Skip to main content

Microwave Remote Sensing Monitoring and Global Climate Change Problems

  • Chapter
  • First Online:
Microwave Remote Sensing Tools in Environmental Science

Abstract

The problem of global environmental change is the subject of global ecoinformatics in the context of which information technologies have been developed to ensure the combined use of various data on the past and present state of the Climate-Nature System (CNSS). The creation of a CNSS model based on knowledge and available data, and combined with an adaptive evolutionary concept of geo-information monitoring, which allows for the interconnection of the CNSS model and the global data collection regime, can be considered an important step in global ecoinformatics. As a result, the structure of the CNSS can be optimized to achieve sustainable interaction between nature and human society and to create an international strategy for coordinated use of natural ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 189.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alastuey A, Querol X, Rodroguez S, Plana F, Lopez-Soler A, Ruiz C, Mantilla E (2004) Monitoring of atmospheric particulate matter around sources of secondary inorganic aerosol. Atmos Environ 38(30):4979–4992

    Article  Google Scholar 

  • Alessio S, Longhetto A, Richiardone R (2004) Evolutionary spectral analysis of European climatic series. Il Nuovo cimento della Società italiana di fisica C 27(1):73–98

    Google Scholar 

  • Allen M (2002) Climate of the twentieth century: detection of change and attribution of causes. Weather 57(8):296–303

    Article  Google Scholar 

  • Andersson E, Kahnert M (2016) Coupling aerosol optics to the MATCH (v5.5.0) chemical transport model and the SALSA (V1) aerosol microphysics module. Geosci Model Dev 9(5):1803–1826

    Article  Google Scholar 

  • Andronova NG, Schlesinger ME (2001) Objective estimation of the probability density function for climate sensitivity. J Geophys Res 106(D19):22,605–22,611

    Article  Google Scholar 

  • Anisimov O, Reneva S (2006) Permafrost and changing climate: the Russian perspective. Ambio 35:169–175

    Article  Google Scholar 

  • Baliunas S (2002) The Kyoto protocol and global warming. Imprimis 31(3):1–7

    Google Scholar 

  • Bazilevich NI, Rodin LE (1967) Diagrammatic map of producrivity and biological cycle of basic terrestrial plant types. Proc All Union Geogr Soc 99(3):190–194. [in Russian]

    Google Scholar 

  • Biktash L (2017) Long-term global temperature variations under total solar irradiance, cosmic rays, and volcanic activity. J Adv Res 8(4):329–332

    Article  Google Scholar 

  • Bjorkstrom A (1979) A model of CO2 in interaction between atmosphere, oceans and land biota. In: Bolin B (ed) Global carbon cycle, SCOPE 13. Willey, Chichester, pp 403–457

    Google Scholar 

  • Bolin R, Sukumar R (2000) Global perspective. In: Watson RT, Noble IR, Bolin R et al (eds) Land use, land-use change, and forestry. Cambridge University Press, Cambridge, pp 23–51

    Google Scholar 

  • Bornstein R (1999) Urban induced convergence zones and air pollution episodes. Preprint Volume, International Conference on Air Quality Management, 15–19 November 1999, Darussalem, Brunei, pp 51–54

    Google Scholar 

  • Bory A, Biscaye PE, Grousset FE (2003) Two distinct seasonal Asian source regions for mineral dust deposited in Greenland (NorthGRIP). Geophys Res Lett 30(4):16/1–16/4

    Article  Google Scholar 

  • Boucher O (2015) Atmospheric aerosols. Springer, Dordrecht

    Google Scholar 

  • Bounoua L, Defries R, Collatz GJ, Sellers P, Khan H (2002) Effects of land cover conversion on surface climate. Clim Change 52(1–2):29–64

    Article  Google Scholar 

  • Bousquet P, Tyler SC, Peylin P, Van Der Werf GR, Prigent C, Hauglustaine DA, Dlugokencky EJ, Miller JB, Ciais P, White J, Steele LP, Schmidt M, Ramonet M, Papa F, Lathière J, Langenfelds RL, Carouge C, Brunke E-G (2006) Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature 443(7110):439–443

    Article  Google Scholar 

  • Brasseur GP (2017) Modeling of atmospheric chemistry. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Cahill CF (2003) Asian aerosol transport to Alaska during ACE-Asia. J Geophys Res-Atmos 108(D23):ACE 32-1–ACE 32-7

    Article  Google Scholar 

  • Chattopadhyay G, Chakraborthy P, Chattopadhyay S (2012) Mann-Kendall trend analysis of tropospheric ozone and its modeling using ARIMA. Theor Appl Climatol 110:321–328

