Skip to main content

Biotransformation and Toxicities of Aristolochic Acids

  • Chapter
  • First Online:
Mechanisms of Genome Protection and Repair

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1241))

Abstract

Environmental and iatrogenic exposures contribute significantly to human diseases, including cancer. The list of known human carcinogens has recently been extended by the addition of aristolochic acids (AAs). AAs occur primarily in Aristolochia herbs, which are used extensively in folk medicines, including Traditional Chinese Medicine. Ingestion of AAs results in chronic renal disease and cancer. Despite importation bans imposed by certain countries, herbal remedies containing AAs are readily available for purchase through the internet. With recent advancements in mass spectrometry, next generation sequencing, and the development of integrated organs-on-chips, our knowledge of cancers associated with AA exposure, and of the mechanisms involved in AA toxicities, has significantly improved. DNA adduction plays a central role in AA-induced cancers; however, significant gaps remain in our knowledge as to how cellular enzymes promote activation of AAs and how the reactive species selectively bind to DNA and kidney proteins. In this review, I describe pathways for AAs biotransformation, adduction, and mutagenesis, emphasizing novel methods and ideas contributing to our present understanding of AA toxicities in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AA-I:

aristolochic acid I or 8-methoxy-6-nitrophenanthro-[3,4-d]-1,3-dioxole-5-carboxylic acid

AA-II:

aristolochic acid II or 6-nitrophenanthro-[3,4-d]-1,3-dioxole-5-carboxylic acid

AAN:

aristolochic acid nephropathy

AAs:

collective term for various aristolochic acids

AL-DNA:

aristolactam-DNA adduct

AL-I:

aristolactam I

AL-II:

aristolactam II

AL-II-NOH:

N-hydroxyaristolactam II

AL-I-NOH:

N-hydroxyaristolactam I

AL-I-N-OSO3H:

aristolactam-I-N-sulfate or N-sulfonyloxyaristolactam I

BEN:

Balkan endemic nephropathy

ccRCC:

clear cell renal cell carcinoma

CYP1A2/1:

cytochrome P450 1A1 and cytochrome P450 1A2

dA-AL-I:

7-(deoxyadenosine-N6-yl)-aristolactam I

dA-AL-II:

7-(deoxyadenosine-N6-yl)-aristolactam II

dG-AL-I:

7-(deoxyguanosin-N2-yl)-aristolactam I

dG-AL-II:

7-(deoxyguanosin-N2-yl)-aristolactam II

FFPE:

formalin-fixed paraffin-embedded

HCC:

hepatocellular carcinoma

HPLC:

high performance liquid chromatography

IHCC:

intrahepatic cholangiocar-cinoma

MPS:

microfluidic physiological system also known as organs on chips

NAT:

N-acetyltransferase

NQO1:

NAD(P)H:quinone oxidoreductase 1

NR:

nitroreduction

OATs:

organic anion transporters

PAGE:

polyacrylamide gel electrophoresis

PAPS:

3′-phosphoadenosine-5′-phosphosulfate

PHS-1 and PHS-2:

prostaglandin H synthase 1 and 2, also known as cyclooxygenases 1 and 2, Cox-1 and Cox-2, respectively

POR:

also known as CYPOR, cytochrome P450 oxidoreductase

SAR:

structure activity relationship

spp:

species

SULT:

sulfotransferase

TCM:

Traditional Chinese Medicine

TLC:

thin layer chromatography

UPLC-ESI/MSn:

ultraperformance liquid chromatography-electrospray ionization/multistage mass spectrometry

UTUC:

upper urinary tract urothelial carcinoma

XDH or XO:

xanthine dehydrogenase/xanthine oxidase.

References

  • Alexandrov LB, Nik-Zainal S, Wedge DC, Campbell PJ, Stratton MR (2013a) Deciphering signatures of mutational processes operative in human cancer. Cell Rep 3:246–259

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, Bignell GR, Bolli N, Borg A, Borresen-Dale AL, Boyault S, Burkhardt B, Butler AP, Caldas C, Davies HR, Desmedt C, Eils R, Eyfjord JE, Foekens JA, Greaves M, Hosoda F, Hutter B, Ilicic T, Imbeaud S, Imielinski M, Jager N, Jones DT, Jones D, Knappskog S, Kool M, Lakhani SR, Lopez-Otin C, Martin S, Munshi NC, Nakamura H, Northcott PA, Pajic M, Papaemmanuil E, Paradiso A, Pearson JV, Puente XS, Raine K, Ramakrishna M, Richardson AL, Richter J, Rosenstiel P, Schlesner M, Schumacher TN, Span PN, Teague JW, Totoki Y, Tutt AN, Valdes-Mas R, van Buuren MM, van’t Veer L, Vincent-Salomon A, Waddell N, Yates LR, I. Australian Pancreatic Cancer Genome, I.B.C. Consortium, I.M.-S. Consortium, I. PedBrain, Zucman-Rossi J, Futreal PA, McDermott U, Lichter P, Meyerson M, Grimmond SM, Siebert R, Campo E, Shibata T, Pfister SM, Campbell PJ, Stratton MR (2013b) Signatures of mutational processes in human cancer. Nature 500:415–421

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alexandrov LB, Jones PH, Wedge DC, Sale JE, Campbell PJ, Nik-Zainal S, Stratton MR (2015) Clock-like mutational processes in human somatic cells. Nat Genet 47:1402–1407

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Arlt VM, Wiessler M, Schmeiser HH (2000) Using polymerase arrest to detect DNA binding specificity of aristolochic acid in the mouse H-ras gene. Carcinogenesis 21:235–242

    Article  PubMed  CAS  Google Scholar 

  • Arlt VM, Levova K, Barta F, Shi Z, Evans JD, Frei E, Schmeiser HH, Nebert DW, Phillips DH, Stiborova M (2011) Role of P450 1A1 and P450 1A2 in bioactivation versus detoxication of the renal carcinogen aristolochic acid I: studies in Cyp1a1−/−, Cyp1a2−/−, and Cyp1a1/1a2−/− mice. Chem Res Toxicol 24:1710–1719

    Article  PubMed  CAS  Google Scholar 

  • Arlt VM, Meinl W, Florian S, Nagy E, Barta F, Thomann M, Mrizova I, Krais AM, Liu M, Richards M, Mirza A, Kopka K, Phillips DH, Glatt H, Stiborova M, Schmeiser HH (2016) Impact of genetic modulation of SULT1A enzymes on DNA adduct formation by aristolochic acids and 3-nitrobenzanthrone. Arch Toxicol 91(4):1957–1975

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Attaluri S, Bonala RR, Yang IY, Lukin MA, Wen Y, Grollman AP, Moriya M, Iden CR, Johnson F (2010) DNA adducts of aristolochic acid II: total synthesis and site-specific mutagenesis studies in mammalian cells. Nucleic Acids Res 38:339–352

    Article  PubMed  CAS  Google Scholar 

  • Attaluri S, Iden CR, Bonala RR, Johnson F (2014) Total synthesis of the aristolochic acids, their major metabolites, and related compounds. Chem Res Toxicol 27:1236–1242

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aydin S, Dekairelle AF, Ambroise J, Durant JF, Heusterspreute M, Guiot Y, Cosyns JP, Gala JL (2014) Unambiguous detection of multiple TP53 gene mutations in AAN-associated urothelial cancer in Belgium using laser capture microdissection. PLoS One 9:e106301

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Babu E, Takeda M, Nishida R, Noshiro-Kofuji R, Yoshida M, Ueda S, Fukutomi T, Anzai N, Endou H (2010) Interactions of human organic anion transporters with aristolochic acids. J Pharmacol Sci 113:192–196

