Skip to main content

A Natural Way of Food Preservation: Bacteriocins and Their Applications

  • Chapter
  • First Online:
Health and Safety Aspects of Food Processing Technologies

Abstract

Since the consumers demand foods produced without additives, new friendly preservation strategies become significant in processing of foods. Bacteriocins are ribosomally synthesized peptides produced from many bacterial strains which are approved as natural due to being degraded by digestive enzymes. In Lactic acid bacteria (LAB), many strains have been identified as bacteriocin producers. In fact, nisin was approved by Food and Drug Administration (FDA) to be used as food additive in some foods. Lacticin and pediocin producers, Lactococcus lactis and Pediococcus acidilactici, respectively, have been used as protective cultures in food system. Bacteriocins produced by some LAB have shown wide antimicrobial activity against food related pathogens species such as Bacillus, Listeria, Staphylococcus and Clostridium. However, in recent years bacteriocins having specifically narrow-spectrum antimicrobial activity have been introduced.

Bacteriocins are used either directly in food systems or by the addition of producer strains. In this way, it has been possible to prevent pathogenic microorganisms in various fermented food products. However, the effectiveness of the LAB bacteriocins may reduce due to their adsorption on to the hydrophobic surfaces and degradation with proteases. Therefore, the combinational usage of bacteriocins with other preservation methods, such as high hydrostatic pressure, pulse electrical field or essential oils, were reported successful at inhibiting pathogens including the Gram negatives.

In the first part of the chapter, the general introduction to bacteriocins and new generation bacteriocins are discussed. In the second part, the applications of bacteriocins in different food systems have been explained and the combinational usage of bacteriocins together with different preservation methods have been exemplified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acedo JZ, Chiorean S, Vederas JC, van Belkum MJ (2018) The expanding structural variety among bacteriocins from Gram-positive bacteria. FEMS Microbiol Rev 42:6.805–6.828

    Article  CAS  Google Scholar 

  • Ahmad V, Khan MS, Jamal QMS, Alzohairy MA, Karaawi MAA, Siddiqui MU (2017) Antimicrobial potential of bacteriocins: in therapy, agriculture and food preservation. Int J Antimicrob Agents 49:1–11

    Article  PubMed  CAS  Google Scholar 

  • Alvarez-Sieiro P, Montalbán-López M, Mu D, Kuipers OP (2016) Bacteriocins of lactic acid bacteria: extending the family. Appl Microbiol Biotechnol 100:2939–2951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amso Z, Bisset SW, Yang S-H, Harris PWR, Wright TH, Navo CD, Patchett ML, Norrisbc GL, Brimble MA (2018) Total chemical synthesis of glycocin F and analogues: S-glycosylation confers improved antimicrobial activity. Chem Sci 9:1686–1691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anastasiadou S, Papagianni M, Filiousis G, Ambrosiadis I, Koidis P (2008) Pediocin SA-1, an antimicrobial peptide from Pediococcus acidilactici NRRL B5627: production conditions, purification and characterization. Bioresour Technol 99:5384–5390

    Article  CAS  PubMed  Google Scholar 

  • Arnison PG, Bibb MJ, Bierbaum G et al (2013) Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat Prod Rep 30(1):108–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aymerich T, Holo H, Havarstein LS, Hugas M, Garriga M, Nes IF (1996) Biochemical and genetic characterization of enterocin A from Enterococcus faecium, a new antilisterial bacteriocin in the pediocin family of bacteriocins. Appl Environ Microbiol 62:1676–1682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balciunas EM, Martinez FAC, Todorov SD, BDGM F, Converti A, Oliveira RPS (2013) Novel biotechnological applications of bacteriocins: a review. Food Control 32:134–142

    Article  CAS  Google Scholar 

  • Barefoot SF, Klaenhammer TR (1983) Detection and activity of lactacin B, a bacteriocin produced by Lactobacillus acidophilus. Appl Environ Microbiol 45:1808–1815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barreteau H, Ghachi ME, Barnéoud-Arnoulet A, Sacco E et al (2012) Characterization of Colicin M and its orthologs targeting bacterial cell wall peptidoglycan biosynthesis. Microb Drug Resist 18(3):222–229