    Article  Google Scholar 

  • Chobadian A, Goddard AJH, Gosman AD (1985) Numerical simulation of coastal internal boundary layer developments and a comparison with simple models. In: Wispelaere et al (eds) Air pollution modeling and its application, vol IV. Plenum Press, New York, pp 343–358

    Google Scholar 

  • Chou M-D, Chan PK, Wang M (2002) Aerososl radiative forcing derived from Sea-WiFS-retrieved aerosol optical properties. J Atmos Sci 59(3):748–757

    Article  Google Scholar 

  • Christensen TR, Prentice IC, Kaplan J, Íaxeltine A, Sitch S (1996) Methane flux from northern wetlands and tundra. Tellus B Chem Phys Meteorol 48(5):409–416

    Article  Google Scholar 

  • Cihlar J, Denning S, Ahern F, Arino O, Belward A, Bretherton F, Cramer W, Dedieu G, Field C, Francey R, Gommes R, Gosz J, Hibbard K, Igarashi T, Kabat P, Olson D, Plummer S, Rasool I, Ranpach M, Scholes R, Townshend J, Valentini R, Wickland D (2002) Initiative to quantify terrestrial carbon sources and sinks. EOS Trans 83(1):1. 6–7

    Article  Google Scholar 

  • Collinz M, Senior CA (2002) Projections of future climate change. Weather 57(8):283–287

    Article  Google Scholar 

  • Coumou D, Rahmstorf S (2012) A decade of weather extremes. Nat Clim Chang 2:491–496

    Article  Google Scholar 

  • Cracknell AP, Varotsos CA (2011) New aspects of global climate-dynamics research and remote sensing. Int J Remote Sens 32(3):579–600

    Article  Google Scholar 

  • Cracknell AP, Krapivin VF, Varotsos CA (eds) (2009) Global climatology and ecodynamics: anthropogenic changes to planet earth. Springer/Praxis, Chichester

    Google Scholar 

  • Degermendzhi AG (2009) New directions in biophysical ecology. In: Cracknell AP, Krapivin VF, Varotsos CA (eds) Global climatology and ecodynamics. Springer/Praxis, Chichester, pp 379–396

    Chapter  Google Scholar 

  • Dementjeva TV (2000) Emission of gases from peat-bog ecosystems. In: Proceedings of the second international methane mitigation conference, June 18–23, 2000, Novosibirsk, p 223

    Google Scholar 

  • Despres A, Rancillac F, Bouville A (1986) First result of the data processing of the VIth European campaign on remote – sensing of air pollution. In: Wispelaere et al (eds) Air pollution modeling and its application, vol V. Plenum Press, New York, pp 371–382

    Google Scholar 

  • Ding XL, Li ZW, Zhu JJ, Feng GC, Long JP (2008) Atmospheric effects on InSAR measurements and their mitigation. Sensors (Basel) 8(9):5426–5448

    Article  Google Scholar 

  • Doherty OM, Riemer N, Hameed S (2012) Control of Saharan mineral dust transport to Barbados in winter by the Intertropical Convergence Zone over West Africa. J Geophys Res 117:D19117

    Article  Google Scholar 

  • Doney SC, Lindsay K, Moore JK (2003) Global ocean carbon cycle modeling. In: Fasham MJR (ed) Ocean biogeochemistry. Springer, Berlin, pp 217–238

    Chapter  Google Scholar 

  • Ebel A, Memmesheimer M, Jakobs HJ (2007) Chemical perturbations in the planetary boundary layer and their relevance for chemistry transport modelling. Bound-Layer Meteorol 125:265–278

    Article  Google Scholar 

  • Eliasson B, Riemer P, Wokaun A (1999) Greenhouse gas control technologies. Elsevier, Hardboun

    Google Scholar 

  • Ellsaesser HW (2002) The current status of global warming. Energy Environ 13(1):125–129

    Article  Google Scholar 

  • Essex C, McKitrick R (2002) Taken by storm. The troubled science, policy and politics of global warming. Key Porter Books, Toronto

    Google Scholar 

  • Fan S, Gloor M, Mahlman J, Pacala S, Sarmiento J, Takahashi T, Trans P (1998) A large terrestrial carbon sink in North Amarica implied by atmospheric and oceanic carbon dioxide data and models. Science 282:442–446

    Article  Google Scholar 

  • Filatov NN (2004) Climate of Karelia: variability and impact on water objects and watersheds. Karel Science Centre of RAS, Petrozavodsk. [in Russian]

    Google Scholar 

  • Folland CK, Renwick JA, Salinger MJ, Mullan AB (2002) Relative influences of the interdecadal Pacific oscillation and ENSO on the South Pacific convergence zone. Geophys Res Lett 29(13):21–21

