Skip to main content

Photo-Active Biological Molecular Materials: From Photoinduced Dynamics to Transient Electronic Spectroscopies

  • Chapter
  • First Online:
QM/MM Studies of Light-responsive Biological Systems

Abstract

We present an overview of a methodology for the simulation of the photo-response of biological (macro)molecules, designed around a Quantum Mechanics / Molecular Mechanics (QM/MM) subtractive scheme. The resulting simulation workflow, that goes from the characterization of the photo-active system to the modeling of (transient) electronic spectroscopies is implemented in the software COBRAMM, but is completely general and can be used in the framework of any specific QM/MM implementation. COBRAMM is a smart interface to existing state-of-the-art theoretical chemistry codes, combining different levels of description and different algorithms to realize tailored problem-driven computations. The power of this approach is illustrated by reviewing the studies of two fundamental problems involving biological light-sensitive molecules. First, we will consider the photodynamics of the retinal molecule, the pigment of rhodopsin, a visual receptor protein contained in the rod cells of the retina. Retinal, with its light-induced isomerization, triggers a cascade of events leading to the production of the nerve impulse. Then, we will review some studies focusing on the interaction of DNA systems with ultraviolet (UV) light, a problem that has become one of the benchmark for the development of nonlinear spectroscopy, because of the ultrashort excited state lifetimes that arise from very efficient radiationless excited state decay and consent self-protection of DNA against UV damage.

I.C., M.B., A.N. and I.R. equally contributed to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that the PES exploration step is omitted as we address solely the ground state conformational freedom of the system.

  2. 2.

    Technically realized by keeping the delay between pump and probe short with respect to the molecular dynamics.

References

  1. Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2:19–25. https://doi.org/10.1016/j.softx.2015.06.001

    Article  Google Scholar 

  2. Abramavicius D, Valkunas L, Mukamel S (2007) Transport and correlated fluctuations in the nonlinear optical response of excitons. Europhys Lett 80(1):17005. https://doi.org/10.1209/0295-5075/80/17005

    Article  CAS  Google Scholar 

  3. Abramavicius D, Palmieri B, Voronine DV, Šanda F, Mukamel S (2009) Coherent multidimensional optical spectroscopy of excitons in molecular aggregates. Quasiparticle versus supermolecule perspectives. Chem Rev 109(6):2350–2408. https://doi.org/10.1021/cr800268n

  4. Altavilla SF, Segarra-Martí J, Nenov A, Conti I, Rivalta I, Garavelli M (2015) Deciphering the photochemical mechanisms describing the UV-induced processes occurring in solvated guanine monophosphate. Front Chem 3(APR). https://doi.org/10.3389/fchem.2015.00029

  5. Altoè P, Stenta M, Bottoni A, Garavelli M (2007a) A tunable QM/MM approach to chemical reactivity, structure and physico-chemical properties prediction. Theor Chem Acc 118(1):219–240. https://doi.org/10.1007/s00214-007-0275-9

    Article  CAS  Google Scholar 

  6. Altoè P, Stenta M, Bottoni A, Garavelli M (2007b) COBRAMM: a tunable QM/MM approach to complex molecular architectures. Modelling the excited and ground state properties of sized molecular systems. AIP Conf Proc 963(1):491–505. https://doi.org/10.1063/1.2827033

  7. Anda A, De Vico L, Hansen T, Abramavičius D (2016) Absorption and fluorescence lineshape theory for polynomial potentials. J Chem Theory Comput 12(12):5979–5989. https://doi.org/10.1021/acs.jctc.6b00997

    Article  CAS  Google Scholar 

  8. Aquilante F, Lindh R, Bondo Pedersen T (2007) Unbiased auxiliary basis sets for accurate two-electron integral approximations. J Chem Phys 127(11):114107. https://doi.org/10.1063/1.2777146

    Article  CAS  Google Scholar 

  9. Aquilante F, Malmqvist PÅ, Pedersen TB, Ghosh A, Roos BO (2008) Cholesky decomposition-based multiconfiguration second-order perturbation theory (CD-CASPT2): application to the spin-state energetics of Co III(diiminato)(NPh). J Chem Theory Comput 4(5):694–702. https://doi.org/10.1021/ct700263h

    Article  CAS  Google Scholar 

  10. Aquilante F, Autschbach J, Carlson RK, Chibotaru LF, Delcey MG, De Vico L, Fdez Galván I, Ferré N, Frutos LM, Gagliardi L, Garavelli M, Giussani A, Hoyer CE, Li Manni G, Lischka H, Ma D, Malmqvist PÅ, Müller T, Nenov A, Olivucci M, Pedersen TB, Peng D, Plasser F, Pritchard B, Reiher M, Rivalta I, Schapiro I, Segarra-Martí J, Stenrup M, Truhlar DG, Ungur L, Valentini A, Vancoillie S, Veryazov V, Vysotskiy VP, Weingart O, Zapata F, Lindh R (2016) Molcas 8: new capabilities for multiconfigurational quantum chemical calculations across the periodic table. J Comput Chem 37(5):506–541. https://doi.org/10.1002/jcc.24221

    Article  CAS  Google Scholar 

  11. Arslancan S, Martínez-Fernández L, Corral I (2017) Photophysics and photochemistry of canonical nucleobases’ thioanalogs: from quantum mechanical studies to time resolved experiments. Molecules 22(6):998. https://doi.org/10.3390/molecules22060998

    Article  CAS  PubMed Central  Google Scholar 

  12. Ashwood B, Jockusch S, Crespo-Hernández CE (2017) Excited-state dynamics of the thiopurine prodrug 6-thioguanine: can N9-glycosylation affect its phototoxic activity? Molecules 22(3):379. https://doi.org/10.3390/molecules22030379

    Article  CAS  PubMed Central  Google Scholar 

  13. Ashwood B, Pollum M, Crespo-Hernández CE (2019) Photochemical and photodynamical properties of sulfur-substituted nucleic acid bases. Photochem Photobiol 95(1):33–58. https://doi.org/10.1111/php.12975

    Article  CAS  Google Scholar 

  14. Atkins PW, Friedman RS (2011) Molecular quantum mechanics. Oxford University Press

    Google Scholar 

  15. Avila Ferrer FJ, Santoro F, Improta R (2014) The excited state behavior of cytosine in the gas phase: a TD-DFT study. Comput Theor Chem 1040–1041:186–194. https://doi.org/10.1016/j.comptc.2014.03.010

    Article  CAS  Google Scholar 

  16. Barbatti M, Aquino AJ, Lischka H (2010a) The UV absorption of nucleobases: semi-classical ab initio spectra simulations. Phys Chem Chem Phys 12(19):4959–4967. https://doi.org/10.1039/b924956g

    Article  CAS  Google Scholar 

  17. Barbatti M, Aquino AJ, Szymczak JJ, Nachtigallová D, Hobza P, Lischka H (2010b) Relaxation mechanisms of UV-photoexcited DNA and RNA nucleobases. Proc Natl Acad Sci USA 107(50):21453–21458. https://doi.org/10.1073/pnas.1014982107

    Article  Google Scholar 

  18. Barbatti M, Aquino AJ, Szymczak JJ, Nachtigallová D, Lischka H (2011) Photodynamical simulations of cytosine: characterization of the ultrafast bi-exponential UV deactivation. Phys Chem Chem Phys 13(13):6145–6155. https://doi.org/10.1039/c0cp01327g

    Article  CAS  Google Scholar 

  19. Barbatti M, Borin AC, Ullrich S (2015) Photoinduced processes in nucleic acids. Top Curr Chem 355:1–32. https://doi.org/10.1007/128_2014_569

    Article  CAS  Google Scholar 

  20. Bassolino G, Sovdat T, Liebel M, Schnedermann C, Odell B, Claridge TD, Kukura P, Fletcher SP (2014) Synthetic control of retinal photochemistry and photophysics in solution. J Am Chem Soc 136(6):2650–2658. https://doi.org/10.1021/ja4121814

    Article  CAS  Google Scholar 

  21. Baylor D (1996) How photons start vision. Proc Natl Acad Sci USA 93(2):560–565. https://doi.org/10.1073/pnas.93.2.560

    Article  CAS  Google Scholar 

  22. Bearpark MJ, Robb MA, Bernhard Schlegel H (1994) A direct method for the location of the lowest energy point on a potential surface crossing. Chem Phys Lett 223(3):269–274. https://doi.org/10.1016/0009-2614(94)00433-1

    Article  CAS  Google Scholar 

  23. Birge R (1990) Photophysics and molecular electronic applications of the rhodopsins. Annu Rev Phys Chem 41(1):683–733. https://doi.org/10.1146/annurev.physchem.41.1.683

    Article  CAS  Google Scholar 

  24. Birge RR, Murray LP, Pierce BM, Akita H, Balogh-Nair V, Findsen LA, Nakanishi K (1985) Two-photon spectroscopy of locked-11-cis-rhodopsin: evidence for a protonated Schiff base in a neutral protein binding site. Proc Natl Acad Sci USA 82(12):4117–4121. https://doi.org/10.1073/pnas.82.12.4117

    Article  CAS  Google Scholar 

  25. Blancafort L (2007) Energetics of cytosine singlet excited-state decay paths-a difficult case for CASSCF and CASPT2\(\dagger \). Photochem Photobiol 83(3):603–610. https://doi.org/10.1562/2006-05-29-ra-903

