Skip to main content

Sources of Carbon Dioxide and Environmental Issues

  • Chapter
  • First Online:
Sustainable Agriculture Reviews 37

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 37))

Abstract

The rapid increment in the anthropogenic activities has enhanced carbon dioxide (CO2) emissions and has given birth to pressing environmental issues worldwide. CO2 imparts a significant role in global warming that leads to global climate change. The increased dependency on fossil fuels, in the form of coal, oil and natural gas, has raised the concentration of CO2 in the atmosphere from 280 ppm to 413 ppm. In the past decade, the CO2 emissions were taking place at the rate of 2 ppm/year and has led several risks to human life including glacier melting, floods, heat waves, droughts, cyclones, hurricanes, and food security issues. Countries like China, United States, India, Russia, Japan, Korea, Germany, Iran, Canada, United Kingdom, and others contribute the lion’s share in global CO2 emissions.

Burning of fossil fuels adds around 6.5 billion tons of CO2 in the atmosphere every year. In addition, ever growing population has exacerbated the deforestation activities, hence enhancing the CO2 emissions. The population increased from around 1.65 billion in 1900 to nearly 7.4 billion in 2015. Overpopulation accelerate natural resources exploitation resulting in the utilization of fossil fuels at an alarming rate. Natural processes like forest fires and volcanic eruptions are also contributing to global CO2 emissions. Consequently, the climatic shift induced extreme weather events have posed massive damages to planet earth and gravely affected the human life and biodiversity. Since 1960 the extent of weather-related natural disasters increased three times. These disasters have caused more than 60,000 deaths worldwide mainly affecting the developing countries. This chapter aims to pen down the major sources of CO2 emissions and their environmental issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anwar MN, Fayyaz A, Sohail NF, Khokhar MF, Baqar M, Khan WD et al (2018) CO2 capture and storage: a way forward for sustainable environment. J Environ Manag 226:131–144. https://doi.org/10.1016/j.jenvman.2018.08.009

    Article  CAS  Google Scholar 

  • Arnone Iii JA, Verburg PS, Johnson DW, Larsen JD, Jasoni RL, Lucchesi AJ et al (2008) Prolonged suppression of ecosystem carbon dioxide uptake after an anomalously warm year. Nature 455(7211):383

    Article  Google Scholar 

  • Azevedo VG, Sartori S, Campos LM (2018) CO2 emissions: A quantitative analysis among the BRICS nations. Renew Sust Energ Rev 81:107–115. https://doi.org/10.1016/j.rser.2017.07.027

    Article  CAS  Google Scholar 

  • Bender MA, Knutson TR, Tuleya RE, Sirutis JJ, Vecchi GA, Garner ST, Held IM (2010) Modeled impact of anthropogenic warming on the frequency of intense Atlantic hurricanes. Science 327(5964):454–458

    Article  CAS  Google Scholar 

  • Boden TA, Marland G, Andres RJ (2017) Global, regional, and national fossil-fuel CO2 emissions. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge. https://doi.org/10.3334/CDIAC/00001_V2017

    Book  Google Scholar 

  • Burton MR, Sawyer GM, Granieri D (2013) Deep carbon emissions from volcanoes. Rev Mineral Geochem 75(1):323–354. https://doi.org/10.2138/rmg.2013.75.11

    Article  CAS  Google Scholar 

  • Chandel SS, Shrivastva R, Sharma V, Ramasamy P (2016) Overview of the initiatives in renewable energy sector under the national action plan on climate change in India. Renew Sust Energ Rev 54:866–873. https://doi.org/10.1016/j.rser.2015.10.057

    Article  Google Scholar 

  • Chiodini G (2005) Carbon dioxide diffuse degassing and estimation of heat release from volcanic and hydrothermal systems. J Geophys Res 110(B8)

    Google Scholar 

  • Ciais P, Reichstein M, Viovy N, Granier A, Ogée J, Allard V et al (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437(7058):529. https://doi.org/10.1038/nature03972

    Article  CAS  Google Scholar 

  • Co2 emissions from fuel combustion (2017). Retrieved from www.iea.org

  • Cullen NJ, Mölg T, Kaser G, Hussein K, Steffen K, Hardy DR (2006) Kilimanjaro Glaciers: recent areal extent from satellite data and new interpretation of observed 20th century retreat rates. Geophys Res Lett 33(16). https://doi.org/10.1029/2006GL027084