    Article  Google Scholar 

  • Francis D, Eayrs C, Chaboureau J-P, Mote T, Holland DM (2019) A meandering polar jet caused the development of a Saharan cyclone and the transport of dust toward Greenland. Adv Sci Res 16:49–56

    Article  Google Scholar 

  • Friedlingstein P, Bopp L, Ciais P, Dufresne JL, Fairhead L, LeTreut H, Monfray P, Orr J (2001) Positive feedback between future climate change and the carbon cycle. Geophys Res Lett 28:1543–1546

    Article  Google Scholar 

  • Fung I (2000) Variable carbon sinks. Science 290(5495):1313–1314

    Article  Google Scholar 

  • Gale J, Freund P (2000) Reducing methane emissions to combat global climate change: the role Russia can play. In: Proceedings of the second international methane mitigation conference, June 18–23, 2000, Novosibirsk, p 73

    Google Scholar 

  • Garcia-Barrón L, Pita MF (2004) Stochastic analysis of time series of temperatures in the south-west of the Iberian Peninsula. Atmosfera 17(4):225–244

    Google Scholar 

  • Giorgi F, Bi X, Qian Y (2003) Indirect and direct effects of anthropogenic sulfate on the climate of East Asia as simulated with a regional coupled climate-chemistry aerosol model. Clim Chang 58:345–376

    Article  Google Scholar 

  • Gregory D, Morcrette J-J, Jakob C, Beljaars ACM, Stockdale T (2000) Revision of convection, radiation and cloud schemes in the ECMWF integrated forecasting system. Qartely J Roy Met Soc 126:1685–1710

    Article  Google Scholar 

  • Griggs DJ, Noguer M (2002) Climate change 2001: the scientific basis. Contribution of working group 1 to the third assessment report of the intergovernmental panel on climate change. Weather 57(8):267–269

    Article  Google Scholar 

  • Hansen JE, Sato M (2001) Trends of measured climate forcing agents. Proc Natl Acad Sci U S A 98(26):14,778–14,783

    Article  Google Scholar 

  • Härkönen S (2011) Estimating forest growth and carbon balance on climate-sensitive forest growth and remote sensing data. In: Proceedings of the COST FP0603 “Modelling forest ecosystems – concepts, data and application”, May 9–13, 2011 Kaprun, Austria, p 63

    Google Scholar 

  • Hartmann DL (2002) Tropical surprises. Science 295(5556):811–812

    Article  Google Scholar 

  • Hassler B, Bodeker GE, Dameris M (2008) Technical note: a new global database of trace gases and aerosols from multiple sources of high vertical resolution measurements. Atmos Chem Phys 8:5403–5421

    Article  Google Scholar 

  • Hirose T (2005) Development of the Monsi-Saeki theory on canopy structure and function. Ann Bot 95:483–494

    Article  Google Scholar 

  • Holzer M, McKendry IG, Jaffe DA (2003) Springtime trans-Pacific atmospheric transport from east Asia: a transit time probability density function approach. J Geophys Res 108(D22):ACL11/1–ACL11/17

    Article  Google Scholar 

  • Houghton RA (1999) The annual net flux of carbon to the atmosphere from changes in land use 1850–1990. Tellus B 518:298–313

    Article  Google Scholar 

  • Houghton JT, Yihmi D (eds) (2001) Climate change. The scientific basis, The contribution of WG1 of the IPCC to the IPCC Third Assessment Report. TAR Cambridge University Press, Cambridge

    Google Scholar 

  • Houghton JT, Filho GM, Calander BA, Harris N, Kattenberg A, Maskell K (1996) Climate change 1995: the science of climate change, intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Houghton RA, Skole DL, Nobre CA, Hackler JL, Lawrence K, Chomentowski WH (2000) Annual fluxes of carbon from deforestation and regrowth in the Brazilian Amazon. Nature 403(6767):301–304

    Article  Google Scholar 

  • Hubbard KG, Lin X (2002) Realtime data filtering models for air temperature measurements. Geophys Res Lett 29(10):67/1–67/4

    Article  Google Scholar 

  • Hughes GB, Giegengack R, Kritikos HN (1999) Spectral indications of unexpected contributors to фtmospheric CO2 variability? Int J Climatol 19(8):813–820

    Article  Google Scholar 

  • Indermühle A, Stocker TF, Joos F, Fischer H, Smith HJ, Wahlen M, Deck B, Mastroianni D, Tschumi J, Blunier T, Meyer R, Stauffer B (1999) Holocene carbon-cycle dynamics based on CO2 trapped in ice at Taylor Dome, Antarctica. Nature 398(6723):121–126

    Article  Google Scholar 

  • IPCC (2001) Climate change 2001: mitigation. Contribution of working group III to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (2005) IPCC workshop on new emission scenarios (Meeting Report, 29 June–1 July 2005, Laxemburg, Austria). WMO/UNEP, Laxemburg, Austria

    Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. WMO/UNEP, Geneva

    Google Scholar 

  • Jepma C, Meijer H, Uiterkamp TS, Weesie P (2001) Editorial. Energy Environ 12(5–6):III–IX

    Article  Google Scholar 

  • Joos F, Plattner G-K, Stocker TF, Marchal O, Schmittner A (1999) Global warming and marine carbon cycle feedbacks on future atmospheric CO2. Science 284(5413):464–468

    Article  Google Scholar 

  • Katz RW (2002) Techniques for estimating uncertainty in climate change scenarios and impact studies. Clim Res 20:167–185

    Article  Google Scholar 

  • Kelley JJ (1987) Carbon dioxide in the Arctic environment. Int J Earth Sci 35(2):341–354

    Google Scholar 

  • Keppler F, Hamilton JTG, Braß M, Röckmann T (2006) Methane emissions from terrestrial plants under aerobic conditions. Nature 439:187–191

    Article  Google Scholar 

  • Kerr RA (2002) Reducing uncertainties of global warming. Science 295(5552):29–31

    Article  Google Scholar 

  • Knobelspiesse K, Sreeja Nag S (2018) Remote sensing of aerosols with small satellites in formation flight. Atmos Meas Tech 11:3935–3954

    Article  Google Scholar 

  • Kondratyev KY (1998) Multidimensional global change. Wiley/PRAXIS, Chichester

    Google Scholar 

  • Kondratyev KY (1999) Climatic effects of aerosols and clouds. Springer/PRAXIS, Chichester

    Google Scholar 

  • Kondratyev KY, Varotsos CA (1995) Atmospheric greenhouse effect in the context of global climate change. Il Nuovo Cimento C 18(2):123–151

    Article  Google Scholar 

  • Kondratyev KY, Grigoryev Al A, Varotsos CA (2002a) Environmental disasters: anthropogenic and natural. Springer/PRAXIS, Chichester

    Google Scholar 

  • Kondratyev KY, Krapivin VF, Phillips GW (2002b) Global environmental change: modelling and monitoring. Springer, Berlin

    Book  Google Scholar 

  • Kondratyev KY, Krapivin VF, Phillips GW (2003a) Arctic Basin pollution dynamics. In: Bobylev LP, Kondratyev KY, Johannessen OM (eds) Arctic environment variability in the context of global change. Springer/Praxis, Chichester, pp 309–362

    Google Scholar 

  • Kondratyev KY, Krapivin VF, Varotsos CA (2003b) Global carbon cycle and climate change. Springer/PRAXIS, Chichester

    Google Scholar 

  • Kondratyev KY, Krapivin VF, Savinykh VP, Varotsos CA (2004) Global ecodynamics: a multidimensional analysis. Springer-Praxis, Chichester

    Book  Google Scholar 

  • Kondratyev KY, Ivlev LS, Krapivin VF, Varotsos CA (2006) Atmospheric aerosol properties: Formation, processes and impacts. Springer/PRAXIS, Chichester

    Google Scholar 

  • Kosaka Y, Xie S-P (2013) Recent warming hiatus tied to equatorial Pacific surface cooling. Nature 501:403–407

    Article  Google Scholar 

  • Krapivin VF, Shutko AM (2012) Information technologies for remote monitoring of the environment. Springer/Praxis, Chichester

    Book  Google Scholar 

  • Krapivin VF, Varotsos CA (2008) Biogeochemical cycles in globalization and sustainable development. Springer/Praxis, Chichester

    Google Scholar 

  • Krapivin VF, Varotsos CA (2016) Modelling the CO2 atmosphere-ocean flux in the upwelling zones using radiative transfer tools. J Atmos Sol Terr Phys 150–151:47–54

    Article  Google Scholar 

  • Krapivin VF, Varotsos CA, Soldatov VY (2015) New Ecoinformatics tools in environmental science: applications and decision-making. Springer, London

    Book  Google Scholar 

  • Krapivin VF, Varotsos CA, Nghia BQ (2017a) A modeling system for monitoring water quality in lagoons. Water Air Soil Pollut 228(397):1–12

    Google Scholar 

  • Krapivin VF, Varotsos CA, Soldatov VY (2017b) The Earth’s population can reach 14 billion in the 23rd century without significant adverse effects on survivability. Int J Environ Res Public Health 14(8):3–18

    Article  Google Scholar 

  • Krapivin VF, Varotsos CA, Soldatov VY (2017c) Simulation results from a coupled model of carbon dioxide and methane global cycles. Ecol Model 359:69–79

    Article  Google Scholar 

  • Krapivin VF, Nitu C, Varotsos CA (2019) Microwave remote sensing tools and ecoinformatics. Matrix Rom, Bucharest