    Article  CAS  PubMed  Google Scholar 

  • Bastos MCF, Coutinho BG, Varella-Coelho ML (2010) Lysostaphin: a staphylococcal bacteriolysin with potential clinical applications. Pharmaceuticals 3:1139–1161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bayro MJ, Mukhopadhyay J, Swapna GVT, Huang JY, Ma L, Sineva E, Dawson PE, Montelione GT, Ebright RH (2003) Structure of antibacterial peptide microcin J25: a 21-residue lariat protoknot. J Am Chem Soc 125:12382–12383

    Article  CAS  PubMed  Google Scholar 

  • Behrens HM, Six A, Walker D, Kleanthous C (2017) The therapeutic potential of bacteriocins as protein antibiotics. Emerg Topics Life Sci 1:65–74

    Article  CAS  Google Scholar 

  • Beukes M, Bierbaum G, Sahl HG, Hastings JW (2000) Purification and partial characterization of a murein hydrolase, millericin B, produced by Streptococcus milleri NMSCC 061. Appl Environ Microbiol 66:23–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bharti V, Mahta A, Singh S, Jain N, Hirwal L, Mehta S (2015) Bacteriocin: a novel approach for preservation of food. Int J Pharm Pharm Sci 7(9):20–29

    CAS  Google Scholar 

  • Brown CL, Smith K, McCaughey L, Walker D (2012) Colicin-like bacteriocins as novel therapeutic agents for the treatment of chronic biofilm-mediated infection. Biochem Soc Trans 40:1549–1552

    Article  CAS  PubMed  Google Scholar 

  • Burgos MJG, Pulido RP, Aguayo MCL, Gálvez A, Lucas R (2014) The cyclic antibacterial peptide enterocin AS-48: isolation, mode of action, and possible food applications. Int J Mol Sci 15:22706–22727

    Article  CAS  Google Scholar 

  • Cascales E, Buchanan SK, Duche D, Kleanthous C, Lloubès R, Postle K, Riley M, Slatin S, Cavard D (2007) Colicin biology. Microbiol Mol Biol Rev 71:158–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavera VL, Arthura TD, Kashtanov D, Chikindas ML (2015) Bacteriocins and their position in the next wave of conventional antibiotics. Int J Antimicrob Agents 46:494–501

    Article  CAS  PubMed  Google Scholar 

  • Chalón MC, Acuña L, Morero RD, Minahk CJ, Bellomio A (2012) Membrane-active bacteriocins to control Salmonella in foods: are they the definite hurdle? Food Res Int 45:735–744

    Article  CAS  Google Scholar 

  • Chen Y, Ludescher RD, Montville TJ (1997) Electrostatic interactions, but not the YGNGV consensus motif, govern the binding of pediocin PA-1 and its fragments to phospholipid vesicles. Appl Environ Microbiol 63:4770–4777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chikindas ML, Weeks R, Drider D, Chistyakov VA, Dicks LMT (2018) Functions and emerging applications of bacteriocins. Curr Opin Biotechnol 49:23–28

    Article  CAS  PubMed  Google Scholar 

  • Collin F, Thompson RE, Jolliffe KA, Payne RJ, Maxwell A (2013) Fragments of the bacterial toxin microcin B17 as Gyrase poisons. PLoS One 8(4):e61459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cotter PD, Hill C, Ross RP (2005) Bacteriocins: developing innate immunity for food. Nat Rev Microbiol 3:777–788

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Cuesta MC, Kok J, Herranz E, Pelaez C, Requena T, Buist G (2000) Requirement of autolytic activity for bacteriocin induced lysis. Appl Environ Microbiol 69:3174–3179

    Article  Google Scholar 

  • Daba GB, Ishibashi N, Gong X, Taki H, Yamashiro K, Lim YY, Zendo T, Sonomoto K (2018) Characterisation of the action mechanism of a Lactococcus-specific bacteriocin, lactococcin Z. J Biosci Bioeng 126(5):603–610

    Article  CAS  PubMed  Google Scholar 

  • Dal Bello B, Cocolin L, Zeppa G, Field D, Cotter PD, Hill C (2012) Technological characterization of bacteriocin producing Lactococcus lactis strains employed to control Listeria monocytogenes in Cottage cheese. Int J Food Microbiol 153:58–65

