Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Food microbiology

Bacteriocins: developing innate immunity for food

Key Points

  • The use of antimicrobial peptides is arguably the most widespread system of antimicrobial defence, being present in various organisms from insects to plants to humans. However, multicellular organisms do not have a monopoly on this early-warning system — bacteriocins, antimicrobial peptides thought to be produced by 30–99% of Bacteria and Archaea — perform the same function, allowing their microbial producers to target other microorganisms while remaining immune themselves.

  • The bacteriocins are a heterogeneous group of peptides and proteins and previously a classification scheme involving five separate classes was proposed. In this article, we suggest an alternative classification, which divides the bacteriocins into two distinct categories: the lanthionine-containing lantibiotics (class I) and the non-lanthionine-containing bacteriocins (class II), and which removes the large, heat-labile murein hydrolases (formerly known as class III bacteriocins) to a separate group called bacteriolysins.

  • Recent developments have greatly advanced our understanding of the molecular biology of bacteriocin action and resistance. Highlights include the finding that the class I bacteriocin nisin functions by binding to lipid II — as lipid II is also the target for antibiotics such as vancomycin, this has led to the suggestion that nisin could be used as a template to design novel drugs.

  • Many bacteriocins are produced by food-grade lactic acid bacteria (LAB) and, given that they are also usually heat stable and can inhibit the growth of many of the microorganisms that cause problems in minimally processed foods, they have a host of food microbiology applications. The bacteriocins nisin and pediocin PA1 are already widely used in food preservation. In addition to preventing spoilage, bacteriocins can also be used to improve the quality of foodstuffs, for example, in cheese production, to control the growth of starter cultures and enhance ripening.

Abstract

Bacteriocins are bacterially produced antimicrobial peptides with narrow or broad host ranges. Many bacteriocins are produced by food-grade lactic acid bacteria, a phenomenon which offers food scientists the possibility of directing or preventing the development of specific bacterial species in food. This can be particularly useful in preservation or food safety applications, but also has implications for the development of desirable flora in fermented food. In this sense, bacteriocins can be used to confer a rudimentary form of innate immunity to foodstuffs, helping processors extend their control over the food flora long after manufacture.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lanthionine synthesis and lantibiotic structure.
Figure 2: Mode of action of lactic acid bacteria bacteriocins.
Figure 3: Regulation by quorum sensing.
Figure 4: Selected applications of bacteriocins.

Similar content being viewed by others

References

  1. Bowdish, D. M., Davidson, D. J. & Hancock, R. E. A re-evaluation of the role of host defence peptides in mammalian immunity. Curr. Protein Pept. Sci. 6, 35–51 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Klaenhammer, T. R. Bacteriocins of lactic acid bacteria. Biochimie 70, 337–349 (1988).

    Article  CAS  PubMed  Google Scholar 

  3. Riley, M. A. Molecular mechanisms of bacteriocin evolution. Annu. Rev. Genet. 32, 255–278 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Dirix, G. et al. Peptide signal molecules and bacteriocins in Gram-negative bacteria: a genome-wide in silico screening for peptides containing a double-glycine leader sequence and their cognate transporters. Peptides 25, 1425–1440 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Nes, I. F. & Johnsborg, O. Exploration of antimicrobial potential in LAB by genomics. Curr. Opin. Biotechnol. 15, 100–104 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Gratia, A. Sur un remarquable exemple d'antagonisme entre deux souches de Colibacille. C. R. Soc. Biol. 93, 1040–1041 (1925) (in French).

    Google Scholar 

  7. Hirsch, A., Grinsted, E., Chapman, H. R. & Mattick, A. T. R. A note on the inhibition of an anaerobic sporeformer in Swiss-type cheese by a nisin-producing Streptococcus. J. Dairy Sci. 18, 205–206 (1951).

    Google Scholar 

  8. Rogers, L. A. & Whittier, E. D. Limiting factors in lactic fermentation. J. Bacteriol. 16, 211–229 (1928).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Whitehead, H. R. A substance inhibiting bacterial growth, produced by certain strains of lactic streptococci. Biochem. J. 27, 1793–1800 (1933).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mattick, A. T. R. & Hirsch, A. Further observations on an inhibitory substance (nisin) from lactic streptococci. Lancet 2, 5–7 (1947).

    Article  CAS  PubMed  Google Scholar 

  11. European Economic Community. European Economic Community Commission Directive. Official J. European Union 255, 1–6 (1983) 83/463/EEC.