    Google Scholar 

  • Landsberg J (2011) Modelling forest ecosystems: state of the art, challenges, and future directions. Can J For Res 33:385–397

    Article  Google Scholar 

  • Ledley TS, Sundquist ET, Schwartz SE, Hall DK, Fellows JD, Killeen TL (1999) Climate change and greenhouse. Eos 80(39):453–474

    Article  Google Scholar 

  • Lenoble J, Remer L, Tanre D (eds) (2013) Aerosol remote sensing. Springer, Berlin/Heidelberg

    Google Scholar 

  • Levinson DH, Waple AM (2004) State of the climate in 2003. Bull Am Meteorol Soc 85(6):1–72

    Article  Google Scholar 

  • Lieth H (1985) A dynamic model of the global carbon flux through the biosphere and its relations to climatic and soil parameters. Int J Biometeorol 29:17–31

    Google Scholar 

  • Lindsey R, Simmon R (2003) Escape from the Amazon. Earth Obs 15(2):8–13

    Google Scholar 

  • Luo C, Mahowald NM, del Corral J (2003) Sensitivity study of meteorological parameters on mineral aerosol mobilization, transport, and distribution. J Geophys Res Atmos 108(D15):AAC5/11–AAC5/21

    Google Scholar 

  • Manizza M, Follows MJ, Dutkiewicz S, Menemenlis D, Hill CN (2013) Changes in the Arctic Ocean CO2 sink (1996–2007): a regional model analysis. Glob Biogeochem Cycles 27:1108–1118

    Article  Google Scholar 

  • Maoa KB, Maa Y, Xiaa L, Chenb WY, Shenc XY, Hed TJ, Xue TR (2014) Global aerosol change in the last decade: an analysis based on MODIS data. Atmos Environ 94:680–686

    Article  Google Scholar 

  • Markowicz KM, Flatau PJ, Vogelmann AM, Quinn PK (2003) Clear-sky infrared aerosol radiative forcing at the surface and the top of the atmosphere. Q J R Meteorol Soc 129:2927–2947

    Article  Google Scholar 

  • Martin BD, Fuelberg HE, Blake NJ, Crawford JH, Logan JA, Blake DR, Sachse GW (2003) Long-range transport of Asian outflow to the equatorial Pacific. J Geophys Res 108(D2):PEM5/1–PEM5/18

    Google Scholar 

  • Matsui H, Mahowald N (2017) Development of a global aerosol model using a two-dimensional sectional method: 2. Evaluation and sensitivity simulations. JAMES 9(4):1887–1920

    Google Scholar 

  • Mayers JC (2004) London’s wettest summer and wettest year – 1903. Weather 59(10):274–278

    Article  Google Scholar 

  • McKitrick R (2002) Trends in data on air temperature obtained with internal correlations taken into account. Izv Russ Geogr Soc 134(3):16–24. (in Russian)

    Google Scholar 

  • Mejer HAJ (2001) The science of greenhouse gases: uncertainties in sources and sinks, and implications for verification. Energy Environ 12(5–6):425–446

    Article  Google Scholar 

  • Melnikova IN, Vasilyev AV (2004) Short-wave solar radiation in the earth’s atmosphere. Springer, Berlin/Heidelberg

    Google Scholar 

  • Metting FB, Smith JL, Amthor JS, de Izaurral RC (2001) Science needs and new technology for increasing soil carbon sequestration. Clim Change 51(1):1–34

    Article  Google Scholar 

  • Metzger RA, Benford G (2001) Sequestering of atmospheric carbon through permanent disposal of crop residue. Clim Change 49(1–2):11–19

    Article  Google Scholar 

  • Mintzer IM (1987) A matter of degrees: the potential for controlling the greenhouse effect, World Resources Institute Research report no. 15. World Resources Institute, Washington, DC

    Google Scholar 

  • Mohr T, Bridge J (2003) The evolution of the integrated global Earth observing system. Stud Earth Space 1:64–73

    Google Scholar 

  • Monahan EC, Dam HG (2001) Bubbles: an estimate of their role in the global oceanic flux of carbon. J Geophys Res 106(C5):9377–9384

    Article  Google Scholar 

  • Monin AS, Obukhov AM (1954) Spatial characteristics of turbulence in the surface layer of the atmosphere. Dokl USSR Acad Sci 93:223–226. [in Russian]

    Google Scholar 

  • Monnin E, Indermühle A, Dällenbach A, Flückiger J, Stauffer B, Stocker TF, Raynaud D, Barnola J-M (2001) Atmospheric CO2 concentrations over the last glacial termination. Science 291(5501):112–114