    Article  PubMed  Google Scholar 

  • De Vuyst L, Leroy F (2007) Bacteriocins from lactic acid bacteria: production, purification, and food applications. J Mol Microbiol Biotechnol 13:194–199

    PubMed  Google Scholar 

  • Delgado MA, Vincent PA, Farías RN, Salomón RA (2005) YojI of Escherichia coli functions as a microcin J25 efflux pump. J Bacteriol 187(10):3465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delves-Broughton J, Blackburn P, Evans RJ, Hugenholtz J (1996) Applications of the bacteriocin, nisin. Antonie Van Leeuwenhoek 69(2):193–202

    Article  CAS  PubMed  Google Scholar 

  • Dimov S, Ivanova P, Harizanova N (2005) Genetics of bacteriocins biosynthesis by lactic acid bacteria. Biotechnol Biotechnol Equipment 19(2):4–10

    Article  CAS  Google Scholar 

  • Drider D, Fimland G, Hechard Y, McMullen LM, Prevost H (2006) The continuing story of class IIa bacteriocins. Microbiol Mol Biol Rev 70:564–582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duquesne S, Destoumieux-Garzón D, Peduzzi J, Rebuffat S (2007) Microcins, gene-encoded antibacterial peptides from enterobacteria. Nat Prod Rep 24:708–734

    Article  CAS  PubMed  Google Scholar 

  • Ennahar S, Sonomoto K, Ishizaki A (1999) Class IIa bacteriocins from lactic acid bacteria: antibacterial activity and food preservation. J Biosci Bioeng 87:705–716

    Article  CAS  PubMed  Google Scholar 

  • Field D, Gaudin N, Lyons F, O’Connor PM, Cotter PD, Hill C (2015) A bioengineered nisin derivative to control biofilms of Staphylococcus pseudintermedius. PLoS One 10(3):e0119684. https://doi.org/10.1371/journal.pone.0119684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Field D, Ross RP, Hill C (2018) Developing bacteriocins of lactic acid bacteria into next generation biopreservatives. Curr Opin Food Sci 20:1–6

    Article  Google Scholar 

  • Gabrielsen C, Brede DA, Nes IF, Diep DB (2014) Circular bacteriocins: biosynthesis and mode of action. Appl Environ Microbiol 80:6854–6862

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guilhelmelli F, Vilela N, Albuquerque P, Derengowski LS, Silva-Pereira I, Kyaw CM (2013) Antibiotic development challenges the various mechanisms of action of antimicrobial peptides and of bacterial resistance. Front Microbiol 4:354

    Article  Google Scholar 

  • Hastings JW, Sailer M, Johnson K, Roy KL, Vederas JC, Stiles ME (1991) Characterization of leucocin A-UAL 187 and cloning of the bacteriocin gene from Leuconostoc gelidum. J Bacteriol 173:7491–7500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hechard Y, Derijard B, Letellier F, Cenatiempo Y (1992) Characterization and purification of mesentericin Y105, an anti-Listeria bacteriocin from Leuconostoc mesenteroides. J Gen Microbiol 138:2725–2731

    Article  CAS  PubMed  Google Scholar 

  • Henderson JT, Chopko AL, Van Wasserman PD (1992) Purification and primary structure of pediocin PA-1 produced by Pediococcus acidilactici PAC1.0. Arch Biochem Biophys 295:5–12

    Article  CAS  PubMed  Google Scholar 

  • Heng NCK, Tagg JR (2006) What’s in a name? Class distinction for bacteriocins. Nat Rev Microbiol 4:160. https://doi.org/10.1038/nrmicro1273-c1

    Article  CAS  Google Scholar 

  • Heng NCK, Wescobre PA, Burton JP, Jack RW, Tang JR (2007) The diversity of bacteriocins in Gram-positive bacteria. In: Riley MA, Chavan MA (eds) Bacteriocins: ecology and evolution. Springer, Berlin, pp 39–63

    Google Scholar 

  • Hill C, Nes I N, Ross R P (2011) Bacteriocins. Paper presented the 10th LAB symposium: thirty years of research on lactic acid bacteria, August 28–September, 2011, Netherlands, p 37–56

    Google Scholar 

  • Iwatani S, Ishibashi N, Flores FP, Zendo T, Nakayama J, Sonomoto K (2016) LnqR, a TetR-family transcriptional regulator, positively regulates lacticin Q production in Lactococcus lactis QU 5. FEMS Microbiol Lett 363:fnw200