    Article  PubMed  CAS  Google Scholar 

  • Bakhiya N, Arlt VM, Bahn A, Burckhardt G, Phillips DH, Glatt H (2009) Molecular evidence for an involvement of organic anion transporters (OATs) in aristolochic acid nephropathy. Toxicology 264:74–79

    Article  PubMed  CAS  Google Scholar 

  • Bamias G, Boletis J (2008) Balkan nephropathy: evolution of our knowledge. Am J Kidney Dis 52:606–616

    Article  PubMed  PubMed Central  Google Scholar 

  • Batuman V (2006) Fifty years of Balkan endemic nephropathy: daunting questions, elusive answers. Kidney Int 69:644–646

    Article  PubMed  CAS  Google Scholar 

  • Baudoux TE, Pozdzik AA, Arlt VM, De Prez EG, Antoine MH, Quellard N, Goujon JM, Nortier JL (2012) Probenecid prevents acute tubular necrosis in a mouse model of aristolochic acid nephropathy. Kidney Int 82:1105–1113

    Article  PubMed  CAS  Google Scholar 

  • Bieler CA, Stiborova M, Wiessler M, Cosyns JP, van Ypersele de Strihou C, Schmeiser HH (1997) 32P-post-labelling analysis of DNA adducts formed by aristolochic acid in tissues from patients with Chinese herbs nephropathy. Carcinogenesis 18:1063–1067

    Article  PubMed  CAS  Google Scholar 

  • Boelsterli UA, Ho HK, Zhou S, Leow KY (2006) Bioactivation and hepatotoxicity of nitroaromatic drugs. Curr Drug Metab 7:715–727

    Article  PubMed  CAS  Google Scholar 

  • Brasche H (1968) Results with Tardolyt in poor surgical wound healing. Med Monatsschr 22:368–370

    PubMed  CAS  Google Scholar 

  • Broschard TH, Wiessler M, von der Lieth CW, Schmeiser HH (1994) Translesional synthesis on DNA templates containing site-specifically placed deoxyadenosine and deoxyguanosine adducts formed by the plant carcinogen aristolochic acid. Carcinogenesis 15:2331–2340

    Article  PubMed  CAS  Google Scholar 

  • Broschard TH, Wiessler M, Schmeiser HH (1995) Effect of site-specifically located aristolochic acid DNA adducts on in vitro DNA synthesis by human DNA polymerase alpha. Cancer Lett 98:47–56

    Article  PubMed  CAS  Google Scholar 

  • Bunel V, Souard F, Antoine M-H, Stevigny C, Nortier JL (2017) This is an update of Dickman, K.G., Grollman, A.P., Nephrotoxicity of natural products: aristolochic acid and fungal toxins (2010). In: McQueen CA (ed) Comprehensive toxicology. Academic, Oxford, pp 433–458

    Google Scholar 

  • Carter DC, Ho JX (1994) Structure of serum albumin. Adv Protein Chem 45:153–203

    Article  PubMed  CAS  Google Scholar 

  • Castells X, Karanovic S, Ardin M, Tomic K, Xylinas E, Durand G, Villar S, Forey N, Le Calvez-Kelm F, Voegele C, Karlovic K, Misic M, Dittrich D, Dolgalev I, McKay J, Shariat SF, Sidorenko VS, Fernandes A, Heguy A, Dickman KG, Olivier M, Grollman AP, Jelakovic B, Zavadil J (2015) Low-coverage exome sequencing screen in formalin-fixed paraffin-embedded tumors reveals evidence of exposure to carcinogenic aristolochic acid. Cancer Epidemiol Biomark Prev 24:1873–1881

    Article  CAS  Google Scholar 

  • Chan W, Cui L, Xu G, Cai Z (2006) Study of the phase I and phase II metabolism of nephrotoxin aristolochic acid by liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 20:1755–1760

    Article  PubMed  CAS  Google Scholar 

  • Chan W, Luo HB, Zheng Y, Cheng YK, Cai Z (2007) Investigation of the metabolism and reductive activation of carcinogenic aristolochic acids in rats. Drug Metab Dispos 35:866–874

    Article  PubMed  CAS  Google Scholar 

  • Chan W, Pavlovic NM, Li W, Chan CK, Liu J, Deng K, Wang Y, Milosavljevic B, Kostic EN (2016) Quantitation of aristolochic acids in corn, wheat grain, and soil samples collected in Serbia: identifying a novel exposure pathway in the etiology of Balkan endemic nephropathy. J Agric Food Chem 64:5928–5934

    Article  PubMed  CAS  Google Scholar 

  • Chan CK, Liu Y, Pavlovic NM, Chan W (2018) Etiology of Balkan endemic nephropathy: an update on aristolochic acids exposure mechanisms. Chem Res Toxicol 31:1109–1110

    Article  PubMed  CAS  Google Scholar 

  • Chan CK, Pavlovic NM, Chan W (2019) Development of a novel liquid chromatography-tandem mass spectrometric method for aristolochic acids detection: application in food and agricultural soil analyses. Food Chem 289:673–679

    Article  PubMed  CAS  Google Scholar 

  • Chang SY, Weber EJ, Sidorenko VS, Chapron A, Yeung CK, Gao C, Mao Q, Shen D, Wang J, Rosenquist TA, Dickman KG, Neumann T, Grollman AP, Kelly EJ, Himmelfarb J, Eaton DL (2017) Human liver-kidney model elucidates the mechanisms of aristolochic acid nephrotoxicity. JCI Insight 2(22):pii: 95978

    Article  Google Scholar 

  • Chen YY, Chung JG, Wu HC, Bau DT, Wu KY, Kao ST, Hsiang CY, Ho TY, Chiang SY (2010) Aristolochic acid suppresses DNA repair and triggers oxidative DNA damage in human kidney proximal tubular cells. Oncol Rep 24:141–153

    PubMed  CAS  Google Scholar 

  • Chen M, Gong L, Qi X, Xing G, Luan Y, Wu Y, Xiao Y, Yao J, Li Y, Xue X, Pan G, Ren J (2011) Inhibition of renal NQO1 activity by dicoumarol suppresses nitroreduction of aristolochic acid I and attenuates its nephrotoxicity. Toxicol Sci 122:288–296

    Article  PubMed  CAS  Google Scholar 

  • Chen CH, Dickman KG, Moriya M, Zavadil J, Sidorenko VS, Edwards KL, Gnatenko DV, Wu L, Turesky RJ, Wu XR, Pu YS, Grollman AP (2012) Aristolochic acid-associated urothelial cancer in Taiwan. Proc Natl Acad Sci U S A 109:8241–8246

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen CH, Dickman KG, Huang CY, Moriya M, Shun CT, Tai HC, Huang KH, Wang SM, Lee YJ, Grollman AP, Pu YS (2013) Aristolochic acid-induced upper tract urothelial carcinoma in Taiwan: clinical characteristics and outcomes. Int J Cancer 133:14–20

    Article  PubMed  CAS  Google Scholar 

  • Chen CJ, Yang YH, Lin MH, Lee CP, Tsan YT, Lai MN, Yang HY, Ho WC, Chen PC, G. Health Data Analysis in Taiwan Research (2018) Herbal medicine containing aristolochic acid and the risk of hepatocellular carcinoma in patients with hepatitis B virus infection. Int J Cancer 143(7):1578–1587

    Article  PubMed  CAS  Google Scholar 

  • Cosyns JP (2003) Aristolochic acid and ‘Chinese herbs nephropathy’: a review of the evidence to date. Drug Saf 26:33–48

    Article  PubMed  CAS  Google Scholar 

  • Cosyns JP, Jadoul M, Squifflet JP, De Plaen JF, Ferluga D, van Ypersele de Strihou C (1994) Chinese herbs nephropathy: a clue to Balkan endemic nephropathy? Kidney Int 45:1680–1688