    Article  Google Scholar 

  • Nefedova EI, Tarko AM (1993) Study of the global carbon cycle using the zonal model in the atmosphere-ocean system. Proc Russ Acad Sci 333(5):645–647. [in Russian]

    Google Scholar 

  • Newell R, Pizer W (2002) Discounting the benefits of climate change policies using uncertain rates. Resources 146:15–20

    Google Scholar 

  • Nielsen TT (1999) Characterization of fire regimes in the experiment for regional sources and sinks of oxidants (EXPRESSO) study area. J Geophys Res 104(D23):30713–30723

    Article  Google Scholar 

  • Nilsson S, Jonas M, Obersteiner M (2002) COP-6: a healing shock? An editorial essay. Clim Change 52(1–2):25–28

    Google Scholar 

  • Nitu C, Krapivin VF, Mkrtchyan FA, Soldatov VY, Dumitrascu A (2019) Information-modeling instrumental system for the water resource diagnostics. In: Proceedings of the 22nd international conference on Control Systems and Computer Science (CSCS), May 29–31, 2019, Bucharest, Romania, p 471

    Google Scholar 

  • Ondov JM, Buckley TJ, Hopke PK, Ogulei D, Parlange MB, Rogge WF, Squibb KS, Johnston MV, Wexler AS (2006) Baltimore supersite: highly time- and size-resolved concentrations of urban PM2.5 and its constituents for resolution of sources and immune responses. Atmos Environ 40:224–237

    Article  Google Scholar 

  • Panikov NS, Dedysh SN (2000) Cold season CH4 and CO2 emission from boreal peat bogs (West Siberia): winter fluxes and thow activation dynamics. Glob Biogeochem Cycles 14:1071–1080

    Article  Google Scholar 

  • Parrish D, Law K (2003) Intercontinental transport and chemical transformation (ITCT-Lagrangian – 2k4). J Geophys Res 108(D15):8–13

    Google Scholar 

  • Pavolonis MJ, Key JR (2003) Antarctic cloud radiative forcing at the surface estimated from the AVHRR Polar Pathfinder and ISCCPDI data sets, 1985–93. J Appl Meteorol Climatol 42:827–840

    Article  Google Scholar 

  • Pielke RA Sr (2001) Carbon sequestration – The need for an integrated climate system approach. Bull Am Meteorol Soc 82(11):20–21

    Google Scholar 

  • Pielke RA Sr (2002) Overlooked issues in the U.S. national climate and IPCC assessments. Clim Change 52(1–2):1–11

    Google Scholar 

  • Pittock AB (2002) What we know and don’t know about climate change: reflections on the IPCC TAR. Clim Change 53(4):393–411

    Article  Google Scholar 

  • Podgorny IA, Ramanathan VA (2001) Modeling study of the direct effect of aerosols over the tropical Indian Ocean. J Geophys Res 104(20):24,097–24,104

    Article  Google Scholar 

  • Raaschou-Nielsen O, Hertel O, Vignati E, Berkowitcz R, Jensen SS, Larsen VB, Lohse C (2000) Evaluation of an air pollution model with respect to use in epidemiologic studies; comparison with measured levels of nitrogen dioxide and benzene. J Expo Anal Environ Epidemiol 10:4–14

    Article  Google Scholar 

  • Ramanathan V, Coakley JA (1978) Climate modelling through radiative – convective models. Rev Geophys 16:465–489

    Article  Google Scholar 

  • Reid PC (2001) Climate change and the continuous plankton recorder survey. Mar Obs 71(353):118–123

    Google Scholar 

  • Reid JS, Kinney JE, Westphal DL, Holben BN, Welton EJ, Tsay S-C, Eleuterio OP, Campbell JR, Christopher SA, Colarco PR, Jonsson HH, Livingston JM, Maring HB, Meier ML, Pilewskie P, Prospero JM, Reid EA, Remer LA, Russel PB, Savoie DL, Smirnov A, Tanré D (2003) Analysis of measurements of Saharan dust by airborne and ground-based remote sensing methods during the Puerto Rico Dust Experiment (PRIDE). J Geophys Res Atmos 108(D19):PRD2/1–PRD2/27

    Google Scholar 

  • Reilly J, Stone PH, Forest CE, Webster MD, Jacoby HD, Prinn RG (2001) Climate change: uncertainty and climate change assessments. Science 293(5529):430–431

    Article  Google Scholar 

  • Romashkin PA, Hurst DF, Elkins JW, Dutton GS, Wamsley PR (1999) Effect of the tropospheric trend on the stratospheric tracer-tracer correlations: methyl chloroform. J Geophys Res 104(D21):26,643–26,652

    Article  Google Scholar 

  • Rosa LP, Ribeiro SK (2001) The present, past, and future contributions to global warming of CO2 emissions from fuels. Clim Change 48(2–4):289–308