    Article  PubMed  CAS  Google Scholar 

  • Jack RW, Tagg JR, Ray B (1995) Bacteriocins of gram positive bacteria. Microbiol Rev 59:171–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jimenez MA, Barrachi-Saccilotto AC, Valdivia E, Maqueda M, Rico M (2005) Design, NMR characterization and activity of a 21-residue peptide fragment of bacteriocin AS-48 containing its putative membrane interacting region. J Pept Sci 11:29–36

    Article  CAS  PubMed  Google Scholar 

  • Joerger MC, Klaenhammer TR (1986) Characterization and purification of helveticin J and evidence for a chromosomally determined bacteriocin produced by Lactobacillus helveticus 481. J Bacteriol 167:439–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juturu W, Wu JC (2018) Microbial production of bacteriocins: latest research development and applications. Biotechnol Adv 36:2187–2200

    Article  CAS  PubMed  Google Scholar 

  • Juven BJ, Meinersmann RJ, Stern NJ (1991) Antagonistic effects of lactobacilli and pediococci to control intestinal colonization by human enteropathogens in live poultry. J Appl Bacteriol 70(2):95–103

    Article  CAS  PubMed  Google Scholar 

  • Kawulka K, Sprules T, McKay RT, Mercier P, Diaper CM, Zuber P, Vederas JC (2003) Structure of subtilosin A, an antimicrobial peptide from Bacillus subtilis with unusual posttranslational modifications linking cysteine sulfurs to alpha-carbons of phenylalanine and threonine. J Am Chem Soc 125:4726–4727

    Article  CAS  PubMed  Google Scholar 

  • Kim YC, Tarr AW, Penfold CN (2014) Colicin import into E. coli cells: a model system for insights into theimport mechanisms of bacteriocins. Biochim Biophys Acta 1843:1717–1731

    Article  CAS  PubMed  Google Scholar 

  • Klaenhammer TR (1993) Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev 12:39–85

    Article  CAS  PubMed  Google Scholar 

  • Lagos R, Tello M, Mercado G, García V, Monasterio O (2009) Antibacterial and antitumorigenic properties of microcin E492, a pore-forming bacteriocin. Curr Pharm Biotechnol 10:74–85

    Article  CAS  PubMed  Google Scholar 

  • Madera C, García P, Rodríguez A, Suárez JE, Martínez B (2009) Prophage induction in Lactococcus lactis by the bacteriocin Lactococcin 972. Int J Food Microbiol 129:99–102

    Article  CAS  PubMed  Google Scholar 

  • Maldonado-Barragán A, Cárdenas N, Martínez B, Ruiz-Barba JL, Fernández-Garayzábal JF, Rodríguez JM, Gibelloe A (2013) Garvicin A, a novel Class IId bacteriocin from Lactococcus garvieae that inhibits septum formation in L. garvieae strains. Appl Environ Microbiol 79(14):4336–4346

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martínez B, Böttiger T, Schneider T, Rodríguez A, Sahl HG, Wiedemann I (2008) Specific interaction of the unmodified bacteriocin Lactococcin 972 with the cell wall precursor lipid II. Appl Environ Microbiol 74:4666–4670

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martínez B, Rodriguez A, Suarez JE (2000) Lactococcin 972, a bacteriocin that inhibit sseptum formation in lactococci. Microbiology 146:949–955

    Article  Google Scholar 

  • Martin-Visscher LA, Gong X, Duszyk M, Vederas JC (2009) The three-dimensional structure of carnocyclin a reveals that many circular bacteriocins share a common structural motif. J Biol Chem 284(42):28674–28681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masaki H, Ogawa T (2002) The modes of action of colicins E5 and D and related cytotoxic tRNases. Biochimie 84:433–438

    Article  CAS  PubMed  Google Scholar 

  • Mesa-Pereira B, Rea MC, Cotter PD, Hill C, Ross RP (2018) Heterologous expression of biopreservative bacteriocins with a view to low cost production. Front Microbiol 9:1654