  26. Blancafort L, Migani A (2007) Water effect on the excited-state decay paths of singlet excited cytosine. J Photochem Photobiol A Chem 190(2–3):283–289. https://doi.org/10.1016/j.jphotochem.2007.04.015

    Article  CAS  Google Scholar 

  27. Bo C, Maseras F (2008) QM/MM methods in inorganic chemistry. Dalt Trans 22:2911. https://doi.org/10.1039/b718076d

    Article  CAS  Google Scholar 

  28. Bonvicini A, Demoulin B, Altavilla SF, Nenov A, El-Tahawy MM, Segarra-Martí J, Giussani A, Batista VS, Garavelli M, Rivalta I (2016) Ultraviolet vision: photophysical properties of the unprotonated retinyl Schiff base in the Siberian hamster cone pigment. Theor Chem Acc 135(4):110. https://doi.org/10.1007/s00214-016-1869-x

    Article  CAS  Google Scholar 

  29. Booth MJ, Branco MR, Ficz G, Oxley D, Krueger F, Reik W, Balasubramanian S (2012) Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution. Science 336(6083):934–937. https://doi.org/10.1126/science.1220671

    Article  CAS  Google Scholar 

  30. Borrego-Varillas R, Teles-Ferreira DC, Nenov A, Conti I, Ganzer L, Manzoni C, Garavelli M, Maria De Paula A, Cerullo G (2018) Observation of the sub-100 femtosecond population of a dark state in a thiobase mediating intersystem crossing. J Am Chem Soc 140(47):16087–16093. https://doi.org/10.1021/jacs.8b07057

    Article  CAS  Google Scholar 

  31. Borrego-Varillas R, Nenov A, Ganzer L, Oriana A, Manzoni C, Tolomelli A, Rivalta I, Mukamel S, Garavelli M, Cerullo G (2019) Two-dimensional UV spectroscopy: a new insight into the structure and dynamics of biomolecules. Chem Sci 10(43):9907–9921. https://doi.org/10.1039/c9sc03871j

    Article  CAS  Google Scholar 

  32. Briand J, Bräm O, Réhault J, Léonard J, Cannizzo A, Chergui M, Zanirato V, Olivucci M, Helbing J, Haacke S (2010) Coherent ultrafast torsional motion and isomerization of a biomimetic dipolar photoswitch. Phys Chem Chem Phys 12(13):3178–3187. https://doi.org/10.1039/b918603d

    Article  CAS  Google Scholar 

  33. Brixner T, Stiopkin IV, Fleming GR (2004) Tunable two-dimensional femtosecond spectroscopy. Opt Lett 29(8):884. https://doi.org/10.1364/ol.29.000884

    Article  CAS  Google Scholar 

  34. Brixner T, Stenger J, Vaswani HM, Cho M, Blankenship RE, Fleming GR (2005) Two-dimensional spectroscopy of electronic couplings in photosynthesis. Nature 434(7033):625–628. https://doi.org/10.1038/nature03429

    Article  CAS  Google Scholar 

  35. Brunk E, Rothlisberger U (2015) Mixed quantum mechanical/molecular mechanical molecular dynamics simulations of biological systems in ground and electronically excited states. Chem Rev 115(12):6217–6263. https://doi.org/10.1021/cr500628b

    Article  CAS  Google Scholar 

  36. Buchner F, Nakayama A, Yamazaki S, Ritze HH, Lübcke A (2015) Excited-state relaxation of hydrated thymine and thymidine measured by liquid-jet photoelectron spectroscopy: experiment and simulation. J Am Chem Soc 137(8):2931–2938. https://doi.org/10.1021/ja511108u

    Article  CAS  Google Scholar 

  37. Case DA, Ben-Shalom IY, Brozell SR, Cerutti DS, Cheatham TE III, Cruzeiro VWD, Darden TA, Duke RE, Ghoreishi D, Gilson MK (2018) Amber 2018:2018

    Google Scholar 

  38. Cembran A, González-Luque R, Altoè P, Merchán M, Bernardi F, Olivucci M, Garavelli M (2005) Structure, spectroscopy, and spectral tuning of the gas-phase retinal chromophore: the \(\beta \)-Ionone “Handle” and alkyl group effect. J Phys Chem A 109(29):6597–6605. https://doi.org/10.1021/jp052068c

    Article  CAS  Google Scholar 

  39. Cho M (2008) Coherent two-dimensional optical spectroscopy. Chem Rev 108(4):1331–1418. https://doi.org/10.1021/cr078377b

    Article  CAS  Google Scholar 

  40. Cohen B, Crespo-Hernández CE, Kohler B (2004) Strickler-Berg analysis of excited singlet state dynamics in DNA and RNA nucleosides. Faraday Discuss 127:137–147. https://doi.org/10.1039/b316939a

    Article  CAS  Google Scholar 

  41. Conti I, Garavelli M (2018) Evolution of the excitonic state of DNA stacked thymines: intrabase \(\pi \pi ^{*} \longrightarrow \) S 0 decay paths account for ultrafast (subpicosecond) and longer (>100 ps) deactivations. J Phys Chem Lett 9(9):2373–2379. https://doi.org/10.1021/acs.jpclett.8b00698

    Article  CAS  Google Scholar 

  42. Conti I, Bernardi F, Orlandi G, Garavelli M (2006) Substituent controlled spectroscopy and excited state topography of retinal chromophore models: fluorinated and methoxy-substituted protonated Schiff bases. Mol Phys 104(5–7):915–924. https://doi.org/10.1080/00268970500417911

    Article  CAS  Google Scholar 

  43. Conti I, Di Donato E, Negri F, Orlandi G (2009a) Revealing Excited State Interactions by Quantum-Chemical Modeling of Vibronic Activities: The R2PI Spectrum of Adenine\(\dagger \). J Phys Chem A 113(52):15265–15275. https://doi.org/10.1021/jp905795n

  44. Conti I, Garavelli M, Orlandi G (2009b) Deciphering low energy deactivation channels in adenine. J Am Chem Soc 131(44):16108–16118. https://doi.org/10.1021/ja902311y

    Article  CAS  Google Scholar 

  45. Conti I, Altoè P, Stenta M, Garavelli M, Orlandi G (2010) Adenine deactivation in DNA resolved at the CASPT2//CASSCF/AMBER level. Phys Chem Chem Phys 12(19):5016. https://doi.org/10.1039/b926608a

    Article  CAS  Google Scholar 

  46. Conti I, Nenov A, Höfinger S, Flavio Altavilla S, Rivalta I, Dumont E, Orlandi G, Garavelli M (2015) Excited state evolution of DNA stacked adenines resolved at the CASPT2//CASSCF/Amber level: from the bright to the excimer state and back. Phys Chem Chem Phys 17(11):7291–7302. https://doi.org/10.1039/C4CP05546B

    Article  CAS  Google Scholar 

  47. Conti I, Martínez-Fernández L, Esposito L, Hofinger S, Nenov A, Garavelli M, Improta R (2017) Multiple electronic and structural factors control cyclobutane pyrimidine dimer and 6–4 thymine-thymine photodimerization in a DNA duplex. Chem - A Eur J 23(60):15177–15188. https://doi.org/10.1002/chem.201703237

    Article  CAS  Google Scholar 

  48. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117(19):5179–5197. https://doi.org/10.1021/ja00124a002

    Article  CAS  Google Scholar 

  49. Cowan ML, Ogilvie JP, Miller RJ (2004) Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes. Chem Phys Lett 386(1–3):184–189. https://doi.org/10.1016/j.cplett.2004.01.027

    Article  CAS  Google Scholar 

  50. Crespo-Hernández CE, Cohen B, Hare PM, Kohler B (2004) Ultrafast excited-state dynamics in nucleic acids. Chem Rev 104(4):1977–2019. https://doi.org/10.1021/cr0206770

    Article  CAS  Google Scholar 

  51. Cui G, Fang WH (2013) State-specific heavy-atom effect on intersystem crossing processes in 2-thiothymine: a potential photodynamic therapy photosensitizer. J Chem Phys 138(4):044315. https://doi.org/10.1063/1.4776261

    Article  CAS  Google Scholar 

  52. Cui G, Thiel W (2014) Intersystem crossing enables 4-thiothymidine to act as a photosensitizer in photodynamic therapy: an ab initio QM/MM study. J Phys Chem Lett 5(15):2682–2687. https://doi.org/10.1021/jz501159j

    Article  CAS  Google Scholar 

  53. Curutchet C, Mennucci B (2017) Quantum chemical studies of light harvesting. Chem Rev 117(2):294–343. https://doi.org/10.1021/acs.chemrev.5b00700

    Article  CAS  Google Scholar 

  54. Dapprich S, Komáromi I, Byun K, Morokuma K, Frisch MJ (1999) A new ONIOM implementation in Gaussian98. Part I. The calculation of energies, gradients, vibrational frequencies and electric field derivatives. J Mol Struct THEOCHEM 461–462:1–21. https://doi.org/10.1016/S0166-1280(98)00475-8

    Article  Google Scholar 

  55. Dartnall HJ (1967) The visual pigment of the green rods. Vision Res 7(1–2):1–16. https://doi.org/10.1016/0042-6989(67)90022-3

    Article  CAS  Google Scholar 

  56. de La Harpe K, Crespo-Hernández CE, Kohler B (2009) The excited-state lifetimes in a G-C DNA duplex are nearly independent of helix conformation and base-pairing motif. Chem Phys Chem 10(9–10):1421–1425. https://doi.org/10.1002/cphc.200900004