  • da Rocha RP, Reboita MS, Gozzo LF, Dutra LMM, de Jesus EM (2018) Subtropical cyclones over the oceanic basins: a review. Ann N Y Acad Sci 1436:138–156. https://doi.org/10.1111/nyas.13927

    Article  PubMed  Google Scholar 

  • Dinan T (2017) Projected increases in hurricane damage in the United States: the role of climate change and coastal development. Ecol Econ 138:186–198

    Article  Google Scholar 

  • Dolan R, Davis RE (1992) An intensity scale for Atlantic coast northeast storms. J Coast Res:840–853

    Google Scholar 

  • Duvat VK, Volto N, Salmon C (2017) Impacts of category 5 tropical cyclone Fantala (April 2016) on Farquhar Atoll, Seychelles Islands, Indian Ocean. Geomorphology 298:41–62. https://doi.org/10.1016/j.geomorph.2017.09.02

    Article  Google Scholar 

  • Easterling W, Apps M (2005) Assessing the consequences of climate change for food and forest resources: a view from the IPCC, In Increasing Climate Variability and Change. Springer, Dordrecht, pp 165–189

    Google Scholar 

  • Easterling WE, Aggarwal PK, Batima P, Brander KM, Erda L, Howden SM et al (2007) Food, fibre and forest products. Climate Change:273–313

    Google Scholar 

  • Falloon P, Betts R (2010) Climate impacts on European agriculture and water management in the context of adaptation and mitigation—the importance of an integrated approach. Sci Total Environ 408(23):5667–5687. https://doi.org/10.1016/j.scitotenv.2009.05.002

    Article  CAS  PubMed  Google Scholar 

  • FAO (2008) The state of food insecurity in the world 2008, high food prices and food security threats and opportunities. Food and Agriculture Organization of the United Nations, Rome, Italy

    Google Scholar 

  • FAO (2009) The State of Agricultural Commodity Markets 2009. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Francou B, Ramirez E, Cáceres B, Mendoza J (2000) Glacier evolution in the tropical Andes during the last decades of the 20th century: Chacaltaya, Bolivia, and Antizana, Ecuador. AMBIO J Hum Environ 29(7):416–423

    Article  Google Scholar 

  • Gao H, Li H, Duan Z, Ren Z, Meng X, Pan X (2018) Modelling glacier variation and its impact on water resource in the Urumqi Glacier No. 1 in Central Asia. Sci Total Environ 644:1160–1170

    Article  CAS  Google Scholar 

  • García-Llamas P, Suárez-Seoane S, Taboada A, Fernández-Manso A, Quintano C, Fernández-García V et al (2019) Environmental drivers of fire severity in extreme fire events that affect Mediterranean pine forest ecosystems. For Ecol Manag 433:24–32. https://doi.org/10.1016/j.foreco.2018.10.051

    Article  Google Scholar 

  • Garnier J, Le Noë J, Marescaux A, Sanz-Cobena A, Lassaletta L, Silvestre M et al (2019) Long-term changes in greenhouse gas emissions from French agriculture and livestock (1852–2014): from traditional agriculture to conventional intensive systems. Sci Total Environ 660:1486–1501. https://doi.org/10.1016/j.scitotenv.2019.01.048

    Article  CAS  PubMed  Google Scholar 

  • Ghommem M, Hajj MR, Puri IK (2012) Influence of natural and anthropogenic carbon dioxide sequestration on global warming. Ecol Model 235:1–7

    Article  Google Scholar 

  • Gillett NP, Stott PA, Santer BD (2008) Attribution of cyclogenesis region sea surface temperature change to anthropogenic influence. Geophys Res Lett 35(9). https://doi.org/10.1029/2008GL033670

  • Haeberli W, Hohmann R (2008) Climate, glaciers and permafrost in the Swiss Alps 2050: scenarios, consequences and recommendations. In: Proceedings ninth international conference on Permafrost, vol 1. Institute of Northern Engineering, University of Alaska Fairbanks, pp 607–612