    Article  PubMed  PubMed Central  Google Scholar 

  • Miller KW, Schamber R, Osmaağaoğlu O, Ray B (1998) Isolation and characterization of pediocin AcH chimeric protein mutants with altered bactericidal activity. Appl Environ Microbiol 64:1997–2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mills S, Serrano LM, Griffin C, O’Connor MP, Schaad G, Bruining C, Hill C, Ross RP, Meijer WC (2011) Inhibitory activity of Lactobacillus plantarum LMG p-26358 against Listeria innocua when used as an adjunt starter in the manufacture of cheese. Microb Cell Factories 10(1):S7

    Article  Google Scholar 

  • Mitra D, Pometto AL, Khanal SK, Karki B, Brehm-Stecher BF, van Leeuwen J (2010) Value-added production of nisin from soy whey. Appl Biochem Biotechnol 162:1819–1833

    Article  CAS  PubMed  Google Scholar 

  • Mobius K, Schnegg A, Plato M, Fuchs MR, Savitsky A (2005) High-field EPR spectroscopy on transfer proteins in biological action. Acta Phys Pol A 108:2

    Article  Google Scholar 

  • Mogi T, Kita K (2009) Gramicidin S and polymyxins: the revival of cationic cyclic peptide antibiotics. Cell Mol Life Sci 66:3821–3826

    Article  CAS  PubMed  Google Scholar 

  • Molloy EM, Casjens SR, Cox CL, Maxson T, Ethridge NA, Margos G, Fingerle V, Mitchell DA (2015) Identification of the minimal cytolytic unit for streptolysin S and an expansion of the toxin family. BMC Microbiol 15:141

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Münch D, Müller A, Schneider T, Kohl B, Wenzel M, Bandow JE, Maffioli S, Sosio M, Donadio S, Wimmer R, Sahl H-G (2014) The lantibiotic NAI-107 binds to bactoprenol-bound cell wall precursors and impairs membrane functions. J Biol Chem 289(17):12063–12076

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nakamura K, Arakawa K, Kawai Y, Yasuta N, Chujo T, Watanabe M, Iıoka H, Tanıoka M, Nıshımura J, Kıtawaza H, Tsurumı K, Saıto T (2013) Food preservative potential of gassericin A-containing concentrate prepared from cheese whey culturesupernatant of Lactobacillus gasseri LA39. Anim Sci J 84:144–149

    Article  CAS  PubMed  Google Scholar 

  • Nes IF, Yoon S, Diep DB (2007) Ribozomally synthesiszed antimicrobial peptides (bacteriocins) in lactic acid bacteria. Food Sci Biotechnol 16(5):675–690

    CAS  Google Scholar 

  • Nieto-Lozano JC, Reguera-Useros JI, Pelaez-Martinez MC, Sacristan-Perez-Minayo G, Gutierrez-Fernandez AJ, De La Torre AH (2010) The effect of the pediocin PA-1 produced by Pediococcus acidilactici against Listeria monocytogenes and Clostridium perfringens in Spanish dry-fermented sausages and frankfurters. Food Control 21:679–685

    Article  CAS  Google Scholar 

  • Nissen-Meyer J, Rogne P, Oppegard C, Haugen HS, Kristiansen PE (2009) Structure-function relationships of the non-lanthionine-containing peptide (class II) bacteriocins produced by gram-positive bacteria. Curr Pharm Biotechnol 10:19–37

    Article  CAS  PubMed  Google Scholar 

  • O’Shea EF, Cotter PD, Ross RP, Hill C (2013) Strategies to improve the bacteriocin protection provided by lactic acid bacteria. Curr Opin Biotechnol 24:130–134

    Article  CAS  Google Scholar 

  • O’Connor MA, Ross PR, Hill C, Cotter PD (2015) Antimicrobial antagonists against food pathogens: a bacteriocin perspective. Curr Opin Food Sci 2:51–57

    Article  Google Scholar 

  • Oscariz JC, Pisabarro AG (2001) Classification and mode of action of membrane-active bacteriocins produced by Gram positive bacteria. Int Microbiol 4:13–19

    Article  CAS  PubMed  Google Scholar 

  • Padmavathi PVL, Steinhoff H-J (2008) Conformation of the closed channel state of colicin A in proteoliposomes: an umbrella model. J Mol Biol 378:204–214

