria studied by reductive pyrolysis. Part 1: initial coal. Fuel 87:2533–2543

    Article  CAS  Google Scholar 

  • Gonsalvesh L, Marinov S, Stefanova M, Carleer R, Yperman J (2013) Biodesulphurized low rank coal: Maritza east lignite and its “humus-like” byproduct. Fuel 103:1039–1050

    Article  CAS  Google Scholar 

  • Gowthaman MK, Krishna C, Moo-Young M (2001) Fungal solid state fermentation—an overview. In: Khachatourians GG, Arora DK (eds) Applied mycology and biotechnology, vol 1. Elsevier, Hoboken, pp 305–352. https://doi.org/10.1016/S1874-5334(01)80014-9

    Chapter  Google Scholar 

  • Grossman M, Lee M, Prince RC, Garrett K, George G, Pickering I (1999) Microbial desulfurization of a crude oil middle-distillate fraction: analysis of the extent of sulfur removal and the effect of removal on remaining sulfur. Appl Environ Microbiol 65:181–188

    CAS  Google Scholar 

  • Güllü G, Durusoy T, Özbaş T, Tanyolac A, Yürüm Y (1992) Biodesulfurization of coal. In: Yürüm Y (ed) Clean utilization of coal. NATO ASI Series. Ser C: Math Phys Sci, vol. 370, Kluwer Academic Publishers, Dordrecht, pp 185–205

    Chapter  Google Scholar 

  • Gunam I et al (2013) Biodesulfurization of dibenzothiophene and its derivatives using resting and immobilized cells of Sphingomonas subarctica T7b. J Microbiol Biotechnol 23:473–482

    Article  CAS  Google Scholar 

  • Gupta N, Roychoudhury P, Deb J (2005) Biotechnology of desulfurization of diesel: prospects and challenges. Appl Microbiol Biotechnol 66:356–366

    Article  CAS  Google Scholar 

  • Handayani I, Paisal Y, Soepriyanto S, Chaerun SK (2017) Biodesulfurization of organic sulfur in Tondongkura coal from Indonesia by multi-stage bioprocess treatments. Hydrometallurgy 168:84–93

    Article  CAS  Google Scholar 

  • Huber TF, Ras C, Kossen NWF (1984) Design and scale-up of a reactor for the microbial desulphurization of coal: a kinetic model for bacterial growth and pyrite oxidation. In: Third European congress on biotechnology. Munich, 10–14 Sept, Verlag, Chemie, pp 151–159

  • Isbister JD, Doyle RC (1987) Mutant microorganism and its use in removing organic sulfur compounds. Google Patents US4562156A

  • Izumi Y, Ohshiro T, Ogino H, Hine Y, Shimao M (1994) Selective desulfurization of dibenzothiophene by Rhodococcus erythropolis D-1. Appl Environ Microbiol 60:223–226

    CAS  Google Scholar 

  • Ju L-K (1992) Microbial desulfurization of coal. Fuel Sci Technol Int 10:1251–1290

    Article  CAS  Google Scholar 

  • Kargi F (1982) Microbiological coal desulphurization. Enzyme Microb Technol 4:13–19

    Article  CAS  Google Scholar 

  • Kargi F, Cervoni T (1983) An airlift-recycle fermenter for microbial desulfurization of coal. Biotechnol Lett 5:33–38

    Article  CAS  Google Scholar 

  • Kargi F, Robinson JM (1985) Removal of sulfur compounds from coal by the thermophilic organism Sulfolobus acidocaldarius. Appl Environ Microbiol 44:878–883

    Google Scholar 

  • Kertesz MA (2000) Riding the sulfur cycle—metabolism of sulfonates and sulfate esters in Gram-negative bacteria. FEMS Microbiol Rev 24:135–175

    CAS  Google Scholar 

  • Kete R, Acar N (2004) Rüzgari Bekleyen Sehir. Ekoloji Çevre Magazin 2:16

    Google Scholar 

  • Kiani M, Ahmadi A, Zilouei H (2014) Biological removal of sulphur and ash from fine-grained high pyritic sulphur coals using a mixed culture of mesophilic microorganisms. Fuel 131:89–95

    Article  CAS  Google Scholar 

  • Kilbane JJ II (1990) Sulfur-specific microbial metabolism of organic compounds. Resour Conserv Recy 3:69–79

    Article  Google Scholar 

  • Kilbane II, JJ (1992) Mutant microorganisms useful for cleavage of organic CS bonds. Institute of Gas Technology, Google Patents US5002888A

  • Kilbane JJ II, Daram A, Abbasian J, Kayser KJ (2002) Isolation and characterization of Sphingomonas sp. GTIN11 capable of carbazole metabolism in petroleum. Biochem Biophy Res Commun 297:242–248

