A method is proposed for carrying out molecular dynamics simulations of processes that involve electronic transitions. The time dependent electronic Schrödinger equation is solved self‐consistently with the classical mechanical equations of motion of the atoms. At each integration time step a decision is made whether to switch electronic states, according to probabilistic ‘‘fewest switches’’ algorithm. If a switch occurs, the component of velocity in the direction of the nonadiabatic coupling vector is adjusted to conserve energy. The procedure allows electronic transitions to occur anywhere among any number of coupled states, governed by the quantum mechanical probabilities. The method is tested against accurate quantal calculations for three one‐dimensional, two‐state models, two of which have been specifically designed to challenge any such mixed classical–quantal dynamical theory. Although there are some discrepancies, initial indications are encouraging. The model should be applicable to a wide variety of gas‐phase and condensed‐phase phenomena occurring even down to thermal energies.

1.
M. F. Herman and E. Kluk, in Dynamical Processes in Condensed Matter, edited by M. W. Evans (Wiley, New York, 1985), p. 577.
2.
E. E. Nikitin, Theory of Elementary Atomic and Molecular Processes in Gases (Clarendon, Oxford, 1974).
3.
M. S. Child, in Atom‐Molecule Collision Theory, edited by R. B. Bernstein (Plenum, New York, 1979), p. 427.
4.
M. Baer, in Theory of Chemical Reaction Dynamics, edited by M. Baer (CRC, Boca Raton, 1985), Vol. II, p. 219.
5.
P.
Pechukas
,
Phys. Rev.
181
,
174
(
1969
).
6.
P.
Pechukas
and
J. P.
Davis
,
J. Chem. Phys.
56
,
4970
(
1972
).
7.
J. C.
Tully
and
R. K.
Preston
,
J. Chem. Phys.
55
,
562
(
1971
).
8.
J. C. Tully, in Dynamics of Molecular Collisions edited by W. H. Miller (Plenum, New York, 1976), Part B, p. 217.
9.
W. H.
Miller
and
T. F.
George
,
J. Chem. Phys.
56
,
5637
(
1972
).
10.
W. H.
Miller
,
Adv. Chem. Phys.
25
,
69
(
1974
).
11.
W. H.
Miller
and
C. W.
McCurdy
,
J. Chem. Phys.
69
,
5163
(
1978
);
C. W.
McCurdy
,
H. D.
Meyer
, and
W. H.
Miller
,
J. Chem. Phys.
70
,
3177
(
1979
).,
J. Chem. Phys.
H. D.
Meyer
and
W. H.
Miller
,
J. Chem. Phys.
70
,
3214
(
1979
); ,
J. Chem. Phys.
H. D.
Meyer
and
W. H.
Miller
,
72
,
2272
(
1980
).,
J. Chem. Phys.
12.
K. J.
Sebastian
,
Chem. Phys. Lett.
81
,
14
(
1981
).
13.
M. F.
Herman
,
J. Chem. Phys.
76
,
2949
(
1982
);
M. F.
Herman
,
79
,
2771
(
1983
); ,
J. Chem. Phys.
M. F.
Herman
,
81
,
754
,
764
(
1984
); ,
J. Chem. Phys.
M. F.
Herman
,
87
,
4779
(
1987
); ,
J. Chem. Phys.
M. F.
Herman
and
E.
Kluk
,
Chem. Phys.
91
,
27
(
1984
).
14.
D. A.
Micha
,
J. Chem. Phys.
78
,
7139
(
1983
);
P. K.
Swaminathan
,
B. C.
Garrett
, and
C. S.
Murthy
,
J. Chem. Phys.
88
,
2822
(
1988
).,
J. Chem. Phys.
15.
L. J.
Dunne
,
J. N.
Murrell
, and
J. G.
Stamper
,
Chem. Phys. Lett.
112
,
497
(
1984
).
16.
H. K.
McDowell
,
J. Chem. Phys.
83
,
772
(
1985
);
H. K.
McDowell
,
86
,
5763
(
1987
).,
J. Chem. Phys.
17.
B.
Carmeli
and
D.
Chandler
,
J. Chem. Phys.
82
,
3400
(
1985
).
18.
S.
Sawada
and
H.
Metiu
,
J. Chem. Phys.
84
,
227
(
1986
);
B.
Jackson
and
H.
Metiu
,
J. Chem. Phys.
85
,
4129
(
1986
).,
J. Chem. Phys.
19.
D.
Dehareng
,
Chem. Phys.
110
,
375
(
1986
).
20.