    Article  PubMed  CAS  Google Scholar 

  • Cyranoski D (2018) Why Chinese medicine is heading for clinics around the world. Nature 561:448–450

    Article  PubMed  CAS  Google Scholar 

  • Dawson WR (1927) Birthwort: a study of the progress of medicinal botany through twenty-two centuries. Pharm J Pharmacist 396–397:427–430

    Google Scholar 

  • Dickman KG, Sweet DH, Bonala R, Ray T, Wu A (2011) Physiological and molecular characterization of aristolochic acid transport by the kidney. J Pharmacol Exp Ther 338:588–597

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dong H, Suzuki N, Torres MC, Bonala RR, Johnson F, Grollman AP, Shibutani S (2006) Quantitative determination of aristolochic acid-derived DNA adducts in rats using 32P-postlabeling/polyacrylamide gel electrophoresis analysis. Drug Metab Dispos 34:1122–1127

    Article  PubMed  CAS  Google Scholar 

  • F.D.A. Administration (2001) Aristolochic acid: listing of botanical ingredients of concern [Internet]. [cited 2013 Nov 2013]. Available from: http://www.fda.gov/Food/RecallsOutbreaksEmergencies/SafetyAlertsAdvisories/ucm095283.htm

  • Feng C, Xie X, Wu M, Li C, Gao M, Liu M, Qi X, Ren J (2013) Tanshinone I protects mice from aristolochic acid I-induced kidney injury by induction of CYP1A. Environ Toxicol Pharmacol 36:850–857

    Article  PubMed  CAS  Google Scholar 

  • Fernando RC, Schmeiser HH, Scherf HR, Wiessler M (1993) Formation and persistence of specific purine DNA adducts by 32P-postlabelling in target and non-target organs of rats treated with aristolochic acid I. IARC Sci Publ 124:167–171

    CAS  Google Scholar 

  • Filitis LN, Massagetov PS (1961) On the antineoplastic activity of aristolochic acid. Vopr Onkol 7(8):97–98

    PubMed  CAS  Google Scholar 

  • Fordyce JA, Nice CC (2008) Antagonistic, stage-specific selection on defensive chemical sequestration in a toxic butterfly. Evol Int J Org Evol 62:1610–1617

    Article  Google Scholar 

  • Gao Y, Liang A, Fan X, Hu L, Hao F, Li Y (2019) Safety research in traditional Chinese medicine: methods, applications, and outlook. Engineering 5:76–82

    Article  CAS  Google Scholar 

  • Gifford FJ, Gifford RM, Eddleston M, Dhaun N (2017) Endemic nephropathy around the world. Kidney Int Rep 2:282–292

    Article  PubMed  Google Scholar 

  • Gillerot G, Jadoul M, Arlt VM, van Ypersele De Strihou C, Schmeiser HH, But PP, Bieler CA, Cosyns JP (2001) Aristolochic acid nephropathy in a Chinese patient: time to abandon the term “Chinese herbs nephropathy”? Am J Kidney Dis 38:E26

    Article  PubMed  CAS  Google Scholar 

  • Gillet LC, Scharer OD (2006) Molecular mechanisms of mammalian global genome nucleotide excision repair. Chem Rev 106:253–276

    Article  PubMed  CAS  Google Scholar 

  • Glatt H (2000) Sulfotransferases in the bioactivation of xenobiotics. Chem Biol Interact 129:141–170

    Article  PubMed  CAS  Google Scholar 

  • Goodenough AK, Schut HA, Turesky RJ (2007) Novel LC-ESI/MS/MS(n) method for the characterization and quantification of 2′-deoxyguanosine adducts of the dietary carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine by 2-D linear quadrupole ion trap mass spectrometry. Chem Res Toxicol 20:263–276

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grollman AP (2013) Aristolochic acid nephropathy: harbinger of a global iatrogenic disease. Environ Mol Mutagen 54:1–7

    Article  PubMed  CAS  Google Scholar 

  • Grollman AP, Marcus DM (2016) Global hazards of herbal remedies: lessons from Aristolochia: the lesson from the health hazards of Aristolochia should lead to more research into the safety and efficacy of medicinal plants. EMBO Rep 17:619–625

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grollman AP, Shibutani S, Moriya M, Miller F, Wu L, Moll U, Suzuki N, Fernandes A, Rosenquist T, Medverec Z, Jakovina K, Brdar B, Slade N, Turesky RJ, Goodenough AK, Rieger R, Vukelic M, Jelakovic B (2007) Aristolochic acid and the etiology of endemic (Balkan) nephropathy. Proc Natl Acad Sci U S A 104:12129–12134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grollman AP, Scarborough J, Jelakovic B (2009) Aristolochic acid nephropathy: an environmental and Iatrogenic disease. Elsevier, Amsterdam

    Google Scholar 

  • Gruia AT, Oprean C, Ivan A, Cean A, Cristea M, Draghia L, Damiescu R, Pavlovic NM, Paunescu V, Tatu CA (2018) Balkan endemic nephropathy and aristolochic acid I: an investigation into the role of soil and soil organic matter contamination, as a potential natural exposure pathway. Environ Geochem Health 40:1437–1448

    Article  PubMed  CAS  Google Scholar 

  • Hanawalt PC, Spivak G (2008) Transcription-coupled DNA repair: two decades of progress and surprises. Nat Rev Mol Cell Biol 9:958–970

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto K, Bonala R, Johnson F, Grollman AP, Moriya M (2016a) Y-family DNA polymerase-independent gap-filling translesion synthesis across aristolochic acid-derived adenine adducts in mouse cells. DNA Repair 46:55–60

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hashimoto K, Zaitseva IN, Bonala R, Attaluri S, Ozga K, Iden CR, Johnson F, Moriya M, Grollman AP, Sidorenko VS (2016b) Sulfotransferase-1A1-dependent bioactivation of aristolochic acid I and N-hydroxyaristolactam I in human cells. Carcinogenesis 37:647–655

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hedwall PR (1961) Einflus der Aristolochiasaure auf die Nierenfunktionen von Ratten. Naunyn Schmeideberg Arch Exp Path 24:550

    Article  Google Scholar 

  • Heinrich M, Chan J, Wanke S, Neinhuis C, Simmonds MS (2009) Local uses of Aristolochia species and content of nephrotoxic aristolochic acid 1 and 2--a global assessment based on bibliographic sources. J Ethnopharmacol 125:108–144

    Article  PubMed  CAS  Google Scholar 

  • Hideg K, Hankovszky OH, Mehes J (1963) Estimation of aristolochic acid and some of its derivatives by paper chromatography and spectrophotometry in body fluids. Acta Physiol Acad Sci Hung 23:6

    Google Scholar 

  • Hoang ML, Chen CH, Sidorenko VS, He J, Dickman KG, Yun BH, Moriya M, Niknafs N, Douville C, Karchin R, Turesky RJ, Pu YS, Vogelstein B, Papadopoulos N, Grollman AP, Kinzler KW, Rosenquist TA (2013) Mutational signature of aristolochic acid exposure as revealed by whole-exome sequencing. Sci Transl Med 5:197ra102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hoang ML, Chen CH, Chen PC, Roberts NJ, Dickman KG, Yun BH, Turesky RJ, Pu YS, Vogelstein B, Papadopoulos N, Grollman AP, Kinzler KW, Rosenquist TA (2016) Aristolochic acid in the etiology of renal cell carcinoma. Cancer Epidemiol Biomark Prev 25:1600–1608

    Article  CAS  Google Scholar 

  • Hollstein M, Marion MJ, Lehman T, Welsh J, Harris CC, Martel-Planche G, Kusters I, Montesano R (1994) p53 mutations at A:T base pairs in angiosarcomas of vinyl chloride-exposed factory workers. Carcinogenesis 15:1–3