    Article  CAS  Google Scholar 

  57. Demoulin B, El-Tahawy MMT, Nenov A, Garavelli M, Le Bahers T (2016) Intramolecular photo-induced charge transfer in visual retinal chromophore mimics: electron density-based indices at the TD-DFT and post-HF levels. Theor Chem Acc 135(4):96. https://doi.org/10.1007/s00214-016-1815-y

    Article  CAS  Google Scholar 

  58. Demoulin B, Altavilla SF, Rivalta I, Garavelli M (2017) Fine tuning of retinal photoinduced decay in solution. J Phys Chem Lett 8(18):4407–4412. https://doi.org/10.1021/acs.jpclett.7b01780

    Article  CAS  Google Scholar 

  59. Dresselhaus T, Neugebauer J, Knecht S, Keller S, Ma Y, Reiher M (2015) Self-consistent embedding of density-matrix renormalization group wavefunctions in a density functional environment. J Chem Phys 142(4):044111. https://doi.org/10.1063/1.4906152

    Article  CAS  Google Scholar 

  60. Dreuw A, Wormit M (2015) The algebraic diagrammatic construction scheme for the polarization propagator for the calculation of excited states. Wiley Interdiscip Rev Comput Mol Sci 5(1):82–95. https://doi.org/10.1002/wcms.1206

    Article  CAS  Google Scholar 

  61. Du L, Lan Z (2015) An on-the-fly surface-hopping program jade for nonadiabatic molecular dynamics of polyatomic systems: implementation and applications. J Chem Theory Comput 11(4):1360–1374. https://doi.org/10.1021/ct501106d

    Article  CAS  Google Scholar 

  62. Duster AW, Garza CM, Aydintug BO, Negussie MB, Lin H (2019) Adaptive partitioning QM/MM for molecular dynamics simulations: 6. Proton transport through a biological channel. J Chem Theory Comput 15(2):892–905. https://doi.org/10.1021/acs.jctc.8b01128

  63. Ezra FS, Lee CH, Kondo NS, Danyluk SS, Sarma RH (1977) Conformational properties of purine-pyrimidine and pyrimidine-purine dinucleoside monophosphates. Biochemistry 16(9):1977–1987. https://doi.org/10.1021/bi00628a035

    Article  CAS  Google Scholar 

  64. Fingerhut BP, Elsaesser T (2019) Noncovalent interactions of hydrated DNA and RNA mapped by 2D-IR spectroscopy. Springer Ser Opt Sci 226:171–195. https://doi.org/10.1007/978-981-13-9753-0

    Article  CAS  Google Scholar 

  65. Forsberg N, Malmqvist PÅ (1997) Multiconfiguration perturbation theory with imaginary level shift. Chem Phys Lett 274(1–3):196–204. https://doi.org/10.1016/S0009-2614(97)00669-6

    Article  CAS  Google Scholar 

  66. Fosso-Tande J, Nguyen TS, Gidofalvi G, DePrince AE (2016) Large-scale variational two-electron reduced-density-matrix-driven complete active space self-consistent field methods. J Chem Theory Comput 12(5):2260–2271. https://doi.org/10.1021/acs.jctc.6b00190

    Article  CAS  Google Scholar 

  67. Freedman KA, Becker RS (1986) Comparative investigation of the photoisomerization of the protonated and unprotonated n-butylamine schiff bases of 9-cis-, 11-cis-, 13-cis-, and all-trans-retinals. J Am Chem Soc 108(6):1245–1251. https://doi.org/10.1021/ja00266a020

    Article  CAS  Google Scholar 

  68. Friesner RA, Guallar V (2005) Ab initio quantum chemical and mixed quantum mechanics/molecular mechanics (QM/MM) methods for studying enzymatic catalysis. Annu Rev Phys Chem 56(1):389–427. https://doi.org/10.1146/annurev.physchem.55.091602.094410

    Article  CAS  Google Scholar 

  69. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian\({\sim }\)16 Revision C.01

    Google Scholar 

  70. Froese RDJ, Musaev DG, Morokuma K (1998) Theoretical study of substituent effects in the diimine-M(II) catalyzed ethylene polymerization reaction using the IMOMM method. J Am Chem Soc 120(7):1581–1587. https://doi.org/10.1021/ja9728334

    Article  CAS  Google Scholar 

  71. Garavelli M, Celani P, Bernardi F, Robb MA, Olivucci M (1997) The C5H6NH2\(+\) protonated Shiff base: An ab initio minimal model for retinal photoisomerization. J Am Chem Soc 119(29):6891–6901. https://doi.org/10.1021/ja9610895

  72. Garavelli M, Vreven T, Celani P, Bernardi F, Robb MA, Olivucci M (1998) Photoisomerization path for a realistic retinal chromophore model: the nonatetraeniminium cation. J Am Chem Soc 120(6):1285–1288. https://doi.org/10.1021/ja972695i

    Article  CAS  Google Scholar 

  73. Garavelli M, Negri F, Olivucci M (1999) Initial excited-state relaxation of the Isolated 11-cis protonated schiff base of retinal: evidence for in-plane motion from ab initio quantum chemical simulation of the resonance raman spectrum. J Am Chem Soc 121(5):1023–1029. https://doi.org/10.1021/ja981719y

    Article  CAS  Google Scholar 

  74. Ghosh A, Ostrander JS, Zanni MT (2017) Watching proteins wiggle: mapping structures with two-dimensional infrared spectroscopy. Chem Rev 117(16):10726–10759. https://doi.org/10.1021/acs.chemrev.6b00582

    Article  CAS  PubMed Central  Google Scholar 

  75. Giussani A, Segarra-Martí J, Roca-Sanjuán D, Merchán M (2015) Excitation of nucleobases from a computational perspective I: reaction paths. Top Curr Chem 355:57–98. https://doi.org/10.1007/128_2013_501

    Article  CAS  Google Scholar 

  76. Giussani A, Segarra-Martí J, Nenov A, Rivalta I, Tolomelli A, Mukamel S, Garavelli M (2016) Spectroscopic fingerprints of DNA/RNA pyrimidine nucleobases in third-order nonlinear electronic spectra. Theor Chem Acc 135(5):121. https://doi.org/10.1007/s00214-016-1867-z

    Article  CAS  Google Scholar 

  77. Giussani A, Conti I, Nenov A, Garavelli M (2018) Photoinduced formation mechanism of the thymine-thymine (6–4) adduct in DNA; a QM(CASPT2//CASSCF):MM(AMBER) study. Faraday Discuss 207:375–387. https://doi.org/10.1039/C7FD00202E

    Article  CAS  Google Scholar 

  78. Gonzalez-Luque R, Garavelli M, Bernardi F, Merchan M, Robb MA, Olivucci M, González-Luque R, Garavelli M, Bernardi F, Merchán M, Robb MA, Olivucci M (2000) Computational evidence in favor of a two-state, two-mode model of the retinal chromophore photoisomerization. Proc Natl Acad Sci 97(17):9379–9384. https://doi.org/10.1073/pnas.97.17.9379

    Article  CAS  Google Scholar 

  79. Gonzalez-vazquez J, Gonzalez L (2010) A time-dependent picture of the ultrafast deactivation of keto-cytosine including three-state conical intersections. Chem Phys Chem 11(17):3617–3624. https://doi.org/10.1002/cphc.201000557

    Article  CAS  Google Scholar 

  80. Görner H (1990) Phosphorescence of nucleic acids and DNA components at 77 K. J Photochem Photobiol B Biol 5(3–4):359–377. https://doi.org/10.1016/1011-1344(90)85051-W

    Article  Google Scholar 

  81. Granucci G, Persico M (2007) Critical appraisal of the fewest switches algorithm for surface hopping. J Chem Phys 126(13):134114. https://doi.org/10.1063/1.2715585

    Article  CAS  Google Scholar 

  82. Gustavsson T, Bányász À, Lazzarotto E, Markovitsi D, Scalmani G, Frisch MJ, Barone V, Improta R, (2006) Singlet excited-state behavior of uracil and thymine in aqueous solution: A combined experimental and computational study of 11 uracil derivatives. J Am Chem Soc 128(2):607–619. https://doi.org/10.1021/ja056181s

  83. Gustavsson T, Improta R, Markovitsi D (2010) DNA/RNA: building blocks of life under UV irradiation. J Phys Chem Lett 1(13):2025–2030. https://doi.org/10.1021/jz1004973

    Article  CAS  Google Scholar 

  84. Hamm P, Lim M, Hochstrasser RM (1998) Structure of the amide I band of peptides measured by femtosecond nonlinear-infrared spectroscopy. J Phys Chem B 102(31):6123–6138. https://doi.org/10.1021/jp9813286

    Article  CAS  Google Scholar 

  85. Hammes-Schiffer S, Tully JC (1994) Proton transfer in solution: molecular dynamics with quantum transitions. J Chem Phys 101(6):4657–4667. https://doi.org/10.1063/1.467455

    Article  CAS  Google Scholar 

  86. Hare PM, Crespo-Hernández CE, Kohler B (2007) Internal conversion to the electronic ground state occurs via two distinct pathways for pyrimidine bases in aqueous solution. Proc Natl Acad Sci USA 104(2):435–440. https://doi.org/10.1073/pnas.0608055104

    Article  CAS  Google Scholar 

  87. Hare PM, Middleton CT, Mertel KI, Herbert JM, Kohler B (2008) Time-resolved infrared spectroscopy of the lowest triplet state of thymine and thymidine. Chem Phys 347(1–3):383–392. https://doi.org/10.1016/j.chemphys.2007.10.035