    Article  Google Scholar 

  • Rossow WB (2003) Workshop on climate system feedbacks. GEeWEX News 13(1):12–14

    Google Scholar 

  • Schönwiese C-D (2002) Klima in der Diskussion. AFZ/Wald 57(8):386–389

    Google Scholar 

  • Scorer RS (1997) Dynamics of meteorology and climate. Wiley, New York

    Google Scholar 

  • Sellers PJ, Dickinson RE, Randall DA, Betts AK, Hall FG, Berry JA, Collatz GJ, Denning AS, Mooney HA, Nobre CA, Sato N, Field CB, Henderson-Sellers A (1997) Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Science 275:502–509

    Article  Google Scholar 

  • Shamir NJ, Veizer J (2003) Celestial driver of Phanerozoic climate? GSA Today 13(7):4–10

    Article  Google Scholar 

  • Sharkov EA (2003) Passive microwave remote sensing of the Earth. Physical Foundation. Springer, London

    Google Scholar 

  • Shi Z, Xing T, Guang J, Xue Y, Che Y (2019) Aerosol optical depth over the Arctic snow-covered regions derived from dual-viewing satellite observations. Remote Sens 11(8):891

    Article  Google Scholar 

  • Siegenthaler V (1993) Modelling the present-day oceanic carbon cycle. In: Heimann M (ed) The global carbon cycle, NATO ASI Series, 15. Springer, Berlin, pp 387–395

    Google Scholar 

  • Sinik N, Loncar E, Vidic S (1985) The use of field data in average wet deposition modeling. In: Wispelaere et al (eds) Air pollution modeling and its application, vol IV. Plenum Press, New York, pp 155–161

    Google Scholar 

  • Smemo KA, Yavitt JB (2011) Anaerobic oxidation of methane: an underappreciated aspect of methane cycling in peatland ecosystems? Biogeosciences 8:779–793

    Article  Google Scholar 

  • Smith SL, Lewkowicz A, Burn C, Allard M, Throop J (2010) The thermal state of permafrost in Canada – results from the International Polar Year. GEO2010:1217–1221

    Google Scholar 

  • Stohl A (2004) Intercontinental transport of air pollution. Springer, London

    Google Scholar 

  • Stohl A, Eckhardt S, Forster C, James P, Spichtinger N (2003a) On the pathways and timescales of intercontinental air pollution transport. J Geophys Res 108(D23):ACH6/1–ACH6/17

    Article  Google Scholar 

  • Stohl A, Huntrieser H, Richter A, Beirle S, Cooper OR, Eckhardt S, Forster C, James P, Spichtinger N, Wenig M, Wagner T, Burrows JR, Platt U (2003b) Rapid intercontinental air pollution transport associated with a meteorological bomb. Atmos Chem Phys 3:969–985

    Article  Google Scholar 

  • Strassmann KM, Joos F (2018) The Bern Simple Climate Model (BernSCM) v1.0: an extensible and fully documented open-source re-implementation of the Bern reduced-form model for global carbon cycle–climate simulations. Geosci Model Dev 11:1887–1908

    Article  Google Scholar 

  • Tan Z, Zhuang Q (2015) Arctic lakes are continuous methane sources to the atmosphere under warming conditions. Environ Res Lett 10(5):1–9

    Article  Google Scholar 

  • Tang G, Zheng J, Xu X, Yang Z, Graham DE, Gu B, Painter SL, Thornton PE (2016) Biogeochemical modeling of CO2 and CH4 production in anoxic Arctic soil microcosms. Biogeosciences 13:5021–5041

    Article  Google Scholar 

  • Tarko AM (2003) Analysis of global and regional changes in biogeochemical carbon cycle: a spatially distributed model, Interim report, IR-03-041. IIASA, Laxenburg

    Google Scholar 

  • Tomasi С, Kokhanovsky AA, Lupi A, Ritter C, Smirnov A, O’Neill NT, Stone RS, Holben BN, Nyeki S, Wehrli C, Stohl A, Mazzola M, Lanconelli C, Vitale V, Stebel K, Aaltonen V, Leeuw G, Rodriguez E, Herber AB, Radionov VF, Zielinski T, Petelski T, Sakerin SM, Kabanov DM, Xue Y, Mei L, Istomina L, Wagener R, McArthur B, Sobolewski PS, Kivi R, Courcoux Y, Larouche P, Broccardo S, Piketh SJ (2015) Aerosol remote sensing in polar regions. Earth-Sci Rev 140:108–157

    Article  Google Scholar 

  • Toth F, Bruckner T, Füssel H-M, Helm C, Hooss G, Leimbach M, van Minnen J, Petschel-Held G, Schellnhuber H-J, Tothne-Hizsnyik E (2000) ICLIPS – Integrierte Abschätzung von Klimaschutzstrategien: methodisch-naturwissenschaftliche Aspekte, Research Report 01 LK 9605/0. Federal Ministry for Science and Research, Bonn. [in German]