    Article  CAS  PubMed  Google Scholar 

  • Pag U, Sahl HG (2002) Multiple activities in lantibiotics–models for the design of novel antibiotics? Curr Pharm Des 8:815–833

    Article  CAS  PubMed  Google Scholar 

  • Papadakos G, Wojdyla JA, Kleanthous C (2012) Nuclease colicins and their immunity proteins. Q Rev Biophys 45(1):57–103

    Article  CAS  PubMed  Google Scholar 

  • Papagianni M (2003) Ribosomally synthesized peptides with antimicrobial properties: biosynthesis, structure, function, and applications. Biotechnol Adv 21:465–499

    Article  CAS  PubMed  Google Scholar 

  • Perez RH, Zendo T, Sonomoto K (2018) Circular and leaderless bacteriocins: biosynthesis, mode of action, applications and prospects. Front Microbiol 9:2085. https://doi.org/10.3389/fmicb.2018.02085

    Article  PubMed  PubMed Central  Google Scholar 

  • Perez RH, Perez MTM, Elegado FB (2015) Bacteriocins from lactic acid bacteria: a review of biosynthesis, mode of action, fermentative production, uses, and prospects. Int J Philippine Sci Technol 8:2

    Article  Google Scholar 

  • Prudêncio CV, dos Santos MT, Vanetti MCD (2015) Strategies for the use of bacteriocins in Gram-negative bacteria relevance in food microbiology. Food Sci Technol 52(9):5408–5417

    Google Scholar 

  • Rea MC, Ross RP, Cotter PD, Hill C (2011) Classification of bacteriocins from Gram-positive bacteria. In: Drider D, Rebuffat S (eds) Prokaryotic antimicrobial peptides from genes to applications. Springer, New York, pp 29–53

    Chapter  Google Scholar 

  • Rebuffat S (2016) Microcins and other bacteriocins: bridging the gaps between killing stategies, ecology and applications. In: Dorit RL, Roy SM, Riley MA (eds) The bacteriocins: current knowledge and future prospects. Caister Academic Press, Wymondham, pp 11–34

    Chapter  Google Scholar 

  • Sarika AR, Lipton AP, Aishwarya MS, Dhivya RS (2012) Isolation of a bacteriocin-producing Lactococcus lactis and application of its bacteriocin to manage spoilage bacteria in high-value marine fish under different storage temperatures. Appl Biochem Biotechnol 167:1280–1289

    Article  CAS  PubMed  Google Scholar 

  • Siegers K, Heinzmann S, Entian KD (1996) Biosynthesis of lantibiotic nisin. Posttranslational modifications of its prepeptide occurs at a multimeric membrane associated lanthionine synthetase complex. J Biol Chem 271:12294–12301

    Article  CAS  PubMed  Google Scholar 

  • Silva CCG, Silva SPM, Ribeiro SC (2018) Application of bacteriocins and protective cultures in dairy food preservation. Front Microbiol 9:594

    Article  PubMed  PubMed Central  Google Scholar 

  • Simmonds RS, Simpson WJ, Tagg JR (1997) Cloning and sequence analysis of zooA, a Streptococcus zooepidemicus gene encoding a bacteriocin-like inhibitory substance having a domain structure similar to that of lysostaphin. Gene 189:255–261

    Article  CAS  PubMed  Google Scholar 

  • Simsek O, Saris PEJ (2009) Cycle changing the medium results in increased nisin productivity per cell in Lactococcus lactis. Biotechnol Lett 31:415–421

    Article  CAS  PubMed  Google Scholar 

  • Sullivan A, Nord CE (2005) Probiotics and gastrointestinal diseases. J Int Med 257:78–92

    Article  CAS  Google Scholar 

  • Thomsen TT, Mojsoska B, Cruz JCS, Donadio S, Jenssen H, Løbner-Olesen A, Rewitz K (2016) The lantibiotic NAI-107 efficiently rescues Drosophila melanogaster from infection with methicillin-resistant Staphylococcus aureus USA300. Antimicrob Agents Chemother 60:5427–5436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tichaczek PS, Nissenmeyer J, Nes IF, Vogel RF, Hammes WP (1992) Characterization of the bacteriocins curvacin a from Lactobacillus curvatus Lth1174 and sakacin-P from Lb. sake Lth673. Syst Appl Microbiol 15:460–468