    Article  CAS  Google Scholar 

  • Kim HY, Kim TS, Kim BH (1990) Degradation of organic sulfur compounds and the reduction of dibenzothiophene to biphenyl and hydrogen sulfide by Desulfovibrio desulfuricans M6. Biotechnol Lett 12:761–764

    Article  CAS  Google Scholar 

  • Klein J, Van Afferden M, Pfeifer F, Schacht S (1994) Microbial desulfurization of coal and oil. Fuel Process Technol 40:297–310

    Article  CAS  Google Scholar 

  • Koca S et al (2017) Evaluation of combined lignite cleaning processes, flotation and microbial treatment, and its modelling by Box Behnken methodology. Fuel 192:178–186

    Article  CAS  Google Scholar 

  • Koizumi JI (1994) Genetically engineered microorganisms exploitation for biocleaning of coal: a countermeasure to acid rain. Bioprocess Technol 19:815–820

    CAS  Google Scholar 

  • Konishi J, Ishii Y, Onaka T, Okumura K, Suzuki M (1997) Thermophilic carbon-sulfur-bond-targeted biodesulfurization. Appl Environ Microbiol 63:3164–3169

    CAS  Google Scholar 

  • Kumar A, Singh AK, Singh PK, Singh AL, Jha MKJE (2018) Demineralization study of high-ash Permian coal with Pseudomonas mendocina strain B6-1: a case study of the South Karanpura Coalfield, Jharkhand, India. Energy Fuels 32:1080–1086

    Article  CAS  Google Scholar 

  • Larsson L, Olsson G, Holst O, Karlsson HT (1990) Pyrite oxidation by thermophilic archaebacteria. Appl Environ Microbiol 56:697–701

    CAS  Google Scholar 

  • Levine DG, Schlosberg RH, Silbernagel BG (1982) Understanding the chemistry and physics of coal structure (a review). Proc Natl Acad Sci 79:3365–3370

    Article  CAS  Google Scholar 

  • Liu T, Hou JH, Peng YL (2017) Effect of a newly isolated native bacteria, Pseudomonas sp NP22 on desulfurization of the low-rank lignite. Int J Miner Process 162:6–11

    Article  CAS  Google Scholar 

  • Loi G, Mura A, Trois P, Rossi G (1994) Bioreactor performance versus solids concentration in coal biodepyritization. Fuel Process Technol 40:251–260

    Article  CAS  Google Scholar 

  • Malik A, Dastidar MG, Roychoudhury PK (2001) Biodesulfurization of coal: effect of pulse feeding and leachate recycle. Enzyme Microb Technol 28:49–56

    Article  CAS  Google Scholar 

  • Marinov S et al (2010) Combustion behaviour of some biodesulphurized coals assessed by TGA/DTA. Thermochim Acta 497:46–51

    Article  CAS  Google Scholar 

  • Martinez I, Santos VE, Alcon A, Garcia-Ochoa F (2015) Enhancement of the biodesulfurization capacity of Pseudomonas putida CECT5279 by co-substrate addition. Process Biochem 50:119–124

    Article  CAS  Google Scholar 

  • Martínez I, Santos VE, Garcìa-Ochoa F (2017) Metabolic kinetic model for dibenzothiophene desulfurization through 4S pathway using intracellular compound concentrations. Biochem Eng J 117:89–96

    Article  CAS  Google Scholar 

  • McFarland BL, Boron DJ, Deever W, Meyer J, Johnson AR, Atlas RM (1998) Biocatalytic sulfur removal from fuels: applicability for producing low sulfur gasoline. Crit Rev Microbiol 24:99–147

    Article  CAS  Google Scholar 

  • Merrettig U, Wlotzka P, Onken U (1989) The removal of pyritic sulphur from coal by Leptospirillum-like bacteria. Appl Microbiol Biotechnol 31:626–628

    Article  CAS  Google Scholar 

  • Milan AD, Ahmadi A, Hosseini SMR (2017) Biodesulfurization of a coarse-grained high sulfur coal in a full-scale packed-bed bioreactor. In: Solid state phenomena. Trans Tech Publications, pp 207–210

  • Mishra S, Panda P, Pradhan N, Satapathy D, Subudhi U, Biswal S, Mishra B (2014) Effect of native bacteria Sinomonas flava 1C and Acidithiobacillus ferrooxidans on desulphurization of Meghalaya coal and its combustion properties. Fuel 117:415–421