    Article  PubMed  CAS  Google Scholar 

  • Hollstein M, Moriya M, Grollman AP, Olivier M (2013) Analysis of TP53 mutation spectra reveals the fingerprint of the potent environmental carcinogen, aristolochic acid. Mutat Res 753:41–49

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hranjec T, Kovac A, Kos J, Mao W, Chen JJ, Grollman AP, Jelakovic B (2005) Endemic nephropathy: the case for chronic poisoning by aristolochia. Croat Med J 46:116–125

    PubMed  Google Scholar 

  • Hsieh SC, Lin IH, Tseng WL, Lee CH, Wang JD (2008) Prescription profile of potentially aristolochic acid containing Chinese herbal products: an analysis of National Health Insurance data in Taiwan between 1997 and 2003. Chin Med 3:13

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu SL, Zhang HQ, Chan K, Mei QX (2004) Studies on the toxicity of Aristolochia manshuriensis (Guanmuton). Toxicology 198:195–201

    Article  PubMed  CAS  Google Scholar 

  • Ivic M (1969) Etiology of endemic nephropathy. Lijec Vjesn 91:1273–1281

    PubMed  CAS  Google Scholar 

  • Ivic M (1970) The problem of etiology of endemic nephropathy. Acta Fac Meicare Naissensis 1:9

    Google Scholar 

  • Jackson L, Kofman S, Weiss A, Brodovsky H (1964) Aristolochic acid (Nsc-50413): phase I clinical study. Cancer Chemother Rep 1 42:35–37

    CAS  Google Scholar 

  • Jadot I, Decleves AE, Nortier J, Caron N (2017) An integrated view of aristolochic acid nephropathy: update of the literature. Int J Mol Sci 18(2):pii: E297

    Article  CAS  Google Scholar 

  • Jelakovic B, Castells X, Tomic K, Ardin M, Karanovic S, Zavadil J (2015) Renal cell carcinomas of chronic kidney disease patients harbor the mutational signature of carcinogenic aristolochic acid. Int J Cancer 136:2967–2972

    Article  PubMed  CAS  Google Scholar 

  • Jiang F, Doudna JA (2017) CRISPR-Cas9 structures and mechanisms. Annu Rev Biophys 46:505–529

    Article  PubMed  CAS  Google Scholar 

  • Karlgren M, Simoff I, Keiser M, Oswald S, Artursson P (2018) CRISPR-Cas9 – a new addition to the drug metabolism and disposition tool box. Drug Metab Dispos 46:1776–1786

    Article  PubMed  CAS  Google Scholar 

  • Kedderis GL, Miwa GT (1988) The metabolic activation of nitroheterocyclic therapeutic agents. Drug Metab Rev 19:33–62

    Article  PubMed  CAS  Google Scholar 

  • Krumbiegel G, Hallensleben J, Mennicke WH, Rittmann N, Roth HJ (1987) Studies on the metabolism of aristolochic acids I and II. Xenobiotica 17:981–991

    Article  PubMed  CAS  Google Scholar 

  • Kumar V, Poonam, Prasad AK, Parmar VS (2003) Naturally occurring aristolactams, aristolochic acids and dioxoaporphines and their biological activities. Nat Prod Rep 20:565–583

    Article  PubMed  CAS  Google Scholar 

  • Kuo PC, Li YC, Wu TS (2012) Chemical constituents and pharmacology of the aristolochia (madou ling) species. J Tradit Complement Med 2:249–266

    Article  PubMed  PubMed Central  Google Scholar 

  • Kupchan SM, Doskotch RW (1962) Tumor inhibitors. I. aristolochic acid, the active principle of Aristolochia indica. J Med Pharm Chem 91:657–659

    Article  PubMed  CAS  Google Scholar 

  • Kupchan SM, Merianos JJ (1968) The isolation and structural elucidation of novel derivatives of aristolochic acid from Aristolochia indica. J Organomet Chem 33:3735–3738

    Article  CAS  Google Scholar 

  • Kupchan SM, Wormser HC (1965) Tumor inhibitors. X. Photochemical synthesis of phenanthrenes. Synthesis of aristolochic acid and related compounds. J Organomet Chem 30:3792–3800

    Article  CAS  Google Scholar 

  • Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, Skora AD, Luber BS, Azad NS, Laheru D, Biedrzycki B, Donehower RC, Zaheer A, Fisher GA, Crocenzi TS, Lee JJ, Duffy SM, Goldberg RM, de la Chapelle A, Koshiji M, Bhaijee F, Huebner T, Hruban RH, Wood LD, Cuka N, Pardoll DM, Papadopoulos N, Kinzler KW, Zhou S, Cornish TC, Taube JM, Anders RA, Eshleman JR, Vogelstein B, Diaz LA Jr (2015) PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 372:2509–2520

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK, Lu S, Kemberling H, Wilt C, Luber BS, Wong F, Azad NS, Rucki AA, Laheru D, Donehower R, Zaheer A, Fisher GA, Crocenzi TS, Lee JJ, Greten TF, Duffy AG, Ciombor KK, Eyring AD, Lam BH, Joe A, Kang SP, Holdhoff M, Danilova L, Cope L, Meyer C, Zhou S, Goldberg RM, Armstrong DK, Bever KM, Fader AN, Taube J, Housseau F, Spetzler D, Xiao N, Pardoll DM, Papadopoulos N, Kinzler KW, Eshleman JR, Vogelstein B, Anders RA, Diaz LA Jr et al (2017) Science 357:409–413

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leung EM, Chan W (2014) Noninvasive measurement of aristolochic acid-DNA adducts in urine samples from aristolochic acid-treated rats by liquid chromatography coupled tandem mass spectrometry: evidence for DNA repair by nucleotide-excision repair mechanisms. Mutat Res 766–767:1–6

    Article  PubMed  CAS  Google Scholar 

  • Levova K, Moserova M, Kotrbova V, Sulc M, Henderson CJ, Wolf CR, Phillips DH, Frei E, Schmeiser HH, Mares J, Arlt VM, Stiborova M (2011) Role of cytochromes P450 1A1/2 in detoxication and activation of carcinogenic aristolochic acid I: studies with the hepatic NADPH: cytochrome P450 reductase null (HRN) mouse model. Toxicol Sci 121:43–56

    Article  PubMed  CAS  Google Scholar 

  • Li XW, Yokota S, Wang D, Wang X, Shoyama Y, Cai SQ (2014) Localization of aristolochic acid in mouse kidney tissues by immunohistochemistry using an anti-AA-I and AA-II monoclonal antibody. Am J Chin Med 42:1453–1469

    Article  PubMed  CAS  Google Scholar 

  • Li W, Hu Q, Chan W (2015) Mass spectrometric and spectrofluorometric studies of the interaction of aristolochic acids with proteins. Sci Rep 5:15192

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li W, Chan CK, Liu Y, Yao J, Mitic B, Kostic EN, Milosavljevic B, Davinic I, Orem WH, Tatu CA, Dedon PC, Pavlovic NM, Chan W (2018a) Aristolochic acids as persistent soil pollutants: determination of risk for human exposure and nephropathy from plant uptake. J Agric Food Chem 66:11468–11476

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li W, Chan CK, Wong YL, Chan KKJ, Chan HW, Chan W (2018b) Cooking methods employing natural anti-oxidant food additives effectively reduced concentration of nephrotoxic and carcinogenic aristolochic acids in contaminated food grains. Food Chem 264:270–276

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Chan CK, Jin L, Wong SK, Chan W (2019) Quantitation of DNA adducts in target and non-target organs of aristolochic acid I-exposed rats by LC-MS/MS coupled with stable isotope-dilution method: correlating DNA adduct levels with organotropic activities. Chem Res Toxicol 32:397–399