    Article  CAS  PubMed Central  Google Scholar 

  88. Heyden A, Lin H, Truhlar DG (2007) Adaptive partitioning in combined quantum mechanical and molecular mechanical calculations of potential energy functions for multiscale simulations. J Phys Chem B 111(9):2231–2241. https://doi.org/10.1021/jp0673617

    Article  CAS  Google Scholar 

  89. Hochstrasser RM (2007) Two-dimensional spectroscopy at infrared and optical frequencies. Proc Natl Acad Sci USA 104(36):14190–14196. https://doi.org/10.1073/pnas.0704079104

    Article  CAS  Google Scholar 

  90. Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Comparison of multiple amber force fields and development of improved protein backbone parameters. Proteins Struct Funct Genet 65(3):712–725. https://doi.org/10.1002/prot.21123

    Article  CAS  Google Scholar 

  91. Hudock HR, Martínez TJ (2008) Excited-state dynamics of cytosine reveal multiple intrinsic subpicosecond pathways. Chem Phys Chem 9(17):2486–2490. https://doi.org/10.1002/cphc.200800649

    Article  CAS  Google Scholar 

  92. Huix-Rotllant M, Brazard J, Improta R, Burghardt I, Markovitsi D (2015) Stabilization of mixed frenkel-charge transfer excitons extended across both strands of guanine-cytosine DNA duplexes. J Phys Chem Lett 6(12):2247–2251. https://doi.org/10.1021/acs.jpclett.5b00813

    Article  CAS  Google Scholar 

  93. Huntress MM, Gozem S, Malley KR, Jailaubekov AE, Vasileiou C, Vengris M, Geiger JH, Borhan B, Schapiro I, Larsen DS, Olivucci M (2013) Toward an understanding of the retinal chromophore in rhodopsin mimics. J Phys Chem B 117(35):10053–10070. https://doi.org/10.1021/jp305935t

    Article  CAS  PubMed Central  Google Scholar 

  94. Hybl JD, Ferro AA, Jonas DM (2001) Two-dimensional Fourier transform electronic spectroscopy. J Chem Phys 115(14):6606–6622. https://doi.org/10.1063/1.1398579

    Article  CAS  Google Scholar 

  95. Improta R, Barone V (2004) Absorption and fluorescence spectra of uracil in the gas phase and in aqueous solution: a TD-DFT quantum mechanical study. J Am Chem Soc 126(44):14320–14321. https://doi.org/10.1021/ja0460561

    Article  CAS  Google Scholar 

  96. Improta R, Barone V (2008) The excited states of adenine and thymine nucleoside and nucleotide in aqueous solution: a comparative study by time-dependent DFT calculations. Theor Chem Acc 120(4–6):491–497. https://doi.org/10.1007/s00214-007-0404-5

    Article  CAS  Google Scholar 

  97. Improta R, Santoro F, Blancafort L (2016) Quantum mechanical studies on the photophysics and the photochemistry of nucleic acids and nucleobases. Chem Rev 116(6):3540–3593. https://doi.org/10.1021/acs.chemrev.5b00444

    Article  CAS  Google Scholar 

  98. Ismail N, Blancafort L, Olivucci M, Kohler B, Robb MA (2002) Ultrafast decay of electronically excited singlet cytosine via a \(\pi \),\(\pi \)* to n0,\(\pi \)* state switch. J Am Chem Soc 124(24):6818–6819. https://doi.org/10.1021/ja0258273

    Article  CAS  Google Scholar 

  99. Jacquemin D, Perpète EA, Laurent AD, Assfeld X, Adamo C (2009) Spectral properties of self-assembled squaraine-tetralactam: a theoretical assessment. Phys Chem Chem Phys 11(8):1258. https://doi.org/10.1039/b817720a

    Article  CAS  Google Scholar 

  100. Jonas DM (2003) Two-dimensional femtosecond spectroscopy. Annu Rev Phys Chem 54(1):425–463. https://doi.org/10.1146/annurev.physchem.54.011002.103907

    Article  CAS  Google Scholar 

  101. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926–935. https://doi.org/10.1063/1.445869

    Article  CAS  Google Scholar 

  102. van der Kamp MW, Mulholland AJ (2013) Combined quantum mechanics/molecular mechanics (QM/MM) methods in computational enzymology. Biochemistry 52(16):2708–2728. https://doi.org/10.1021/bi400215w

    Article  CAS  Google Scholar 

  103. Kandori H, Sasabe H, Nakanishi K, Yoshizawa T, Mizukami T, Shichida Y (1996) Real-time detection of 60-fs isomerization in a rhodopsin analog containing eight-membered-ring retinal. J Am Chem Soc 118(5):1002–1005. https://doi.org/10.1021/ja951665h

    Article  CAS  Google Scholar 

  104. Khani SK, Faber R, Santoro F, Hättig C, Coriani S (2019) UV absorption and magnetic circular dichroism spectra of purine, adenine, and guanine: a coupled cluster study in vacuo and in aqueous solution. J Chem Theory Comput 15(2):1242–1254. https://doi.org/10.1021/acs.jctc.8b00930

    Article  CAS  Google Scholar 

  105. Kistler KA, Matsika S (2007) Radiationless decay mechanism of cytosine: an ab initio study with comparisons to the fluorescent analogue 5-methyl-2-pyrimidinone. J Phys Chem A 111(14):2650–2661. https://doi.org/10.1021/jp0663661

    Article  CAS  Google Scholar 

  106. Kistler KA, Matsika S (2008) Three-state conical intersections in cytosine and pyrimidinone bases. J Chem Phys 128(21):215102. https://doi.org/10.1063/1.2932102

    Article  CAS  Google Scholar 

  107. Kistler KA, Matsika S (2009) Solvatochromic shifts of uracil and cytosine using a combined multireference configuration interaction/molecular dynamics approach and the fragment molecular orbital method. J Phys Chem A 113(45):12396–12403. https://doi.org/10.1021/jp901601u

    Article  CAS  Google Scholar 

  108. Ko M, Huang Y, Jankowska AM, Pape UJ, Tahiliani M, Bandukwala HS, An J, Lamperti ED, Koh KP, Ganetzky R, Liu XS, Aravind L, Agarwal S, Maciejewski JP, Rao A (2010) Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature 468(7325):839–843. https://doi.org/10.1038/nature09586

    Article  CAS  PubMed Central  Google Scholar 

  109. Kohler B (2010) Nonradiative decay mechanisms in DNA model systems. J Phys Chem Lett 1(13):2047–2053. https://doi.org/10.1021/jz100491x

    Article  CAS  Google Scholar 

  110. Kolano C, Helbing J, Kozinski M, Sander W, Hamm P (2006) Watching hydrogen-bond dynamics in a \(\beta \)-turn by transient two-dimensional infrared spectroscopy. Nature 444(7118):469–472. https://doi.org/10.1038/nature05352

    Article  CAS  Google Scholar 

  111. Kowalewski M, Fingerhut BP, Dorfman KE, Bennett K, Mukamel S (2017) Simulating coherent multidimensional spectroscopy of nonadiabatic molecular processes: from the infrared to the X-ray regime. Chem Rev 117(19):12165–12226. https://doi.org/10.1021/acs.chemrev.7b00081

    Article  CAS  Google Scholar 

  112. Krebs JE, Goldstein ES, Kilpatrick ST (2011) Lewin’s Genes X. Jones \(\backslash \) & Barlett Publishers, BOPTurlington, MA

    Google Scholar 

  113. Kwok WM, Ma C, Phillips DL (2009) “Bright” and “Dark” excited states of an alternating at oligomer characterized by femtosecond broadband spectroscopy. J Phys Chem B 113(33):11527–11534. https://doi.org/10.1021/jp906265c

    Article  CAS  Google Scholar 

  114. Lewis JW, Szundi I, Kazmi MA, Sakmar TP, Kliger DS (2004) Time-resolved photointermediate changes in rhodopsin glutamic acid 181 mutants. Biochemistry 43(39):12614–12621. https://doi.org/10.1021/bi049581l

    Article  CAS  Google Scholar 

  115. Li B, Johnson AE, Mukamel S, Myers AB (1994) The Brownian oscillator model for solvation effects in spontaneous light emission and their relationship to electron transfer. J Am Chem Soc 116(24):11039–11047. https://doi.org/10.1021/ja00103a020

    Article  CAS  Google Scholar 

  116. Li Q, Giussani A, Segarra-Martí J, Nenov A, Rivalta I, Voityuk AA, Mukamel S, Roca-Sanjuán D, Garavelli M, Blancafort L (2016) Multiple decay mechanisms and 2D-UV spectroscopic fingerprints of singlet excited solvated adenine-uracil monophosphate. Chem - A Eur J 22(22):7497–7507. https://doi.org/10.1002/chem.201505086

    Article  CAS  Google Scholar 

  117. Lin H, Truhlar DG (2007) QM/MM: what have we learned, where are we, and where do we go from here? Theor Chem Acc 117(2):185–199. https://doi.org/10.1007/s00214-006-0143-z

    Article  CAS  Google Scholar 

  118. Lüdeke S, Beck M, Yan EC, Sakmar TP, Siebert F, Vogel R (2005) The role of Glu181 in the photoactivation of rhodopsin. J Mol Biol 353(2):345–356. https://doi.org/10.1016/j.jmb.2005.08.039