    Google Scholar 

  • Handmer J, Honda Y, Kundzewicz ZW, Arnell N, Benito G, Hatfield J, Mohamed IF, Peduzzi P, Wu S, Sherstyukov B, Takahashi K, Yan Z (2012) Changes in impacts of climate extremes: human systems and ecosystems. In: Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner G-K, Allen SK, Tignor M, Midgley PM (eds) Managing the risks of extreme events and disasters to advance climate change adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge, UK/New York, NY, USA, pp 231–290

    Chapter  Google Scholar 

  • Heim RR Jr (2002) A review of twentieth-century drought indices used in the United States. Bull Am Meteorol Soc 83(8):1149–1166

    Article  Google Scholar 

  • Ho DTK (2018) Climate change in Malaysia: Trends, contributors, impacts, mitigation and adaptations. Sci Total Environ

    Google Scholar 

  • Huey RB, Deutsch CA, Tewksbury JJ, Vitt LJ, Hertz PE, Álvarez Pérez HJ, Garland T Jr (2009) Why tropical forest lizards are vulnerable to climate warming. Proc R Soc B Biol Sci 276(1664):1939–1948

    Article  Google Scholar 

  • Im ES, Pal JS, Eltahir EA (2017) Deadly heat waves projected in the densely populated agricultural regions of South Asia. Sci Adv 3(8):e1603322. https://doi.org/10.1126/sciadv.1603322

    Article  PubMed  PubMed Central  Google Scholar 

  • IPCC (2014) In: Core Writing Team, Pachauri RK, Meyer LA (eds) Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. IPCC, Geneva, Switzerland. 151 pp

    Google Scholar 

  • Kamaruddin AH, Din AHM, Pa’suya MF, Omar KM (2016) Long-term sea level trend from tidal data in Malaysia. Paper presented at the Control and System Graduate Research Colloquium (ICSGRC), 2016 7th IEEE

    Google Scholar 

  • Karoly DJ, Wu Q (2005) Detection of regional surface temperature trends. J Clim 18(21):4337–4343

    Article  Google Scholar 

  • Knutson TR, McBride JL, Chan J, Emanuel K, Holland G, Landsea C et al (2010) Tropical cyclones and climate change. Nature Geosci 3(3):157. https://doi.org/10.1038/ngeo779

    Article  CAS  Google Scholar 

  • Kossin JP, Camargo SJ, Sitkowski M (2010) Climate modulation of North Atlantic hurricane tracks. J Clim 23(11):3057–3076. https://doi.org/10.1175/2010JCLI3497.1

    Article  Google Scholar 

  • LaMarche VC, Graybill DA, Fritts HC, Rose MR (1984) Increasing atmospheric carbon dioxide: tree ring evidence for growth enhancement in natural vegetation. Science 225(4666):1019–1021. https://doi.org/10.1126/science.225.4666.1019

    Article  PubMed  Google Scholar 

  • Le Quéré C, Andres RJ, Boden T, Conway T, Houghton RA, House JI et al (2012) The global carbon budget 1959–2011. Earth Syst Sci Data Discuss 5(2):1107–1157. https://doi.org/10.5194/essdd-5-1107-2012

    Article  Google Scholar 

  • Leclercq PW, Oerlemans J, Cogley JG (2011) Estimating the glacier contribution to sea-level rise for the period 1800–2005. Surv Geophys 32(4–5):519–535. https://doi.org/10.1007/s10712-011-9121-7

    Article  Google Scholar 

  • Lee JY, Ellingwood BR (2017) A decision model for intergenerational life-cycle risk assessment of civil infrastructure exposed to hurricanes under climate change. Reliab Eng Syst Saf 159:100–107

    Article  Google Scholar 

  • Lemke P, Ren J, Alley RB, Allison I, Carrasco J, Flato G et al (2007) Observations: changes in snow, ice and frozen ground, climate change 2007: The physical science basis. Contribution of working group i to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 337–383

    Google Scholar 

  • Letcher TM (ed) (2018) Managing Global Warming: an interface of technology and human issues. Academic. https://doi.org/10.1016/B978-0-12-814104-5.00001-6

    Chapter  Google Scholar 

  • Li X, Kang S, Zhang G, Qu B, Tripathee L, Paudyal R et al (2018) Light-absorbing impurities in a southern Tibetan plateau glacier: variations and potential impact on snow albedo and radiative forcing. Atmos Res 200:77–87