    Article  PubMed  CAS  Google Scholar 

  • Lord GM, Hollstein M, Arlt VM, Roufosse C, Pusey CD, Cook T, Schmeiser HH (2004) DNA adducts and p53 mutations in a patient with aristolochic acid-associated nephropathy. Am J Kidney Dis 43:e11–e17

    Article  PubMed  Google Scholar 

  • Lukin M, Zaliznyak T, Johnson F, de los Santos C (2012) Structure and stability of DNA containing an aristolactam II-dA lesion: implications for the NER recognition of bulky adducts. Nucleic Acids Res 40:2759–2770

    Article  PubMed  CAS  Google Scholar 

  • Maggini V, Menniti-Ippolito F, Firenzuoli F (2018) Aristolochia, a nephrotoxic herb, still surfs on the Web, 15 years later. Intern Emerg Med 13:811–813

    Article  PubMed  Google Scholar 

  • Martinčic M (1958) Toxische einwirkungen der Aristolochia clematitis auf die Niere des Pferdes. Veterinarski Arhiv 27:51–59

    Google Scholar 

  • Martinek V, Barta F, Hodek P, Frei E, Schmeiser HH, Arlt VM, Stiborova M (2017) Comparison of the oxidation of carcinogenic aristolochic acid I and II by microsomal cytochromes P450 in vitro: experimental and theoretical approaches. Monatsh Chem 148:1971–1981

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meinl W, Pabel U, Osterloh-Quiroz M, Hengstler JG, Glatt H (2006) Human sulphotransferases are involved in the activation of aristolochic acids and are expressed in renal target tissue. Int J Cancer 118:1090–1097

    Article  PubMed  CAS  Google Scholar 

  • Mengs U (1983) On the histopathogenesis of rat forestomach carcinoma caused by aristolochic acid. Arch Toxicol 52:209–220

    Article  PubMed  CAS  Google Scholar 

  • Mengs U (1987) Acute toxicity of aristolochic acid in rodents. Arch Toxicol 59:328–331

    Article  PubMed  CAS  Google Scholar 

  • Mengs U (1988) Tumour induction in mice following exposure to aristolochic acid. Arch Toxicol 61:504–505

    Article  PubMed  CAS  Google Scholar 

  • Mengs U, Stotzem CD (1993) Renal toxicity of aristolochic acid in rats as an example of nephrotoxicity testing in routine toxicology. Arch Toxicol 67:307–311

    Article  PubMed  CAS  Google Scholar 

  • Mengs U, Lang W, Poch JA (1982) The carcinogenic action of aristolochic acid in rats. Arch Toxicol 51:107–119

    Article  CAS  Google Scholar 

  • Michl J, Ingrouille MJ, Simmonds MS, Heinrich M (2014) Naturally occurring aristolochic acid analogues and their toxicities. Nat Prod Rep 31:676–693

    Article  PubMed  CAS  Google Scholar 

  • Monien BH, Muller C, Bakhiya N, Donath C, Frank H, Seidel A, Glatt H (2009) Probenecid, an inhibitor of transmembrane organic anion transporters, alters tissue distribution of DNA adducts in 1-hydroxymethylpyrene-treated rats. Toxicology 262:80–85

    Article  PubMed  CAS  Google Scholar 

  • Moriya M, Slade N, Brdar B, Medverec Z, Tomic K, Jelakovic B, Wu L, Truong S, Fernandes A, Grollman AP (2011) TP53 mutational signature for aristolochic acid: an environmental carcinogen. Int J Cancer 129:1532–1536

    Article  PubMed  CAS  Google Scholar 

  • Ng AWT, Poon SL, Huang MN, Lim JQ, Boot A, Yu W, Suzuki Y, Thangaraju S, Ng CCY, Tan P, Pang ST, Huang HY, Yu MC, Lee PH, Hsieh SY, Chang AY, Teh BT, Rozen SG (2017) Aristolochic acids and their derivatives are widely implicated in liver cancers in Taiwan and throughout Asia. Sci Transl Med 9(412):pii: eaan6446

    Article  CAS  Google Scholar 

  • Nortier JL, Martinez MC, Schmeiser HH, Arlt VM, Bieler CA, Petein M, Depierreux MF, De Pauw L, Abramowicz D, Vereerstraeten P, Vanherweghem JL (2000) Urothelial carcinoma associated with the use of a Chinese herb (Aristolochia fangchi). N Engl J Med 342:1686–1692

    Article  PubMed  CAS  Google Scholar 

  • Nortier JL, Schmeiser HH, Muniz Martinez MC, Arlt VM, Vervaet C, Garbar CH, Daelemans P, Vanherweghem JL (2003) Invasive urothelial carcinoma after exposure to Chinese herbal medicine containing aristolochic acid may occur without severe renal failure. Nephrol Dial Transplant 18:426–428

    Article  PubMed  CAS  Google Scholar 

  • NTP 12th Report on Carcinogens (2011) Report on carcinogens: carcinogen profiles/U.S. Dept. of Health and Human Services, Public Health Service, National Toxicology Program, pp 45–49

    Google Scholar 

  • Okuno Y, Bonala R, Attaluri S, Johnson F, Grollman AP, Sidorenko VS, Oda Y, (2019) Bioactivation mechanisms of ‐hydroxyaristolactams: Nitroreduction metabolites of aristolochic acids. Environ Mol Mutagen 60(9):792–806

    Google Scholar 

  • Pailer MP, Pruckmayr G (1959) Uber die basischen Inhaltsstoffe der Aristolochia clematitis L. Monatshete fur Chemie und verwandte Teile anderer Wissenschaften 90:3

    Google Scholar 

  • Pavlovic NM, Maksimovic V, Maksimovic JD, Orem WH, Tatu CA, Lerch HE, Bunnell JE, Kostic EN, Szilagyi DN, Paunescu V (2013) Possible health impacts of naturally occurring uptake of aristolochic acids by maize and cucumber roots: links to the etiology of endemic (Balkan) nephropathy. Environ Geochem Health 35:215–226

    Article  PubMed  CAS  Google Scholar 

  • Peng L, Turesky RJ (2011) Mass spectrometric characterization of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine N-oxidized metabolites bound at Cys34 of human serum albumin. Chem Res Toxicol 24:2004–2017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Petljak M, Alexandrov LB (2016) Understanding mutagenesis through delineation of mutational signatures in human cancer. Carcinogenesis 37:531–540

    Article  PubMed  CAS  Google Scholar 

  • Pfau W, Schmeiser HH, Wiessler M (1990a) 32P-postlabelling analysis of the DNA adducts formed by aristolochic acid I and II. Carcinogenesis 11:1627–1633

    Article  PubMed  CAS  Google Scholar 

  • Pfau W, Schmeiser HH, Wiessler M (1990b) Aristolochic acid binds covalently to the exocyclic amino group of purine nucleotides in DNA. Carcinogenesis 11:313–319

    Article  PubMed  CAS  Google Scholar 

  • Pfau W, Schmeiser HH, Wiessler M (1991) N6-adenyl arylation of DNA by aristolochic acid II and a synthetic model for the putative proximate carcinogen. Chem Res Toxicol 4:581–586

    Article  PubMed  CAS  Google Scholar 

  • Pharmacopoeia of the People’s Republic of China (2015) Pharmacopoeia Commission of the Ministry of Public Health of PRC, Beijing