    Article  CAS  Google Scholar 

  • Mishra S, Akcil A, Panda S, Tuncuk AJME (2018) Effect of Span-80 and ultrasonication on biodesulfurization of lignite by Rhodococcus erythropolis: lab to semi-pilot scale tests. Miner Eng 119:183–190

    Article  CAS  Google Scholar 

  • Mohebali G, Ball AS, Rasekh B, Kaytash A (2007) Biodesulfurization potential of a newly isolated bacterium, Gordonia alkanivorans RIPI90A. Enzyme Microb Technol 40:578–584

    Article  CAS  Google Scholar 

  • Ohmura N, Kitamura K, Saiki H (1993) Mechanism of microbial flotation using Thiobacillus ferrooxidans for pyrite suppression. Biotechnol Bioeng 41:671–676

    Article  CAS  Google Scholar 

  • Ohshiro T, Hirata T, Izumi Y (1996) Desulfurization of dibenzothiophene derivatives by whole cells of Rhodococcus erythropolis H-2. FEMS Microbiol Lett 142:65–70

    Article  CAS  Google Scholar 

  • Olson GJ (1994) Prospects for biodesulfurization of coal: mechanisms and related process designs. Fuel Process Technol 40:103–114

    Article  CAS  Google Scholar 

  • Olsson G, Larsson L, Holst O, Karlsson HT (1993) Desulfurization of low-sulfur coal by Acidianus brierleyi: effects of microbial treatment on the properties of coal. Fuel Process Technol 33:83–93

    Article  CAS  Google Scholar 

  • Ors N, Rossi G, Trois P, Valenti P, Zecchin A (1991) Coal biodesulfurization: design criteria of a pilot plant. Resour Conserv Recycl 5:211–230

    Article  Google Scholar 

  • Pathak A, Kim DJ, Srichandan H, Kim BG (2013) Depyritization of US coal using iron-oxidizing bacteria: batch stirred reactor study. World Acad Sci Eng Technol Int J Chem Mol Nucl Mater Metall Eng 7:839–842

    Google Scholar 

  • Pathak A, Kim DJ, Kim BG (2016) Effect of pulp density on biodesulfurization of Mongolian lignite coal. World Acad Sci Eng Technol Int J Chem Mol Nucl Mater Metall Eng 8:618–621

    Google Scholar 

  • Peeples T, Kelly R (1993) Bioenergetics of the metal/sulfur-oxidizing extreme thermoacidophile, Metallosphaera sedula. Fuel 72:1619–1624

    Article  CAS  Google Scholar 

  • Prabhu SV, Bharath G (2012) Column biodesulfurization of Bituminous Coal by Acidithiobacillus ferroxidans Isolate. Int J Fut Biotechnol 1:1–8

    Google Scholar 

  • Prayuenyong P (2002) Coal biodesulfurization processes. Songklanakarin J Sci Technol 24:493–507

    CAS  Google Scholar 

  • Rai C, Reyniers JP (1988) Microbial desulfurization of coals by organisms of the genus Pseudomonas. Biotechnol Progr 4:225–230

    Article  CAS  Google Scholar 

  • Rossi G (2013) The microbial desulfurization of coal. In: Schippers A, Glombitza F, Sand W (eds) Geobiotechnology II. Advances in biochemical engineering/biotechnology, vol 142. Springer, Heidelberg, pp 147–167

    Chapter  Google Scholar 

  • Şener B, Aksoy DÖ, Çelik PA, Toptaş Y, Koca S, Koca H, Çabuk A (2018) Fungal treatment of lignites with higher ash and sulphur contents using drum type reactor. Hydrometallurgy 182:64–74

    Article  CAS  Google Scholar 

  • Sengupta D, Das S, Banik A (1999) Development of a mutant strain of Thiobacillus ferrooxidans and optimisation of some physical parameters for desulfurization of Indian coal. J Surf Sci Technol 15:30–40

    CAS  Google Scholar 

  • Shang H, Wen J-K, Wu B, Chen B-W (2017) The study of Thiobacillus ferrooxidans on desulfurization of high sulfur coal from Shanxi province. In: Advanced materials and energy sustainability: proceedings of the 2016 international conference on advanced materials and energy sustainability (AMES2016). World Scientific, pp 521–527

  • Silverman MP (1967) Mechanism of bacterial pyrite oxidation. J Bacteriol 94:1046–1051

    CAS  Google Scholar 

  • Silverman MP, Rogoff MH, Wender I (1961) Bacterial oxidation of pyritic materials in coal. Appl Microbiol 9:491–496

    CAS  Google Scholar 

  • Singh AK, Kumar A, Singh PK, Singh AL, Kumar AJES (2018) Bacterial desulphurization of low-rank coal: a case study of Eocene Lignite of Western Rajasthan, India. Energy Source Part A 40(10):1199–1208