    Article  CAS  Google Scholar 

  • Todorov SD (2009) Bacteriocins from Lactobacillus plantarum—production, genetic organization and mode of action. Braz J Microbiol 40:209–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Towle KM, Vederas JC (2017) Structural features of many circular and leaderless bacteriocins are similar to those in saposins and saposin-like peptides. Med Chem Commun 2017(8):276–285

    Article  Google Scholar 

  • Twomey D, Ross RP, Ryan M, Meaney B, Hill C (2002) Lantibiotics produced by lactic acid bacteria: structure, function and applications. Antonie Van Leeuwenhoek 82:165–185

    Article  CAS  PubMed  Google Scholar 

  • Uteng M, Hauge HH, Markwick PRL, Fimland G, Mantzilas D, Nissen-Meyer J, Muhle-Goll C (2003) Three-dimensional structure in lipid micelles of the pediocin-like antimicrobial peptide Sakacin P and a Sakacin P variant that is structurally stabilized by an inserted C-terminal disulfide bridge. Biochemistry 42:11417–11426

    Article  CAS  PubMed  Google Scholar 

  • Valdes-Stauber N, Scherer S (1994) Isolation and characterization of Linocin M18, a bacteriocin produced by Brevibacterium linens. Appl Environ Microbiol 60:3809–3814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Belkum MJ, Martin-Visscher LA, Vederas JC (2011) Structure and genetics of circular bacteriocins. Trends Microbiol 19(8):411–418

    Article  PubMed  CAS  Google Scholar 

  • Varella Coelho ML, Duarte AF, Bastos MCF (2017) Bacterial labionin-containing peptides and sactibiotics: unusual types of antimicrobial peptides with potential use in clinical settings. Curr Top Med Chem 17:1–22

    Article  CAS  Google Scholar 

  • Vasilchenko AS, Valyshev AV (2018) Pore-forming bacteriocins: structural–functional relationships. Arch Microbiol. https://doi.org/10.1007/s00203-018-1610-3

  • Wescombe PA, Upton M, Dierksen KP, Ragland NL, Sivabalan S, Wirawan RE, Inglis MA, Moore CJ, Walker GV, Chilcott CN, Jenkinson HF, Tagg JR (2006) Production of the lantibiotic salivaricin A and its variants by oral streptococci and use of a specific induction assay to detect their presence in human saliva. Appl Environ Microbiol 72:1459–1466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiley JM, van der Donk WA (2007) Lantibiotics: peptides of diverse structure and function. Ann Rev Microbiol 61:477–501

    Article  CAS  Google Scholar 

  • Yang S-C, Lin C-H, Sung CT, Fang JY (2014) Antibacterial activities of bacteriocins: application in foods and pharmaceuticals. Frontiers in microbiology. Food Microbiol 5:Article241

    Google Scholar 

  • Yıldırım Z, Öncül N, Yıldırım M, Karabıyıklı Ş (2016) Application of lactococcin BZ and enterocin KP against Listeria monocytogenes in milk as biopreservation. Agents Acta Alimentaria 45(4):486–492

    Article  CAS  Google Scholar 

  • Zacharof MP, Lovitt RW (2012) Bacteriocins produced by lactic acid bacteria: a review article. APCBEE Procedia 2:50–56

    Article  CAS  Google Scholar 

  • Zamaroczy M, Mora L (2012) Hijacking cellular functions for processing and delivery of colicins E3 and D into the cytoplasm. Biochem Soc Trans 40:6

    Article  CAS  Google Scholar 

  • Zendo T (2013) Screening and characterization of novel bacteriocins from lactic acid bacteria. Biosci Biotechnol Biochem 77(5):893–899

    Article  CAS  PubMed  Google Scholar 

  • Zou J, Jiang H, Cheng H, Fang J, Huang G (2018) Strategies for screening, purification and characterization of bacteriocins. Int J Biol Macromol 117:781–789

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Halil İbrahim Kaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaya, H.İ., Özel, B., Şimşek, Ö. (2019). A Natural Way of Food Preservation: Bacteriocins and Their Applications. In: Malik, A., Erginkaya, Z., Erten, H. (eds) Health and Safety Aspects of Food Processing Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-24903-8_23

Download citation

Publish with us

Policies and ethics