    Article  CAS  Google Scholar 

  119. Ludwig V, do Amaral MS, da Costa ZM, Borin AC, Canuto S, Serrano-Andrés L (2008) 2-Aminopurine non-radiative decay and emission in aqueous solution: a theoretical study. Chem Phys Lett 463(1–3):201–205. https://doi.org/10.1016/j.cplett.2008.08.031

  120. Lumento F, Zanirato V, Fusi S, Busi E, Latterini L, Elisei F, Sinicropi A, Andruniów T, Ferré N, Basosi R, Olivucci M (2007) Quantum chemical modeling and preparation of a biomimetic photochemical switch. Angew Chemie 119(3):418–424. https://doi.org/10.1002/ange.200602915

    Article  Google Scholar 

  121. Ma C, Cheng CCW, Chan CTL, Chan RCT, Kwok WM (2015) Remarkable effects of solvent and substitution on the photo-dynamics of cytosine: a femtosecond broadband time-resolved fluorescence and transient absorption study. Phys Chem Chem Phys 17(29):19045–19057. https://doi.org/10.1039/c5cp02624e

    Article  CAS  Google Scholar 

  122. Mai S, Marquetand P, Richter M, González-Vázquez J, González L (2013) Singlet and triplet excited-state dynamics study of the keto and enol tautomers of cytosine. ChemPhysChem 14(13):2920–2931. https://doi.org/10.1002/cphc.201300370

    Article  CAS  Google Scholar 

  123. Mai S, Richter M, Marquetand P, González L (2014) Excitation of nucleobases from a computational perspective II: dynamics. Top Curr Chem 355:99–153. https://doi.org/10.1007/128_2014_549

    Article  Google Scholar 

  124. Mai S, Marquetand P, González L (2016a) Intersystem crossing pathways in the noncanonical nucleobase 2-thiouracil: a time-dependent picture. J Phys Chem Lett 7(11):1978–1983. https://doi.org/10.1021/acs.jpclett.6b00616

    Article  CAS  PubMed Central  Google Scholar 

  125. Mai S, Pollum M, Martínez-Fernández L, Dunn N, Marquetand P, Corral I, Crespo-Hernández CE, González L (2016b) The origin of efficient triplet state population in sulfur-substituted nucleobases. Nat Commun 7(1):13077. https://doi.org/10.1038/ncomms13077

    Article  CAS  PubMed Central  Google Scholar 

  126. Mai S, Gattuso H, Monari A, González L (2018) Novel Molecular-Dynamics-Based Protocols for Phase Space Sampling in Complex Systems. Front Chem 6(OCT):495. https://doi.org/10.3389/fchem.2018.00495

  127. Maitra NT (2016) Perspective: fundamental aspects of time-dependent density functional theory. J Chem Phys 144(22):220901. https://doi.org/10.1063/1.4953039

    Article  CAS  Google Scholar 

  128. Markovitsi D, Gustavsson T, Vayá I (2010) Fluorescence of DNA duplexes: from model helices to natural DNA. J Phys Chem Lett 1(22):3271–3276. https://doi.org/10.1021/jz101122t

    Article  CAS  Google Scholar 

  129. Martínez-Fernández L, Pepino AJ, Segarra-Martí J, Banyasz A, Garavelli M, Improta R (2016) Computing the absorption and emission spectra of 5-methylcytidine in different solvents: a test-case for different solvation models. J Chem Theory Comput 12(9):4430–4439. https://doi.org/10.1021/acs.jctc.6b00518

    Article  CAS  Google Scholar 

  130. Martinez-Fernandez L, Zhang Y, de La Harpe K, Beckstead AA, Kohler B, Improta R (2016) Photoinduced long-lived charge transfer excited states in AT-DNA strands. Phys Chem Chem Phys 18(31):21241–21245. https://doi.org/10.1039/C6CP04550B

    Article  CAS  Google Scholar 

  131. Martínez-Fernández L, Granucci G, Pollum M, Crespo-Hernández CE, Persico M, Corral I (2017a) Decoding the molecular basis for the population mechanism of the triplet phototoxic precursors in UVA light-activated pyrimidine anticancer drugs. Chem - A Eur J 23(11):2619–2627. https://doi.org/10.1002/chem.201604543

    Article  CAS  Google Scholar 

  132. Martínez-Fernández L, Pepino AJ, Segarra-Martí J, Jovaišaitei J, Vaya I, Nenov A, Markovitsi D, Gustavsson T, Banyasz A, Garavelli M, Improta R (2017b) Photophysics of deoxycytidine and 5-methyldeoxycytidine in solution: a comprehensive picture by quantum mechanical calculations and femtosecond fluorescence spectroscopy. J Am Chem Soc 139(23):7780–7791. https://doi.org/10.1021/jacs.7b01145

    Article  CAS  Google Scholar 

  133. Mathies RA, Brito Cruz CH, Pollard WT, Shank CV (1988) Direct observation of the femtosecond excited-state cis-trans isomerization in bacteriorhodopsin. Science 240(4853):777–779. https://doi.org/10.1126/science.3363359

    Article  CAS  Google Scholar 

  134. Menger MF, Plasser F, Mennucci B, González L (2018) Surface Hopping within an Exciton Picture. An Electrostatic Embedding Scheme. J Chem Theory Comput 14(12):6139–6148. https://doi.org/10.1021/acs.jctc.8b00763

  135. Mennucci B, Tomasi J, Cammi R, Cheeseman JR, Frisch MJ, Devlin FJ, Gabriel S, Stephens PJ (2002) Polarizable continuum model (PCM) calculations of solvent effects on optical rotations of chiral molecules. J Phys Chem A 106(25):6102–6113. https://doi.org/10.1021/jp020124t

    Article  CAS  Google Scholar 

  136. Merchán M, Serrano-Andrés L (2003) Ultrafast internal conversion of excited cytosine via the lowest \(\pi \pi \) electronic singlet state. J Am Chem Soc 125(27):8108–8109. https://doi.org/10.1021/ja0351600

    Article  CAS  Google Scholar 

  137. Mercier Y, Santoro F, Reguero M, Improta R (2008) The decay from the dark n\(\pi \)* excited state in uracil: An integrated CASPT2/CASSCF and PCM/TD-DFT study in the gas phase and in water. J Phys Chem B 112(35):10769–10772. https://doi.org/10.1021/jp804785p

  138. Metz S, Kästner J, Sokol AA, Keal TW, Sherwood P (2014) Chem Shell—a modular software package for QM/MM simulations. Wiley Interdiscip Rev Comput Mol Sci 4(2):101–110. https://doi.org/10.1002/wcms.1163

    Article  CAS  Google Scholar 

  139. Middleton CT, de La Harpe K, Su C, Law YK, Crespo-Hernández CE, Kohler B (2009) DNA excited-state dynamics: from single bases to the double helix. Annu Rev Phys Chem 60(1):217–239. https://doi.org/10.1146/annurev.physchem.59.032607.093719

    Article  CAS  Google Scholar 

  140. Milota F, Sperling J, Nemeth A, Mančal T, Kauffmann HF (2009) Two-dimensional electronic spectroscopy of molecular excitons. Acc Chem Res 42(9):1364–1374. https://doi.org/10.1021/ar800282e

    Article  CAS  Google Scholar 

  141. Momparler RL, Bovenzi V (2000) DNA methylation and cancer. J Cell Physiol 183(2):145–154. https://doi.org/10.1002/(SICI)1097-4652(200005)183:2\(<\)145::AID-JCP1\(>\)3.0.CO;2-V

  142. Morrison H (1990) Bioorganic Photochemistry: Photochemistry and the nucleic acids. No. v. 1 in Wiley-Interscience publication, Wiley

    Google Scholar 

  143. Motorin Y, Lyko F, Helm M (2010) 5-methylcytosine in RNA: detection, enzymatic formation and biological functions. Nucleic Acids Res 38(5):1415–1430. https://doi.org/10.1093/nar/gkp1117

    Article  CAS  Google Scholar 

  144. Mukamel S (1995) Principles of nonlinear optical spectroscopy. Oxford University Press, New York

    Google Scholar 

  145. Mukamel S (2000) Multidimensional femtosecond correlation spectroscopies of electronic and vibrational excitations. Annu Rev Phys Chem 51(1):691–729. https://doi.org/10.1146/annurev.physchem.51.1.691

    Article  CAS  Google Scholar 

  146. Nachtigallovaí D, Aquino AJ, Szymczak JJ, Barbatti M, Hobza P, Lischka H (2011) Nonadiabatic dynamics of uracil: population split among different decay mechanisms. J Phys Chem A 115(21):5247–5255. https://doi.org/10.1021/jp201327w

    Article  CAS  Google Scholar 

  147. Nenov A, Rivalta I, Cerullo G, Mukamel S, Garavelli M (2014) Disentangling peptide configurations via two-dimensional electronic spectroscopy: ab initio simulations beyond the frenkel exciton hamiltonian. J Phys Chem Lett 5(4):767–771. https://doi.org/10.1021/jz5002314

    Article  CAS  PubMed Central  Google Scholar 

  148. Nenov A, Giussani A, Segarra-Martí J, Jaiswal VK, Rivalta I, Cerullo G, Mukamel S, Garavelli M (2015a) Modeling the high-energy electronic state manifold of adenine: calibration for nonlinear electronic spectroscopy. J Chem Phys 142(21):212443. https://doi.org/10.1063/1.4921016