    Article  CAS  Google Scholar 

  • Soleimani M, Bassi A, Margaritis A (2007) Biodesulfurization of refractory organic sulfur compounds in fossil fuels. Biotechnol Adv 25:570–596

    Article  CAS  Google Scholar 

  • Sproull R, Francis H, Krishna C, Dodge D (1986) Enhancement of coal quality by microbial demineralisation and desulphurization. In: Workshop on biological treatment of coals, Washington, USA, July, pp 23–25

  • Stevens CJ, Noah KS, Andrews GF (1993) Large laboratory scale demonstration of combined bacterial and physical coal depyritization. Fuel 72:1601–1606

    Article  CAS  Google Scholar 

  • Stoner D, Wey J, Barrett K, Jolley J, Wright R, Dugan P (1990) Modification of water-soluble coal-derived products by dibenzothiophene-degrading microorganisms. Appl Environ Microbiol 56:2667–2676

    CAS  Google Scholar 

  • Sui Z et al (2018) Full-scale demonstration of enzyme-treated coal combustion for improved energy efficiency and reduced air pollution. Energy Fuels 32:6584–6594

    Article  CAS  Google Scholar 

  • Tang L, Wang S, Zhu X, Guan Y, Chen S, Tao X, He H (2018) Feasibility study of reduction removal of thiophene sulfur in coal. Fuel 234:1367–1372

    Article  CAS  Google Scholar 

  • Tripathy SS, Kar RN, Mishra SK, Twardowska I, Sukla LB (1998) Effect of chemical pretreatment on bacterial desulphurisation of Assam coal. Fuel 77:859–864

    Article  CAS  Google Scholar 

  • Tuovinen OH, Carlson L (1979) Jarosite in cultures of iron-oxidizing thiobacilli. Geomicrobiol J 1:205–210

    Article  CAS  Google Scholar 

  • Van Hamme JD, Wong ET, Dettman H, Gray MR, Pickard MA (2003) Dibenzyl sulfide metabolism by white rot fungi. Appl Environ Microbiol 69:1320–1324

    Article  CAS  Google Scholar 

  • Vasseen V (1985) Commercial microbial desulphurization of coal. In: First international conference on processing and utilization of high sulfur Coals, Columbus, OH, USA October, Elsevier Science Publishers, Amsterdam, The Netherlands, pp 699–715

  • Wang J, Butler RR III, Wu F, Pombert J-F, Kilbane JJ II, Stark BC (2017) Enhancement of microbial biodesulfurization via genetic engineering and adaptive evolution. PLoS ONE 12:e0168833

    Article  CAS  Google Scholar 

  • Wang L, Ji G, Huang S (2019) Contribution of the Kodama and 4S pathways to the dibenzothiophene biodegradation in different coastal wetlands under different C/N ratios. J Environ Sci 76:217–226

    Article  Google Scholar 

  • Yang X, Wang S, Liu Y, Zhang YJ (2014) Identification and characterization of Acidithiobacillus ferrooxidans YY2 and its application in the biodesulfurization of coal. Can J Microbiol 61:65–71

    Article  CAS  Google Scholar 

  • Yang X, Wang S, Liu Y, Liang YJ (2016) A comparative study of the biodesulfurization efficiency of Acidithiobacillus ferrooxidans LY01 cells domesticated with ferrous iron and pyrite. Geomicrobiol J 33:488–493

    Article  CAS  Google Scholar 

  • Ye J, Zhang P, Zhang G, Wang S, Nabi M, Zhang Q, Zhang HJ (2018) Biodesulfurization of high sulfur fat coal with indigenous and exotic microorganisms. J Clean Prod 197:562–570

    Article  CAS  Google Scholar 

  • Zakharyants A, Murygina V, Kalyuzhnyi S (2004) Screening of Rhodococcus species revealing desulfurization activity with regard to dibenzothiophene. In: Zaikov GE (ed) Biocatalytic technology and nanotechnology, vol 4. Nova Science Publishers, Hauppauge, pp 51–59

    Google Scholar 

  • Zhang M, Hu T, Ren G, Zhu Z, Yang YJE (2017) Research on the effect of surfactants on the biodesulfurization of coal. Energy Fuels 31:8116–8119

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank all who assisted in conducting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Çelik.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Editorial responsibility: M. Abbaspour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çelik, P.A., Aksoy, D.Ö., Koca, S. et al. The approach of biodesulfurization for clean coal technologies: a review. Int. J. Environ. Sci. Technol. 16, 2115–2132 (2019). https://doi.org/10.1007/s13762-019-02232-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-019-02232-7

Keywords

Navigation