    Google Scholar 

  • Poon SL, Pang ST, McPherson JR, Yu W, Huang KK, Guan P, Weng WH, Siew EY, Liu Y, Heng HL, Chong SC, Gan A, Tay ST, Lim WK, Cutcutache I, Huang D, Ler LD, Nairismagi ML, Lee MH, Chang YH, Yu KJ, Chan-On W, Li BK, Yuan YF, Qian CN, Ng KF, Wu CF, Hsu CL, Bunte RM, Stratton MR, Futreal PA, Sung WK, Chuang CK, Ong CK, Rozen SG, Tan P, Teh BT (2013) Genome-wide mutational signatures of aristolochic acid and its application as a screening tool. Sci Transl Med 5:197ra101

    Article  PubMed  CAS  Google Scholar 

  • Poon SL, Huang MN, Choo Y, McPherson JR, Yu W, Heng HL, Gan A, Myint SS, Siew EY, Ler LD, Ng LG, Weng WH, Chuang CK, Yuen JS, Pang ST, Tan P, Teh BT, Rozen SG (2015) Mutation signatures implicate aristolochic acid in bladder cancer development. Genome Med 7:38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Priestap HA, Torres MC, Rieger RA, Dickman KG, Freshwater T, Taft DR, Barbieri MA, Iden CR (2012a) Aristolochic acid I metabolism in the isolated perfused rat kidney. Chem Res Toxicol 25:130–139

    Article  PubMed  CAS  Google Scholar 

  • Priestap HA, Barbieri MA, Johnson F (2012b) Aristoxazole analogues. Conversion of 8-nitro-1-naphthoic acid to 2-methylnaphtho[1,2-d]oxazole-9-carboxylic acid: comments on the chemical mechanism of formation of DNA adducts by the aristolochic acids. J Nat Prod 75:1414–1418

    Article  PubMed  CAS  Google Scholar 

  • Purohit V, Basu AK (2000) Mutagenicity of nitroaromatic compounds. Chem Res Toxicol 13:673–692

    Article  PubMed  CAS  Google Scholar 

  • Reddy MV, Randerath K (1986) Nuclease P1-mediated enhancement of sensitivity of 32P-postlabeling test for structurally diverse DNA adducts. Carcinogenesis 7:1543–1551

    Article  PubMed  CAS  Google Scholar 

  • Riches Z, Stanley EL, Bloomer JC, Coughtrie MW (2009) Quantitative evaluation of the expression and activity of five major sulfotransferases (SULTs) in human tissues: the SULT “pie”. Drug Metab Dispos 37:2255–2261

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ringe D, Turesky RJ, Skipper PL, Tannenbaum SR (1988) Structure of the single stable hemoglobin adduct formed by 4-aminobiphenyl in vivo. Chem Res Toxicol 1:22–24

    Article  PubMed  CAS  Google Scholar 

  • Romanov V, Whyard T, Bonala R, Johnson F, Grollman A (2011) Glutamate dehydrogenase requirement for apoptosis induced by aristolochic acid in renal tubular epithelial cells. Apoptosis 16:1217–1228

    Article  PubMed  CAS  Google Scholar 

  • Romanov V, Sidorenko V, Rosenquist TA, Whyard T, Grollman AP (2012) A fluorescence-based analysis of aristolochic acid-derived DNA adducts. Anal Biochem 427:49–51

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rosenquist TA, Grollman AP (2016) Mutational signature of aristolochic acid: clue to the recognition of a global disease. DNA Repair 44:205–211

    Article  PubMed  CAS  Google Scholar 

  • Rosenquist TA, Einolf HJ, Dickman KG, Wang L, Smith A, Grollman AP (2010) Cytochrome P450 1A2 detoxicates aristolochic acid in the mouse. Drug Metab Dispos 38:761–768

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sakolish C, Weber EJ, Kelly EJ, Himmelfarb J, Mouneimne R, Grimm FA, House JS, Wade T, Han A, Chiu WA, Rusyn I (2018) Technology transfer of the microphysiological systems: a case study of the human proximal tubule tissue chip. Sci Rep 8:14882

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sato N, Takahashi D, Chen SM, Tsuchiya R, Mukoyama T, Yamagata S, Ogawa M, Yoshida M, Kondo S, Satoh N, Ueda S (2004) Acute nephrotoxicity of aristolochic acids in mice. J Pharm Pharmacol 56:221–229

    Article  PubMed  CAS  Google Scholar 

  • Scelo G, Riazalhosseini Y, Greger L, Letourneau L, Gonzalez-Porta M, Wozniak MB, Bourgey M, Harnden P, Egevad L, Jackson SM, Karimzadeh M, Arseneault M, Lepage P, How-Kit A, Daunay A, Renault V, Blanche H, Tubacher E, Sehmoun J, Viksna J, Celms E, Opmanis M, Zarins A, Vasudev NS, Seywright M, Abedi-Ardekani B, Carreira C, Selby PJ, Cartledge JJ, Byrnes G, Zavadil J, Su J, Holcatova I, Brisuda A, Zaridze D, Moukeria A, Foretova L, Navratilova M, Mates D, Jinga V, Artemov A, Nedoluzhko A, Mazur A, Rastorguev S, Boulygina E, Heath S, Gut M, Bihoreau MT, Lechner D, Foglio M, Gut IG, Skryabin K, Prokhortchouk E, Cambon-Thomsen A, Rung J, Bourque G, Brennan P, Tost J, Banks RE, Brazma A, Lathrop GM (2014) Variation in genomic landscape of clear cell renal cell carcinoma across Europe. Nat Commun 5:5135

    Article  PubMed  CAS  Google Scholar 

  • Schmeiser HH, Pool BL, Wiessler M (1984) Mutagenicity of the two main components of commercially available carcinogenic aristolochic acid in Salmonella typhimurium. Cancer Lett 23:97–101

    Article  PubMed  CAS  Google Scholar 

  • Schmeiser HH, Pool BL, Wiessler M (1986) Identification and mutagenicity of metabolites of aristolochic acid formed by rat liver. Carcinogenesis 7:59–63

    Article  PubMed  CAS  Google Scholar 

  • Schmeiser HH, Bieler CA, Wiessler M, van Ypersele de Strihou C, Cosyns JP (1996) Detection of DNA adducts formed by aristolochic acid in renal tissue from patients with Chinese herbs nephropathy. Cancer Res 56:2025–2028

    PubMed  CAS  Google Scholar 

  • Schmeiser HH, Frei E, Wiessler M, Stiborova M (1997) Comparison of DNA adduct formation by aristolochic acids in various in vitro activation systems by 32P-post-labelling: evidence for reductive activation by peroxidases. Carcinogenesis 18:1055–1062

    Article  PubMed  CAS  Google Scholar 

  • Schmeiser HH, Nortier JL, Singh R, Gamboa da Costa G, Sennesael J, Cassuto-Viguier E, Ambrosetti D, Rorive S, Pozdzik A, Phillips DH, Stiborova M, Arlt VM (2014) Exceptionally long-term persistence of DNA adducts formed by carcinogenic aristolochic acid I in renal tissue from patients with aristolochic acid nephropathy. Int J Cancer 135:502–507

    Article  PubMed  CAS  Google Scholar 

  • Schulz M, Weist F, Gemanlich M (1971) Dunnschichtchromatographischer Nachweis der Aristolochia-Saure in verschiedenen Korperflussigkeiten. Arztl Forsch (Drug Res) 21:934–936

    CAS  Google Scholar 

  • Shibutani S, Kim SY, Suzuki N (2006) 32P-postlabeling DNA damage assays: PAGE, TLC, and HPLC. Methods Mol Biol 314:307–321

    Article  PubMed  CAS  Google Scholar 

  • Shibutani S, Dong H, Suzuki N, Ueda S, Miller F, Grollman AP (2007) Selective toxicity of aristolochic acids I and II. Drug Metab Dispos 35:1217–1222