    Article  CAS  Google Scholar 

  149. Nenov A, Segarra-Martí J, Giussani A, Conti I, Rivalta I, Dumont E, Jaiswal VK, Altavilla SF, Mukamel S, Garavelli M (2015b) Probing deactivation pathways of DNA nucleobases by two-dimensional electronic spectroscopy: first principles simulations. Faraday Discuss 177:345–362. https://doi.org/10.1039/C4FD00175C

    Article  CAS  Google Scholar 

  150. Nenov A, Borrego-Varillas R, Oriana A, Ganzer L, Segatta F, Conti I, Segarra-Marti J, Omachi J, Dapor M, Taioli S, Manzoni C, Mukamel S, Cerullo G, Garavelli M (2018a) UV-light-induced vibrational coherences: the key to understand kasha rule violation in trans-azobenzene. J Phys Chem Lett 9(7):1534–1541. https://doi.org/10.1021/acs.jpclett.8b00152

    Article  CAS  Google Scholar 

  151. Nenov A, Conti I, Borrego-Varillas R, Cerullo G, Garavelli M (2018b) Linear absorption spectra of solvated thiouracils resolved at the hybrid RASPT2/MM level. Chem Phys 515:643–653. https://doi.org/10.1016/j.chemphys.2018.07.025

    Article  CAS  Google Scholar 

  152. Norrish RG, Porter G (1949) Chemical reactions produced by very high light intensities [1]. Nature 164(4172):658. https://doi.org/10.1038/164658a0

    Article  CAS  Google Scholar 

  153. Ogino M, Taya Y, Fujimoto K (2008) Highly selective detection of 5-methylcytosine using photochemical ligation. Chem Commun 45:5996. https://doi.org/10.1039/b813677g

    Article  CAS  Google Scholar 

  154. Okada T, Sugihara M, Bondar AN, Elstner M, Entel P, Buss V (2004) The retinal conformation and its environment in rhodopsin in light of a new 2.2 Å crystal structure. J Mol Biol 342(2):571–583. https://doi.org/10.1016/j.jmb.2004.07.044

  155. Onidas D, Markovitsi D, Marguet S, Sharonov A, Gustavsson T (2002) Fluorescence properties of DNA nucleosides and nucleotides: a refined steady-state and femtosecond investigation. J Phys Chem B 106(43):11367–11374. https://doi.org/10.1021/jp026063g

    Article  CAS  Google Scholar 

  156. Pecourt JM, Peon J, Kohler B (2001) DNA excited-state dynamics: ultrafast internal conversion and vibrational cooling in a series of nucleosides. J Am Chem Soc 123(42):10370–10378. https://doi.org/10.1021/ja0161453

    Article  CAS  PubMed Central  Google Scholar 

  157. Pecourt JML, Peon J, Kohler B (2000) Ultrafast internal conversion of electronically excited RNA and DNA nucleosides in water. J Am Chem Soc 122(38):9348–9349. https://doi.org/10.1021/ja0021520

    Article  CAS  Google Scholar 

  158. Peon J, Zewail AH (2001) DNA/RNA nucleotides and nucleosides: Direct measurement of excited-state lifetimes by femtosecond fluorescence up-conversion. Chem Phys Lett 348(3–4):255–262. https://doi.org/10.1016/S0009-2614(01)01128-9

    Article  CAS  Google Scholar 

  159. Pepino AJ, Segarra-Martí J, Nenov A, Improta R, Garavelli M (2017) Resolving ultrafast photoinduced deactivations in water-solvated pyrimidine nucleosides. J Phys Chem Lett 8(8):1777–1783. https://doi.org/10.1021/acs.jpclett.7b00316

    Article  CAS  Google Scholar 

  160. Pepino AJ, Segarra-Martí J, Nenov A, Rivalta I, Improta R, Garavelli M (2018) UV-induced long-lived decays in solvated pyrimidine nucleosides resolved at the MS-CASPT2/MM level. Phys Chem Chem Phys 20(10):6877–6890. https://doi.org/10.1039/c7cp08235e

    Article  CAS  Google Scholar 

  161. Pérez A, Marchán I, Svozil D, Sponer J, Cheatham TE, Laughton CA, Orozco M (2007) Refinement of the AMBER force field for nucleic acids: improving the description of \(\alpha \)/\(\gamma \) conformers. Biophys J 92(11):3817–3829. https://doi.org/10.1529/biophysj.106.097782

    Article  CAS  Google Scholar 

  162. Perlík V, Šanda F (2017) Vibrational relaxation beyond the linear damping limit in two-dimensional optical spectra of molecular aggregates. J Chem Phys 147(8):084104. https://doi.org/10.1063/1.4999680

    Article  CAS  Google Scholar 

  163. Pezeshki S, Lin H (2011) Adaptive-partitioning redistributed charge and dipole schemes for QM/MM dynamics simulations: on-the-fly relocation of boundaries that pass through covalent bonds. J Chem Theory Comput 7(11):3625–3634. https://doi.org/10.1021/ct2005209

    Article  CAS  Google Scholar 

  164. Picchiotti A, Nenov A, Giussani A, Prokhorenko VI, Miller RJD, Mukamel S, Garavelli M (2019) Pyrene, a test case for deep-ultraviolet molecular photophysics. J Phys Chem Lett 10(12):3481–3487. https://doi.org/10.1021/acs.jpclett.9b01325

    Article  CAS  PubMed Central  Google Scholar 

  165. Pierloot K, Dumez B, Widmark PO, Roos BO (1995) Density matrix averaged atomic natural orbital (ANO) basis sets for correlated molecular wave functions. Theor Chim Acta 90(2–3):87–114. https://doi.org/10.1007/BF01113842

    Article  CAS  Google Scholar 

  166. Polli D, Altoè P, Weingart O, Spillane KM, Manzoni C, Brida D, Tomasello G, Orlandi G, Kukura P, Mathies RA, Garavelli M, Cerullo G (2010) Conical intersection dynamics of the primary photoisomerization event in vision. Nature 467(7314):440–443. https://doi.org/10.1038/nature09346

    Article  CAS  PubMed Central  Google Scholar 

  167. Pollum M, Crespo-Hernández CE (2014) Communication: the dark singlet state as a doorway state in the ultrafast and efficient intersystem crossing dynamics in 2-thiothymine and 2-thiouracil. J Chem Phys 140(7):071101. https://doi.org/10.1063/1.4866447

    Article  CAS  Google Scholar 

  168. Pollum M, Jockusch S, Crespo-Hernández CE (2015a) Increase in the photoreactivity of uracil derivatives by doubling thionation. Phys Chem Chem Phys 17(41):27851–27861. https://doi.org/10.1039/c5cp04822b

    Article  CAS  PubMed Central  Google Scholar 

  169. Pollum M, Martínez-Fernández L, Crespo-Hernández CE (2015b) Photochemistry of nucleic acid bases and their thio- and aza-analogues in solution. Top Curr Chem 355:245–355. https://doi.org/10.1007/128_2014_554

    Article  CAS  PubMed Central  Google Scholar 

  170. Porter G (1950) Flash photolysis and spectroscopy. A new method for the study of free radical reactions. Proc R Soc London Ser A Math Phys Sci 200(1061):284–300. https://doi.org/10.1098/rspa.1950.0018

  171. Prokhorenko VI, Picchiotti A, Pola M, Dijkstra AG, Miller RJD (2016) New insights into the photophysics of DNA nucleobases. J Phys Chem Lett 7(22):4445–4450. https://doi.org/10.1021/acs.jpclett.6b02085

    Article  CAS  Google Scholar 

  172. Rajput J, Rahbek DB, Andersen LH, Hirshfeld A, Sheves M, Altoè P, Orlandi G, Garavelli M (2010) Probing and modeling the absorption of retinal protein chromophores in vacuo. Angew Chemie 122(10):1834–1837. https://doi.org/10.1002/ange.200905061

    Article  Google Scholar 

  173. Ramakers LAI, Hithell G, May JJ, Greetham GM, Donaldson PM, Towrie M, Parker AW, BOPTurley GA, Hunt NT (2017) 2D-IR spectroscopy shows that optimized DNA minor groove binding of Hoechst33258 follows an induced fit model. J Phys Chem B 121(6):1295–1303. https://doi.org/10.1021/acs.jpcb.7b00345

  174. Reichardt C, Crespo-Hernaíndez CE (2010) Room-temperature phosphorescence of the DNA monomer analogue 4-thiothymidine in aqueous solutions after UVA excitation. J Phys Chem Lett 1(15):2239–2243. https://doi.org/10.1021/jz100729w

    Article  CAS  Google Scholar 

  175. Reichardt C, Crespo-Hernández CE (2010) Ultrafast spin crossover in 4-thiothymidine in an ionic liquid. Chem Commun 46(32):5963–5965. https://doi.org/10.1039/c0cc01181a

    Article  CAS  Google Scholar 

  176. Reichardt C, Guo C, Crespo-Hernández CE (2011) Excited-state dynamics in 6-thioguanosine from the femtosecond to microsecond time scale. J Phys Chem B 115(12):3263–3270. https://doi.org/10.1021/jp112018u

    Article  CAS  Google Scholar 

  177. Richter M, Mai S, Marquetand P, González L (2014) Ultrafast intersystem crossing dynamics in uracil unravelled by ab initio molecular dynamics. Phys Chem Chem Phys 16(44):24423–24436. https://doi.org/10.1039/c4cp04158e