    Article  Google Scholar 

  • Liggins F, Betts RA, McGuire B (2010) Projected future climate changes in the context of geological and geomorphological hazards. Philos Trans R Soc A Math Phys Eng Sci 368(1919):2347–2367. https://doi.org/10.1098/rsta.2010.0072

    Article  Google Scholar 

  • Lobell DB, Schlenker W, Costa-Roberts J (2011) Climate trends and global crop production since 1980. Science 333(6042):616–620. https://doi.org/10.1126/science.1204531

    Article  CAS  PubMed  Google Scholar 

  • Luthi D, Le Floch M, Bereiter B, Blunier T, Barnola J-M, Siegenthaler U, Raynaud D, Jouzel J, Fischer H, Kawamura K, Stocker TF (2008) High-resolution carbon dioxide concentration record 650,000-800,000 years before present. Nature 453(7193):379–382

    Article  Google Scholar 

  • Mardones C, Flores B (2018) Effectiveness of a CO2 tax on industrial emissions. Energy Econ 71:370–382. https://doi.org/10.1016/j.eneco.2018.03.018

    Article  Google Scholar 

  • McGuire B (2010) Potential for a hazardous geospheric response to projected future climate changes. Philos Trans R Soc A Math Phys Eng Sci 368(1919):2317–2345. https://doi.org/10.1098/rsta.2010.0080

    Article  CAS  Google Scholar 

  • Meehl GA, Tebaldi C (2004) More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305(5686):994–997. https://doi.org/10.1126/science.1098704

    Article  CAS  PubMed  Google Scholar 

  • Müller C, Cramer W, Hare WL, Lotze-Campen H (2011) Climate change risks for African agriculture. Proc Natl Acad Sci 108(11):4313–4315

    Article  Google Scholar 

  • Nejat P, Jomehzadeh F, Taheri MM, Gohari M, Majid MZA (2015) A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries). Renew Sust Energ Rev 43:843–862. https://doi.org/10.1016/j.rser.2014.11.066

    Article  CAS  Google Scholar 

  • OECD-FAO (2008) OECD-FAO agricultural outlook 2008–2017, Highlights. Organization for Economic Co-operation and Development and Food and Agriculture Organization, Paris, France. www.fao.org/es/ESC/common/ecg/550/en/AgOut2017E.pdf

  • Pachauri RK, Allen MR, Barros VR, Broome J, Cramer W, Christ R, et al (2014) Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change: IPCC

    Google Scholar 

  • Pall P, Aina T, Stone DA, Stott PA, Nozawa T, Hilberts AG et al (2011) Anthropogenic greenhouse gas contribution to flood risk in England and Wales in autumn 2000. Nature 470(7334):382–385. https://doi.org/10.1038/nature09762

    Article  CAS  PubMed  Google Scholar 

  • Pappas D, Chalvatzis KJ, Guan D, Ioannidis A (2018) Energy and carbon intensity: A study on the cross-country industrial shift from China to India and SE Asia. Appl Energy 225:183–194. https://doi.org/10.1016/j.apenergy.2018.04.132

    Article  Google Scholar 

  • Paul F, Kääb A, Maisch M, Kellenberger T, Haeberli W (2004) Rapid disintegration of Alpine glaciers observed with satellite data. Geophys Res Lett 31(21). https://doi.org/10.1029/2004GL020816

    Article  Google Scholar 

  • Peters O, Hertlein C, Christensen K (2001) A complexity view of rainfall. Phys Rev Lett 88(1):018701. https://doi.org/10.1103/PhysRevLett.88.018701

    Article  CAS  PubMed  Google Scholar 

  • Potter C (2018) Ecosystem carbon emissions from 2015 forest fires in interior Alaska. Carbon Balance Manag 13(1):2. https://doi.org/10.1186/s13021-017-0090-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Rahman S, Chang HC, Magill C, Tomkins K, Hehir W (2018) Forest fire occurrence and modeling in Southeastern Australia. In Forest Fire IntechOpen. https://doi.org/10.5772/intechopen.76072

    Google Scholar 

  • Reboita M, da Rocha R, Oliveira D (2019) Key features and adverse weather of the named subtropical cyclones over the Southwestern South Atlantic Ocean. Atmos 10(1):6. https://doi.org/10.3390/atmos10010006