    Article  PubMed  CAS  Google Scholar 

  • Shibutani S, Bonala RR, Rosenquist T, Rieger R, Suzuki N, Johnson F, Miller F, Grollman AP (2010) Detoxification of aristolochic acid I by O-demethylation: less nephrotoxicity and genotoxicity of aristolochic acid Ia in rodents. Int J Cancer 127:1021–1027

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sidorenko VS, Yeo JE, Bonala RR, Johnson F, Scharer OD, Grollman AP (2012) Lack of recognition by global-genome nucleotide excision repair accounts for the high mutagenicity and persistence of aristolactam-DNA adducts. Nucleic Acids Res 40:2494–2505

    Article  PubMed  CAS  Google Scholar 

  • Sidorenko VS, Attaluri S, Zaitseva I, Iden CR, Dickman KG, Johnson F, Grollman AP (2014) Bioactivation of the human carcinogen aristolochic acid. Carcinogenesis 35:1814–1822

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sidorenko VS, Dickman KG, Rosenquist T, Bonala R, Attaluri S, Zaitseva I, Iden CR, Johnson F, Grollman AP (2017) Using affinity probes to explore the nephrotoxicity of aristolochic acid. American Association for Cancer Research, Washington DC, p 1342

    Google Scholar 

  • Sistkova J, Hudecek J, Hodek P, Frei E, Schmeiser HH, Stiborova M (2008) Human cytochromes P450 1A1 and 1A2 participate in detoxication of carcinogenic aristolochic acid. Neuro Endocrinol Lett 29:733–737

    PubMed  CAS  Google Scholar 

  • Skipper PL, Tannenbaum SR (1990) Protein adducts in the molecular dosimetry of chemical carcinogens. Carcinogenesis 11:507–518

    Article  PubMed  CAS  Google Scholar 

  • Skipper PL, Tannenbaum SR (1994) Molecular dosimetry of aromatic amines in human populations. Environ Health Perspect 102(Suppl 6):17–21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Skipper PL, Peng X, Soohoo CK, Tannenbaum SR (1994) Protein adducts as biomarkers of human carcinogen exposure. Drug Metab Rev 26:111–124

    Article  PubMed  CAS  Google Scholar 

  • Stiborova M, Mares J, Frei E, Arlt VM, Martinek V, Schmeiser HH (2011) The human carcinogen aristolochic acid i is activated to form DNA adducts by human NAD(P)H:quinone oxidoreductase without the contribution of acetyltransferases or sulfotransferases. Environ Mol Mutagen 52:448–459

    Article  PubMed  CAS  Google Scholar 

  • Stiborova M, Levova K, Barta F, Shi Z, Frei E, Schmeiser HH, Nebert DW, Phillips DH, Arlt VM (2012) Bioactivation versus detoxication of the urothelial carcinogen aristolochic acid I by human cytochrome P450 1A1 and 1A2. Toxicol Sci 125:345–358

    Article  PubMed  CAS  Google Scholar 

  • Stiborova M, Martinek V, Frei E, Arlt VM, Schmeiser HH (2013) Enzymes metabolizing aristolochic acid and their contribution to the development of aristolochic acid nephropathy and urothelial cancer. Curr Drug Metab 14:695–705

    Article  PubMed  CAS  Google Scholar 

  • Stiborova M, Frei E, Arlt VM, Schmeiser HH (2014a) Knockout and humanized mice as suitable tools to identify enzymes metabolizing the human carcinogen aristolochic acid. Xenobiotica 44:135–145

    Article  PubMed  CAS  Google Scholar 

  • Stiborova M, Levova K, Barta F, Sulc M, Frei E, Arlt VM, Schmeiser HH (2014b) The influence of dicoumarol on the bioactivation of the carcinogen aristolochic acid I in rats. Mutagenesis 29:189–200

    Article  PubMed  CAS  Google Scholar 

  • Sudlow G, Birkett DJ, Wade DN (1976) Further characterization of specific drug binding sites on human serum albumin. Mol Pharmacol 12:1052–1061

    PubMed  CAS  Google Scholar 

  • Tannenbaum SR, Skipper PL, Wishnok JS, Stillwell WG, Day BW, Taghizadeh K (1993) Characterization of various classes of protein adducts. Environ Health Perspect 99:51–55

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tay C (2019) TGA advises “extreme caution” after detecting cancer-causing contaminants in Chinese herbal pills. Available from: https://www.nutraingredients-asia.com/Article/2019/2001/2014/TGA-advises-extreme-caution-after-detecting-cancer-causing-contaminants-in-Chinese-herbal-pills

  • Thiele KG, Muehrcke RC, Berning H (1967) Kidney diseases caused by drugs. Dtsch Med Wochenschr 92:1632–1635

    Article  PubMed  CAS  Google Scholar 

  • Toncheva D, Dimitrov T (1996) Genetic predisposition to Balkan endemic nephropathy. Nephron 72:564–569

    Article  PubMed  CAS  Google Scholar 

  • Tornqvist M, Fred C, Haglund J, Helleberg H, Paulsson B, Rydberg P (2002) Protein adducts: quantitative and qualitative aspects of their formation, analysis and applications. J Chromatogr B Anal Technol Biomed Life Sci 778:279–308

    Article  CAS  Google Scholar 

  • Totoki Y, Tatsuno K, Covington KR, Ueda H, Creighton CJ, Kato M, Tsuji S, Donehower LA, Slagle BL, Nakamura H, Yamamoto S, Shinbrot E, Hama N, Lehmkuhl M, Hosoda F, Arai Y, Walker K, Dahdouli M, Gotoh K, Nagae G, Gingras MC, Muzny DM, Ojima H, Shimada K, Midorikawa Y, Goss JA, Cotton R, Hayashi A, Shibahara J, Ishikawa S, Guiteau J, Tanaka M, Urushidate T, Ohashi S, Okada N, Doddapaneni H, Wang M, Zhu Y, Dinh H, Okusaka T, Kokudo N, Kosuge T, Takayama T, Fukayama M, Gibbs RA, Wheeler DA, Aburatani H, Shibata T (2014) Trans-ancestry mutational landscape of hepatocellular carcinoma genomes. Nat Genet 46:1267–1273

    Article  PubMed  CAS  Google Scholar 

  • Tretyakova N, Goggin M, Sangaraju D, Janis G (2012) Quantitation of DNA adducts by stable isotope dilution mass spectrometry. Chem Res Toxicol 25:2007–2035

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Turesky RJ, Skipper PL, Tannenbaum SR (1987) Binding of 2-amino-3-methylimidazo[4,5-f]quinoline to hemoglobin and albumin in vivo in the rat. Identification of an adduct suitable for dosimetry. Carcinogenesis 8:1537–1542

    Article  PubMed  CAS  Google Scholar 

  • Turesky RJ, Yun BH, Brennan P, Mates D, Jinga V, Harnden P, Banks RE, Blanche H, Bihoreau MT, Chopard P, Letourneau L, Lathrop GM, Scelo G (2016) Aristolochic acid exposure in Romania and implications for renal cell carcinoma. Br J Cancer 114:76–80

    Article  PubMed  CAS  Google Scholar 

  • Vaclavik L, Krynitsky AJ, Rader JI (2014) Quantification of aristolochic acids I and II in herbal dietary supplements by ultra-high-performance liquid chromatography-multistage fragmentation mass spectrometry. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 31:784–791

    Article  PubMed  CAS  Google Scholar 

  • Vanhaelen M, Vanhaelen-Fastre R, But P, Vanherweghem JL (1994) Identification of aristolochic acid in Chinese herbs. Lancet 343:174

    Article  PubMed  CAS  Google Scholar 

  • Vanherweghem LJ (1998) Misuse of herbal remedies: the case of an outbreak of terminal renal failure in Belgium (Chinese herbs nephropathy). J Altern Complement Med 4:9–13