    Google Scholar 

  • Tsushima Y, Manabe S (2001) Influence of cloud feedback on annual variation global mean surface temperature. J Geophys Res 106(D19):22,646–22,655

    Article  Google Scholar 

  • Varotsos CA, Krapivin VF (2017) A new big data approach based on geoecological information-modeling system. Big Earth Data 1(1–2):47–63

    Article  Google Scholar 

  • Varotsos CA, Nitu C, Krapivin VF (2018) Global ecoinformatics: theory and applications. Matrix ROM, Bucharest

    Google Scholar 

  • Vogelmann AM, Flatau PJ, Szcordrak M, Markowicz KM, Minnett PJ (2003) Observations of large aerosol infrared forcing at the surface. Geophys Res Lett 30(12):1655

    Article  Google Scholar 

  • Wang H, Christiansen JH (1986) A reentry plume fumigation model. In: De Wispelaere C et al (eds) Air pollution modeling and its application, vol V. Plenum Press, New York, pp 565–579

    Google Scholar 

  • Wang P-H, Minnis P, Wielicki BA, Wong T (2003) Characteristics of the 1997/1998 El Niño cloud distributions from SAGE-II observations. J Geophys Res 108(D1):5/1–5/11

    Article  Google Scholar 

  • Wang L, Gong W, Ma Y, Zhang M (2013) Modeling regional vegetation NPP variations and their relationships with climate parameters in Wuhan, China. Earth Interact 17:1–4

    Article  Google Scholar 

  • Watson RT, Noble IR, Bolin B, Ravindranath NH, Verardo DJ, Dokken DJ (eds) (2000) Land use, land-use change, and forestry. Cambridge University Press, Cambridge

    Google Scholar 

  • Weaver CP (2003) Efficiency of storm tracks an important climate parameter? The role of cloud radiative forcing in poleward heat transport. J Geophys Res 108(D1):5/1–5/6

    Article  Google Scholar 

  • Widmann M, Jones JM, von Storch H (2004) Reconstruction of large-scale atmospheric circulation and data assimilation in paleoclimatology. PAGES News 12(2):12–13

    Article  Google Scholar 

  • Williams RG, Follows MJ (2011) Ocean dynamics and the carbon cycle. Massachusetts Institute of Technology, Cambridge, MA

    Book  Google Scholar 

  • Wofsy SC (2001) Climate change: where has all the carbon gone? Science 292(5525):2261–2262

    Article  Google Scholar 

  • WSSD (2003) Science and technology for sustainable development, a G8 Action Plan. World summit on sustainable development, 4 September 2002 Johanesburg

    Google Scholar 

  • WSSD (2018) Sustainable development and climate change. 15–17 February 2018 New Delphy, The Energy and Resources Institute. http://www.wsds.teriin.org/index.php

  • Wuebbles D (2002) Oversimplifying the greenhouse. An editorial essay. Clim Change 52(4):3240–3245

    Article  Google Scholar 

  • Xu S, Jaffe P, Mauzerall DL (2007) A process-based model for methane emission from flooded rice paddy systems. Ecol Model 205:475–491

    Article  Google Scholar 

  • Xue Y, He XW, Xu H, Guang J, Guo JP, Mei LL (2014) China Collection 2.0: the aerosol optical depth dataset from the synergetic retrieval of aerosol properties algorithm. Atmos Environ 95:45–58

    Article  Google Scholar 

  • Yabe T, Höller R, Tohno S, Kadahara M (2003) An aerosol climatology at Kyoto: observed local radiative forcing and columnar optical properties. J Appl Meteorol Climatol 42:841–850

    Article  Google Scholar 

  • Zender CS, Bian H, Newman D (2003) Mineral Dust Entrainment and Deposition (DEAD) model: description and 1990s dust climatology. J Geophys Res 108(D14):4416–4423

    Article  Google Scholar 

  • Zhou X, Chang N-B, Li S (2009) Applications of SAR interferometry in Earth and environmental science research. Sensors 9:1876–1912

    Article  Google Scholar 

  • Zlatev Z, Chrisensen J, Hov OA (1992) Eulerian air pollution model for Europe with nonlinear chemistry. J Atmos Chem 15:1–37

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Varotsos, C.A., Krapivin, V.F. (2020). Microwave Remote Sensing Monitoring and Global Climate Change Problems. In: Microwave Remote Sensing Tools in Environmental Science . Springer, Cham. https://doi.org/10.1007/978-3-030-45767-9_8

Download citation

Publish with us

Policies and ethics