    Article  CAS  PubMed Central  Google Scholar 

  178. Rivalta I, Nenov A, Garavelli M (2014) Modelling retinal chromophores photoisomerization: From minimal models in vacuo to ultimate bidimensional spectroscopy in rhodopsins. Phys Chem Chem Phys 16(32):16865–16879. https://doi.org/10.1039/c3cp55211j

    Article  CAS  Google Scholar 

  179. Röhrig UF, Guidoni L, Rothlisberger U (2002) Early steps of the intramolecular signal transduction in rhodopsin explored by molecular dynamics simulations. Biochemistry 41(35):10799–10809. https://doi.org/10.1021/bi026011h

    Article  CAS  Google Scholar 

  180. Roos BO, Lindh R, Malmqvist PÅ, Veryazov V, Widmark PO (2004) Main group atoms and dimers studied with a new relativistic ANO basis Set. J Phys Chem A 108(15):2851–2858. https://doi.org/10.1021/jp031064+

    Article  CAS  Google Scholar 

  181. Ruckenbauer M, Mai S, Marquetand P, González L (2016) Photoelectron spectra of 2-thiouracil, 4-thiouracil, and 2,4-dithiouracil. J Chem Phys 144(7):074303. https://doi.org/10.1063/1.4941948, https://doi.org/10.1063/1512.02905

  182. Santoro F, Barone V, Gustavsson T, Improta R (2006) Solvent effect on the singlet excited-state lifetimes of nucleic acid bases: a computational study of 5-fluorouracil and uracil in acetonitrile and water. J Am Chem Soc 128(50):16312–16322. https://doi.org/10.1021/ja0657861

    Article  CAS  Google Scholar 

  183. Santoro F, Improta R, Fahleson T, Kauczor J, Norman P, Coriani S (2014) Relative stability of the L a and L b excited states in adenine and guanine: direct evidence from TD-DFT calculations of MCD spectra. J Phys Chem Lett 5(11):1806–1811. https://doi.org/10.1021/jz500633t

    Article  CAS  Google Scholar 

  184. Schoenlein RW, Peteanu LA, Mathies RA, Shank CV (1991) The first step in vision: femtosecond isomerization of rhodopsin. Science 254(5030):412–415. https://doi.org/10.1126/science.1925597

    Article  CAS  Google Scholar 

  185. Schreier WJ, Gilch P, Zinth W (2015) Early events of DNA photodamage. Annu Rev Phys Chem 66(1):497–519. https://doi.org/10.1146/annurev-physchem-040214-121821

    Article  CAS  Google Scholar 

  186. Segarra-Martí J, Francés-Monerris A, Roca-Sanjuán D, Merchán M (2016) Assessment of the potential energy hypersurfaces in thymine within multiconfigurational theory: CASSCF vs. CASPT2. Molecules 21(12):1666. https://doi.org/10.3390/molecules21121666

  187. Segarra-Martí J, Jaiswal VK, Pepino AJ, Giussani A, Nenov A, Mukamel S, Garavelli M, Rivalta I (2018a) Two-dimensional electronic spectroscopy as a tool for tracking molecular conformations in DNA/RNA aggregates. Faraday Discuss 207:233–250. https://doi.org/10.1039/C7FD00201G

    Article  Google Scholar 

  188. Segarra-Martí J, Mukamel S, Garavelli M, Nenov A, Rivalta I (2018b) Towards accurate simulation of two-dimensional electronic spectroscopy. Top Curr Chem 376(3):24. https://doi.org/10.1007/s41061-018-0201-8

    Article  CAS  Google Scholar 

  189. Segatta F, Cupellini L, Jurinovich S, Mukamel S, Dapor M, Taioli S, Garavelli M, Mennucci B (2017) A quantum chemical interpretation of two-dimensional electronic spectroscopy of light-harvesting complexes. J Am Chem Soc 139(22):7558–7567. https://doi.org/10.1021/jacs.7b02130

    Article  CAS  Google Scholar 

  190. Segatta F, Cupellini L, Garavelli M, Mennucci B (2019) Quantum chemical modeling of the photoinduced activity of multichromophoric biosystems. Chem Rev 119(16):9361–9380. https://doi.org/10.1021/acs.chemrev.9b00135

    Article  PubMed Central  Google Scholar 

  191. Sekharan S, Mooney VL, Rivalta I, Kazmi MA, Neitz M, Neitz J, Sakmar TP, Yan EC, Batista VS (2013) Spectral tuning of ultraviolet cone pigments: an interhelical lock mechanism. J Am Chem Soc 135(51):19064–19067. https://doi.org/10.1021/ja409896y

    Article  CAS  PubMed Central  Google Scholar 

  192. Selig U, Schleussner CF, Foerster M, Langhojer F, Nuernberger P, Brixner T (2010) Coherent two-dimensional ultraviolet spectroscopy in fully noncollinear geometry. Opt Lett 35(24):4178. https://doi.org/10.1364/ol.35.004178

    Article  Google Scholar 

  193. Senn HM, Thiel W (2006) QM/MM Methods for Biological Systems. In: Reiher M (ed) At. Approaches Mod. Biol., Springer Berlin Heidelberg, pp 173–290. https://doi.org/10.1007/128_2006_084

  194. Serrano-Andrés L, Merchán M (2009) Are the five natural DNA/RNA base monomers a good choice from natural selection?. A photochemical perspective. J Photochem Photobiol C Photochem Rev 10(1):21–32. https://doi.org/10.1016/j.jphotochemrev.2008.12.001

  195. Sisto A, Stross C, Van Der Kamp MW, O’Connor M, McIntosh-Smith S, Johnson GT, Hohenstein EG, Manby FR, Glowacki DR, Martinez TJ (2017) Atomistic non-adiabatic dynamics of the LH2 complex with a GPU-accelerated: ab initio exciton model. Phys Chem Chem Phys 19(23):14924–14936. https://doi.org/10.1039/c7cp00492c

    Article  CAS  Google Scholar 

  196. Sovdat T, Bassolino G, Liebel M, Schnedermann C, Fletcher SP, Kukura P (2012) Backbone modification of retinal induces protein-like excited state dynamics in solution. J Am Chem Soc 134(20):8318–8320. https://doi.org/10.1021/ja3007929

    Article  CAS  Google Scholar 

  197. Stone KW, Gundogdu K, Turner DB, Li X, Cundiff ST, Nelson KA (2009) Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells. Science 324(5931):1169–1173. https://doi.org/10.1126/science.1170274

    Article  CAS  Google Scholar 

  198. Svensson M, Humbel S, Froese RDJ, Matsubara T, Sieber S, Morokuma K (1996) ONIOM: A Multilayered Integrated MO \(+\) MM Method for Geometry Optimizations and Single Point Energy Predictions. A Test for Diels-Alder Reactions and Pt(P( t -Bu) 3 ) 2 \(+\) H 2 Oxidative Addition. J Phys Chem 100(50):19357–19363. https://doi.org/10.1021/jp962071j

  199. Szalay PG, Watson T, Perera A, Lotrich VF, Bartlett RJ (2012) Benchmark Studies on the Building Blocks of DNA. 1. Superiority of Coupled Cluster Methods in Describing the Excited States of Nucleobases in the Franck–Condon Region. J Phys Chem A 116(25):6702–6710. https://doi.org/10.1021/jp300977a

  200. Tahawy MMTE (2017) Modelling Spectral Tunability and Photoisomerization Mechanisms in Natural and Artificial Retinal Systems. PhD thesis, alma. https://doi.org/10.6092/unibo/amsdottorato/7829

  201. Takaya T, Su C, de La Harpe K, Crespo-Hernandez CE, Kohler B (2008) UV excitation of single DNA and RNA strands produces high yields of exciplex states between two stacked bases. Proc Natl Acad Sci 105(30):10285–10290. https://doi.org/10.1073/pnas.0802079105

    Article  Google Scholar 

  202. Taylor JS (1994) Unraveling the molecular pathway from sunlight to skin cancer. Acc Chem Res 27(3):76–82. https://doi.org/10.1021/ar00039a003

    Article  CAS  Google Scholar 

  203. Teles-ferreira DC, Conti I, Borrego-Varillas R, Nenov A, van Stokkum IHM, Ganzer L, Manzoni C, Paula AMD, Cerullo G, Garavelli M (2020) A Unified Experimental/Theoretical Description of the Ultrafast Photophysics of Single and Double Thionated Uracils. Chem - A Eur J 26(1):336–343

    Google Scholar 

  204. Terakita A, Yamashita T, Shichida Y (2000) Highly conserved glutamic acid in the extracellular IV-V loop in rhodopsins acts as the counterion in retinochrome, a member of the rhodopsin family. Proc Natl Acad Sci USA 97(26):14263–14267. https://doi.org/10.1073/pnas.260349597

    Article  CAS  Google Scholar 

  205. Thyrhaug E, Tempelaar R, Alcocer MJ, Žídek K, Bína D, Knoester J, Jansen TL, Zigmantas D (2018) Identification and characterization of diverse coherences in the Fenna-Matthews-Olson complex. Nat Chem 10(7):780–786. https://doi.org/10.1038/s41557-018-0060-5

    Article  CAS  Google Scholar 

  206. Tomasello G, Gloria OG, Altoè P, Stenta M, Luis SA, Merchán M, Orlandi G, Bottoni A, Garavelli M (2009) Electrostatic control of the photoisomerization efficiency and optical properties in visual pigments: On the role of counterion quenching. J Am Chem Soc 131(14):5172–5186. https://doi.org/10.1021/ja808424b