    Article  PubMed  CAS  Google Scholar 

  • Vanherweghem JL, Depierreux M, Tielemans C, Abramowicz D, Dratwa M, Jadoul M, Richard C, Vandervelde D, Verbeelen D, Vanhaelen-Fastre R et al (1993) Rapidly progressive interstitial renal fibrosis in young women: association with slimming regimen including Chinese herbs. Lancet 341:387–391

    Article  PubMed  CAS  Google Scholar 

  • Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW (2013) Cancer genome landscapes. Science 339:1546–1558

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Y, Peng L, Bellamri M, Langouet S, Turesky RJ (2015) Mass spectrometric characterization of human serum albumin adducts formed with N-oxidized metabolites of 2-amino-1-methylphenylimidazo[4,5-b]pyridine in human plasma and hepatocytes. Chem Res Toxicol 28:1045–1059

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • World Health Organization (2008) Some traditional herbal medicines, some mycotoxins, naphthalene and styrene, IARC monographs on the evaluation of carcinogenic risks to humans. IARC Press, Lyon

    Google Scholar 

  • Wu TS, Leu YL, Chan YY (2000) Aristolochic acids as a defensive substance for the Aristolochiaceous plant-feeding swallowtail butterfly, Pachliopta aristolochiae interpositus. J Chin Chem Soc 47:221–226

    Article  CAS  Google Scholar 

  • Wu X, Liu J, Huang H, Xue W, Yao X, Jin J (2011) Interaction studies of aristolochic acid I with human serum albumin and the binding site of aristolochic acid I in subdomain IIA. Int J Biol Macromol 49:343–350

    Article  PubMed  CAS  Google Scholar 

  • Xiao Y, Ge M, Xue X, Wang C, Wang H, Wu X, Li L, Liu L, Qi X, Zhang Y, Li Y, Luo H, Xie T, Gu J, Ren J (2008) Hepatic cytochrome P450s metabolize aristolochic acid and reduce its kidney toxicity. Kidney Int 73:1231–1239

    Article  PubMed  CAS  Google Scholar 

  • Xue X, Xiao Y, Zhu H, Wang H, Liu Y, Xie T, Ren J (2008) Induction of P450 1A by 3-methylcholanthrene protects mice from aristolochic acid-I-induced acute renal injury. Nephrol Dial Transplant 23:3074–3081

    Article  PubMed  CAS  Google Scholar 

  • Xue X, Gong LK, Maeda K, Luan Y, Qi XM, Sugiyama Y, Ren J (2011) Critical role of organic anion transporters 1 and 3 in kidney accumulation and toxicity of aristolochic acid I. Mol Pharm 8:2183–2192

    Article  PubMed  CAS  Google Scholar 

  • Yun BH, Rosenquist TA, Sidorenko V, Iden CR, Chen CH, Pu YS, Bonala R, Johnson F, Dickman KG, Grollman AP, Turesky RJ (2012) Biomonitoring of aristolactam-DNA adducts in human tissues using ultra-performance liquid chromatography/ion-trap mass spectrometry. Chem Res Toxicol 25:1119–1131

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yun BH, Rosenquist TA, Nikolic J, Dragicevic D, Tomic K, Jelakovic B, Dickman KG, Grollman AP, Turesky RJ (2013) Human formalin-fixed paraffin-embedded tissues: an untapped specimen for biomonitoring of carcinogen DNA adducts by mass spectrometry. Anal Chem 85:4251–4258

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yun BH, Yao L, Jelakovic B, Nikolic J, Dickman KG, Grollman AP, Rosenquist TA, Turesky RJ (2014) Formalin-fixed paraffin-embedded tissue as a source for quantitation of carcinogen DNA adducts: aristolochic acid as a prototype carcinogen. Carcinogenesis 35:2055–2061

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yun BH, Sidorenko VS, Rosenquist TA, Dickman KG, Grollman AP, Turesky RJ (2015) New approaches for biomonitoring exposure to the human carcinogen aristolochic acid. Toxicol Res 4:763–776

    Article  CAS  Google Scholar 

  • Yun BH, Xiao S, Yao L, Krishnamachari S, Rosenquist TA, Dickman KG, Grollman AP, Murugan P, Weight CJ, Turesky RJ (2017) A rapid throughput method to extract DNA from formalin-fixed paraffin-embedded tissues for biomonitoring carcinogenic DNA adducts. Chem Res Toxicol 30:2130–2139

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang CY, Wang X, Su T, Ma CM, Wen YJ, Shang MY, Li XM, Liu GX, Cai SQ (2005) New aristolochic acid, aristololactam and renal cytotoxic constituents from the stem and leaves of Aristolochia contorta. Pharmazie 60:785–788

    PubMed  CAS  Google Scholar 

  • Zhang HM, Zhao XH, Sun ZH, Li GC, Liu GC, Sun LR, Hou JQ, Zhou W (2018) Recognition of the toxicity of aristolochic acid. J Clin Pharm Ther 44:157–162

    Article  PubMed  CAS  Google Scholar 

  • Zhou L, Fu P, Huang XR, Liu F, Lai KN, Lan HY (2010) Activation of p53 promotes renal injury in acute aristolochic acid nephropathy. J Am Soc Nephrol 21:31–41

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou Y, Bian X, Fang L, He W, Dai C, Yang J (2013) Aristolochic acid causes albuminuria by promoting mitochondrial DNA damage and dysfunction in podocyte. PLoS One 8:e83408

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu S, Wang Y, Jin J, Guan C, Li M, Xi C, Ouyang Z, Chen M, Qiu Y, Huang M, Huang Z (2012) Endoplasmic reticulum stress mediates aristolochic acid I-induced apoptosis in human renal proximal tubular epithelial cells. Toxicol in Vitro 26:663–671

    Article  PubMed  CAS  Google Scholar 

  • Zou S, Li J, Zhou H, Frech C, Jiang X, Chu JS, Zhao X, Li Y, Li Q, Wang H, Hu J, Kong G, Wu M, Ding C, Chen N, Hu H (2014) Mutational landscape of intrahepatic cholangiocarcinoma. Nat Commun 5:5696

    Article  PubMed  CAS  Google Scholar 

  • Zsila F (2013) Subdomain IB is the third major drug binding region of human serum albumin: toward the three-sites model. Mol Pharm 10:1668–1682

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to express her deep gratitude to the Laufer Family and Zickler Foundations for financial support. This review was made possible by the many contributions from my colleagues and collaborators. Thomas Rosenquist developed monoclonal antibodies, which facilitated our studies of aristolochic acid metabolites and aristolactam-proteins in animals. Kathleen Dickman led translational studies of aristolochic acid nephropathy and urothelial cancer. Francis Johnson and Radha Bonala developed novel syntheses of aristolochic acids. Masaaki Moriya and Keiji Hashimoto conducted studies of mutagenesis of aristolactam-DNA adducts and collaborated in our investigations of biotransformation pathways of aristolochic acids. Robert Turesky (University of Minnesota) established mass spectrometry-based methods for detection of adducted DNA. Robert Rieger and John Haley developed methods for quantification of aristolochic acids in complex samples. The author thanks Christopher E. Eyermann for editing the manuscript, and Kathleen G. Dickman, Thomas A. Rosenquist and Arthur P. Grollman for their edits, comments and suggestions, and Cinthia Alvarez-Buonaiuto for help in preparing the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktoriya S. Sidorenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sidorenko, V.S. (2020). Biotransformation and Toxicities of Aristolochic Acids. In: Zharkov, D. (eds) Mechanisms of Genome Protection and Repair. Advances in Experimental Medicine and Biology, vol 1241. Springer, Cham. https://doi.org/10.1007/978-3-030-41283-8_9

Download citation

Publish with us

Policies and ethics