P. G.
Wolynes
,
J. Chem. Phys.
86
,
1957
(
1987
);
P. G.
Wolynes
,
87
,
6559
(
1987
).,
J. Chem. Phys.
21.
H.
Nakamura
,
J. Chem. Phys.
87
,
4031
(
1987
).
22.
J. E.
Straub
and
B. J.
Berne
,
J. Chem. Phys.
87
,
6111
(
1987
).
23.
J. R.
Stine
and
J. T.
Muckerman
,
J. Chem. Phys.
65
,
3975
(
1976
);
J. R.
Stine
and
J. T.
Muckerman
,
68
,
185
(
1978
); ,
J. Chem. Phys.
J. R.
Stine
and
J. T.
Muckerman
,
J. Phys. Chem.
91
,
459
(
1987
).
24.
D. P.
Ali
and
W. H.
Miller
,
J. Chem. Phys.
78
,
6640
(
1983
).
25.
N. C.
Blais
and
D. G.
Truhlar
,
J. Chem. Phys.
79
,
1334
(
1983
);
N. C.
Blais
,
D. G.
Truhlar
, and
C. A.
Mead
,
J. Chem. Phys.
89
,
6204
(
1988
).,
J. Chem. Phys.
26.
R. E.
Cline
, Jr.
and
P. G.
Wolynes
,
J. Chem. Phys.
86
,
3836
(
1987
).
27.
C. W.
Eaker
,
J. Chem. Phys.
87
,
4532
(
1987
).
28.
G.
Parlant
and
E. A.
Gislason
,
J. Chem. Phys.
91
,
4416
(
1989
);
B. Space and D. F. Coker, J. Chem. Phys. (in press).
29.
M. H.
Mittleman
,
Phys. Rev.
122
,
449
(
1961
).
30.
J. B.
Delos
,
W. B.
Thorson
, and
S. K.
Knudsen
,
Phys. Rev. A
6
,
709
(
1972
).
31.
G. D.
Billing
,
Chem. Phys. Lett.
30
,
391
(
1975
).
32.
D.
Kumomoto
and
R.
Silbey
,
J. Chem. Phys.
75
,
5164
(
1981
).
33.
D. J.
Diestler
,
J. Chem. Phys.
78
,
2240
(
1983
).
34.
Z.
Kirson
,
R. B.
Gerber
,
A.
Nitzan
, and
M. A.
Ratner
,
Surf. Sci.
137
,
527
(
1984
);
Z.
Kirson
,
R. B.
Gerber
,
A.
Nitzan
, and
M. A.
Ratner
,
151
,
531
(
1985
).,
Surf. Sci.
35.
S.
Sawada
,
A.
Nitzan
, and
H.
Metiu
,
Phys. Rev. B
32
,
851
(
1985
).
36.
K. J.
Schafer
,
J. D.
Garcia
, and
N. H.
Kwong
,
Phys. Rev. B
36
,
1872
(
1987
).
37.
Z.
Kotler
,
R.
Kosloff
, and
A.
Nitzan
,
Chem. Phys. Lett.
153
,
483
(
1988
).
38.
M.
Amarouche
,
F. X.
Gadea
, and
J.
Dump
,
Chem. Phys.
130
,
145
(
1989
).
39.
A. T.
Amos
,
K. W.
Sulston
, and
S. G.
Davidson
,
Adv. Chem. Phys.
76
,
335
(
1989
).
40.
H. S. W.
Massey
,
Rep. Progr. Phys.
12
,
248
(
1949
).
41.
D. Chandler, ACS National Meeting, Miami Beach, 1989 (unpublished).
42.
J. C.
Tully
,
J. Chem. Phys.
60
,
3042
(
1974
);
State to State Chemistry, edited by P. R. Brooks and E. F. Hayes, ACS Symposium Series 56, (ACS, Washington, DC, 1977), p. 206.
43.
F. Webster, P. J. Rossky, and R. A. Friesner (unpublished).
44.
D.
Kosloff
and
R.
Kosloff
,
J. Comp. Phys.
52
,
35
(
1983
).
45.
M. J. Romanelli, in Mathematical Methods for Digital Computers, edited by A. Ralston and H. S. Wilf (Wiley, New York, 1960), Chap. 9.
46.
J. N.
Onuchic
and
P. G.
Wolynes
,
J. Phys. Chem.
92
,
6495
(
1988
).
47.
An alternative prescription for damping has been proposed in Ref. 15 and
L. J.
Dunne
,
Int. J. Q. Chem.
32
,
31
(
1987
).
This content is only available via PDF.
You do not currently have access to this content.