    Article  Google Scholar 

  • Reichert BK, Bengtsson L, Oerlemans J (2002) Recent glacier retreat exceeds internal variability. J Clim 15(21):3069–3081

    Article  Google Scholar 

  • Ritchie H, Roser M (2017) Co2 and other greenhouse gas emissions. Retrieved from https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions

  • Russo S, Dosio A, Graversen RG, Sillmann J, Carrao H, Dunbar MB et al (2014) Magnitude of extreme heat waves in present climate and their projection in a warming world. J Geophys Res Atmos 119(22):12–500. https://doi.org/10.1002/2014JD022098

    Article  Google Scholar 

  • Sarker MA (2018) Numerical modelling of waves and surge from Cyclone Chapala (2015) in the Arabian Sea. Ocean Eng 158:299–310

    Article  Google Scholar 

  • Shakerian F, Kim K-H, Szulejko JE, Park J-W (2015) A comparative review between amines and ammonia as sorptive media for post-combustion CO 2 capture. Appl Energy 148:10–22

    Article  CAS  Google Scholar 

  • Shi A (2003) The impact of population pressure on global carbon dioxide emissions, 1975–1996: evidence from pooled cross-country data. Ecol Econ 44(1):29–42. https://doi.org/10.1016/S0921-8009(02)00223-9

    Article  Google Scholar 

  • Smith LT, Aragao LE, Sabel CE, Nakaya T (2014) Drought impacts on children’s respiratory health in the Brazilian Amazon. Sci Rep 4:3726. https://doi.org/10.1038/srep03726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stott PA, Stone DA, Allen MR (2004) Human contribution to the European heatwave of 2003. Nature 432(7017):610. https://doi.org/10.1038/nature03130

    Article  CAS  PubMed  Google Scholar 

  • Tans P (2008) Trends in atmospheric carbon dioxide: Mauna Loa. NOAA Earth System Research Laboratory (ESRL) 1959–2008 data

    Google Scholar 

  • Victor DG, Zhou D, Ahmed EHM, Dadhich PK, Olivier JGJ, Rogner H-H, Sheikho K, Yamaguchi M (2014) Introductory chapter. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Farahani E, Kadner S, Seyboth K, Adler A, Baum I, Brunner S, Eickemeier P, Kriemann B, Savolainen J, Schlömer S, von Stechow C, Zwickel T, Minx JC (eds) Climate Change 2014: Mitigation of Climate Change. Contribution of working group III to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Viste E, Korecha D, Sorteberg A (2013) Recent drought and precipitation tendencies in Ethiopia. Theor Appl Climatol 112(3–4):535–551. https://doi.org/10.1007/s00704-012-0746-3

    Article  Google Scholar 

  • Waheed R, Chang D, Sarwar S, Chen W (2017) Forest, agriculture, renewable energy, and CO2 emission. J Clean Prod 30:1e8. https://doi.org/10.1016/j.jclepro.2017.10.287

    Article  Google Scholar 

  • Wang Q, Zhao M, Li R, Su M (2018) Decomposition and decoupling analysis of carbon emissions from economic growth: a comparative study of China and the United States. J Clean Prod 197:178–184. https://doi.org/10.1016/j.jclepro.2018.05.285

    Article  Google Scholar 

  • Webster PJ, Holland GJ, Curry JA, Chang HR (2005) Changes in tropical cyclone number, duration, and intensity in a warming environment. Science 309(5742):1844–1846. https://doi.org/10.1126/science.1116448

    Article  CAS  PubMed  Google Scholar 

  • Yang JP, Ding YJ, Liu SY, Tan CP (2015) Vulnerability of mountain glaciers in China to Climate Change. Adv Clim Chang Res 6(3–4):171–180

    Article  Google Scholar 

  • Zemp M, Hoelzle M, Haeberli W (2009) Six decades of glacier mass-balance observations: a review of the worldwide monitoring network. Ann Glaciol 50(50):101–111

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Anwar, M.N. et al. (2019). Sources of Carbon Dioxide and Environmental Issues. In: Inamuddin, Asiri, A., Lichtfouse, E. (eds) Sustainable Agriculture Reviews 37. Sustainable Agriculture Reviews, vol 37. Springer, Cham. https://doi.org/10.1007/978-3-030-29298-0_2

Download citation

Publish with us

Policies and ethics