    Article  CAS  Google Scholar 

  207. Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105(8):2999–3093. https://doi.org/10.1021/cr9904009

    Article  CAS  PubMed Central  Google Scholar 

  208. Tseng Ch, Matsika S, Weinacht TC (2009) Two-dimensional ultrafast fourier transform spectroscopy in the deep ultraviolet. Opt Express 17(21):18788. https://doi.org/10.1364/oe.17.018788

    Article  CAS  Google Scholar 

  209. Tully JC (1990) Molecular dynamics with electronic transitions. J Chem Phys 93(2):1061–1071. https://doi.org/10.1063/1.459170

    Article  CAS  Google Scholar 

  210. Tully JC (1998) Mixed quantum-classical dynamics. Faraday Discuss 110:407–419. https://doi.org/10.1039/a801824c

    Article  CAS  Google Scholar 

  211. Tully JC, Pkeston RK (1971) Trajectory surface hopping approach to nonadiabatic molecular collisions: The reaction of H\(+\) with D2. J Chem Phys 55(2):562–572. https://doi.org/10.1063/1.1675788

  212. Tuna D, Lu Y, Koslowski A, Thiel W (2016) Semiempirical quantum-chemical orthogonalization-corrected methods: benchmarks of electronically excited states. J Chem Theory Comput 12(9):4400–4422. https://doi.org/10.1021/acs.jctc.6b00403

    Article  CAS  Google Scholar 

  213. Turner DB, Nelson KA (2010) Coherent measurements of high-order electronic correlations in quantum wells. Nature 466(7310):1089–1091. https://doi.org/10.1038/nature09286

    Article  CAS  Google Scholar 

  214. Tuttle T, Thiel W (2008) OMx-D: Semiempirical methods with orthogonalization and dispersion corrections. Implementation and biochemical application. Phys Chem Chem Phys 10(16):2159–2166. https://doi.org/10.1039/b718795e

  215. Valiev M, Bylaska E, Govind N, Kowalski K, Straatsma T, Van Dam H, Wang D, Nieplocha J, Apra E, Windus T, de Jong W (2010) NWChem: a comprehensive and scalable open-source solution for large scale molecular simulations. Comput Phys Commun 181(9):1477–1489. https://doi.org/10.1016/j.cpc.2010.04.018

    Article  CAS  Google Scholar 

  216. Vayá I, Gustavsson T, Miannay FA, Douki T, Markovitsi D (2010) Fluorescence of natural DNA: from the femtosecond to the nanosecond time scales. J Am Chem Soc 132(34):11834–11835. https://doi.org/10.1021/ja102800r

    Article  CAS  Google Scholar 

  217. Vayá I, Brazard J, Huix-Rotllant M, Thazhathveetil AK, Lewis FD, Gustavsson T, Burghardt I, Improta R, Markovitsi D (2016) High-energy long-lived mixed frenkel-charge-transfer excitons: from double stranded (AT) n to natural DNA. Chem - A Eur J 22(14):4904–4914. https://doi.org/10.1002/chem.201504007

    Article  CAS  Google Scholar 

  218. Vreven T, Bernardi F, Garavelli M, Olivucci M, Robb MA, Schlegel HB (1997) Ab Initio photoisomerization dynamics of a simple retinal chromophore model. J Am Chem Soc 119(51):12687–12688. https://doi.org/10.1021/ja9725763

    Article  CAS  Google Scholar 

  219. Wang J, Cieplak P, Kollman PA (2000) How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J Comput Chem 21(12):1049–1074. https://doi.org/10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.0.CO;2-F

  220. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general Amber force field. J Comput Chem 25(9):1157–1174. https://doi.org/10.1002/jcc.20035

    Article  CAS  PubMed Central  Google Scholar 

  221. Wang W, Nossoni Z, Berbasova T, Watson CT, Yapici I, Lee KSS, Vasileiou C, Geiger JH, Borhan B (2012) Tuning the electronic absorption of protein-embedded all-trans-retinal. Science 338(6112):1340–1343. https://doi.org/10.1126/science.1226135

    Article  CAS  PubMed Central  Google Scholar 

  222. Weingart O, Nenov A, Altoè P, Rivalta I, Segarra-Martí J, Dokukina I, Garavelli M (2018) COBRAMM 2.0—a software interface for tailoring molecular electronic structure calculations and running nanoscale (QM/MM) simulations. J Mol Model 24(9):271. https://doi.org/10.1007/s00894-018-3769-6

  223. Werner HJ, Knowles PJ, Knizia G, Manby FR (2012a) MOLPRO, A Package of Ab Initio Programs

    Google Scholar 

  224. Werner HJ, Knowles PJ, Knizia G, Manby FR, Schütz M (2012b) Molpro: a general-purpose quantum chemistry program package. Wiley Interdiscip Rev Comput Mol Sci 2(2):242–253. https://doi.org/10.1002/wcms.82

    Article  CAS  Google Scholar 

  225. Widmark PO, Malmqvist PÅ, Roos BO (1990) Density matrix averaged atomic natural orbital (ANO) basis sets for correlated molecular wave functions - I. First row atoms. Theor Chim Acta 77(5):291–306. https://doi.org/10.1007/BF01120130

    Article  CAS  Google Scholar 

  226. Widmark PO, Persson BJ, Roos BO (1991) Density matrix averaged atomic natural orbital (ANO) basis sets for correlated molecular wave functions - II. Second row atoms. Theor Chim Acta 79(6):419–432. https://doi.org/10.1007/BF01112569

    Article  CAS  Google Scholar 

  227. Widom JR, Johnson NP, von Hippel PH, Marcus AH (2013) Solution conformation of 2-aminopurine dinucleotide determined by ultraviolet two-dimensional fluorescence spectroscopy. New J Phys 15(2):025028. https://doi.org/10.1088/1367-2630/15/2/025028

    Article  CAS  Google Scholar 

  228. Wise KJ, Gillespie NB, Stuart JA, Krebs MP, Birge RR (2002) Optimization of bacteriorhodopsin for bioelectronic devices. Trends Biotechnol 20(9):387–394. https://doi.org/10.1016/S0167-7799(02)02023-1

    Article  CAS  Google Scholar 

  229. Xie BB, Wang Q, Guo WW, Cui G (2017) The excited-state decay mechanism of 2,4-dithiothymine in the gas phase, microsolvated surroundings, and aqueous solution. Phys Chem Chem Phys 19(11):7689–7698. https://doi.org/10.1039/c7cp00478h

    Article  CAS  Google Scholar 

  230. Yan EC, Kazmi MA, De S, Chang BS, Seibert C, Marin EP, Mathies RA, Sakmar TP (2002) Function of extracellular loop 2 in rhodopsin: Glutamic acid 181 modulates stability and absorption wavelength of metarhodopsin II. Biochemistry 41(11):3620–3627. https://doi.org/10.1021/bi0160011

    Article  CAS  PubMed Central  Google Scholar 

  231. Yan ECY, Kazmi MA, Ganim Z, Hou JM, Pan D, Chang BSW, Sakmar TP, Mathies RA (2003) Retinal counterion switch in the photoactivation of the G protein-coupled receptor rhodopsin. Proc Natl Acad Sci 100(16):9262–9267. https://doi.org/10.1073/pnas.1531970100

    Article  CAS  Google Scholar 

  232. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393(1–3):51–57. https://doi.org/10.1016/j.cplett.2004.06.011

    Article  CAS  Google Scholar 

  233. Zhang X, Herbert JM (2014) Excited-state deactivation pathways in uracil versus hydrated uracil: Solvatochromatic shift in the 1n\(\pi \)* state is the key. J Phys Chem B 118(28):7806–7817. https://doi.org/10.1021/jp412092f

    Article  CAS  Google Scholar 

  234. Zhang Y, de La Harpe K, Beckstead AA, Improta R, Kohler B (2015) UV-induced proton transfer between DNA strands. J Am Chem Soc 137(22):7059–7062. https://doi.org/10.1021/jacs.5b03914

    Article  CAS  Google Scholar 

  235. Zou X, Dai X, Liu K, Zhao H, Song D, Su H (2014) Photophysical and photochemical properties of 4-thiouracil: time-resolved ir spectroscopy and DFT studies. J Phys Chem B 118(22):5864–5872. https://doi.org/10.1021/jp501658a

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the European Union’s Horizon 2020 research and innovation program under grant agreement No. 814492. M. G acknowledges the support from the European Research Council Advanced Grant STRATUS (ERC-2011-AdG No. 291198). I.R. acknowledges the use of HPC resources of the Pôle Scientifique de Modélisation Numérique (PSMN) at the École Normale Supérieure de Lyon, France. M.G. and I. R. acknowledge support by the French Agence National de la Recherche (FEMTO-2DNA, ANR-15-CE29-0010). Francesco Segatta and Vishal Kumar Jaiswal are gratefully acknowledged for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Garavelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Conti, I., Bonfanti, M., Nenov, A., Rivalta, I., Garavelli, M. (2021). Photo-Active Biological Molecular Materials: From Photoinduced Dynamics to Transient Electronic Spectroscopies. In: Andruniów, T., Olivucci, M. (eds) QM/MM Studies of Light-responsive Biological Systems. Challenges and Advances in Computational Chemistry and Physics, vol 31. Springer, Cham. https://doi.org/10.1007/978-3-030-57721-6_2

Download citation

Publish with us

Policies and ethics