  12. Klaenhammer, T. R. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol. Rev. 12, 39–85 (1993). A seminal review that proposed four classes of LAB bacteriocins.

    Article  CAS  PubMed  Google Scholar 

  13. Nes, I. F. et al. Biosynthesis of bacteriocins in lactic acid bacteria. Antonie Van Leeuwenhoek 70, 113–128 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Kemperman, R. et al. Identification and characterization of two novel clostridial bacteriocins, circularin A and closticin 574. Appl. Environ. Microbiol. 69, 1589–1597 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Xie, L. & van der Donk, W. A. Post-translational modifications during lantibiotic biosynthesis. Curr. Opin. Chem. Biol. 8, 498–507 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Jack, R. W. & Jung, G. Lantibiotics and microcins: polypeptides with unusual chemical diversity. Curr. Opin. Chem. Biol. 4, 310–317 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Pag, U. & Sahl, H. G. Multiple activities in lantibiotics — models for the design of novel antibiotics? Curr. Pharm. Des. 8, 815–833 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Jung, G. Lantibiotics — ribosomally synthesized biologically active polypeptides containing sulfide bridges and α, β-didehydroamino acids. Angew. Chem. Int. Ed. Engl. 30, 1051–1192 (1991).

    Article  Google Scholar 

  19. Cotter, P. D., Hill, C. & Ross, R. P. Bacterial lantibiotics: strategies to improve therapeutic potential. Curr. Protein Pept. Sci. 6, 61–75 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Breukink, E. et al. Use of the cell wall precursor lipid II by a pore-forming peptide antibiotic. Science 286, 2361–2364 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Wiedemann, I. et al. Specific binding of nisin to the peptidoglycan precursor lipid II combines pore formation and inhibition of cell wall biosynthesis for potent antibiotic activity. J. Biol. Chem. 276, 1772–1779 (2001). Study that established that nisin has dual mechanisms of action.

    Article  CAS  PubMed  Google Scholar 

  22. Hsu, S. T. et al. The nisin–lipid II complex reveals a pyrophosphate cage that provides a blueprint for novel antibiotics. Nature Struct. Mol. Biol. 11, 963–967 (2004).

    Article  CAS  Google Scholar 

  23. Brotz, H., Bierbaum, G., Leopold, K., Reynolds, P. E. & Sahl, H. G. The lantibiotic mersacidin inhibits peptidoglycan synthesis by targeting lipid II. Antimicrob. Agents Chemother. 42, 154–160 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Brotz, H. et al. Role of lipid-bound peptidoglycan precursors in the formation of pores by nisin, epidermin and other lantibiotics. Mol. Microbiol. 30, 317–327 (1998). Identification of lipid II as the target or docking molecule for nisin.

    Article  CAS  PubMed  Google Scholar 

  25. van Heusden, H. E., de Kruijff, B. & Breukink, E. Lipid II induces a transmembrane orientation of the pore-forming peptide lantibiotic nisin. Biochemistry 41, 12171–12178 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Martin, N. I. et al. Structural characterization of lacticin 3147, a two-peptide lantibiotic with synergistic activity. Biochemistry 43, 3049–3056 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Hosoda, K. et al. Structure determination of an immunopotentiator peptide, cinnamycin, complexed with lysophosphatidylethanolamine by 1H-NMR1. J. Biochem. (Tokyo) 119, 226–230 (1996).

    Article  CAS  Google Scholar 

  28. Machaidze, G. & Seelig, J. Specific binding of cinnamycin (Ro 09–0198) to phosphatidylethanolamine. Comparison between micellar and membrane environments. Biochemistry 42, 12570–12576 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Cox, C. R., Coburn, P. S. & Gilmore, M. S. Enterococcal cytolysin: a novel two component peptide system that serves as a bacterial defense against eukaryotic and prokaryotic cells. Curr. Protein Pept. Sci. 6, 77–84 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Datta, V. et al. Mutational analysis of the group A streptococcal operon encoding streptolysin S and its virulence role in invasive infection. Mol. Microbiol. 56, 681–695 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Diep, D. B. & Nes, I. F. Ribosomally synthesized antibacterial peptides in Gram positive bacteria. Curr. Drug Targets 3, 107–122 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. van Belkum, M. J. & Stiles, M. E. Nonlantibiotic antibacterial peptides from lactic acid bacteria. Nat. Prod. Rep. 17, 323–335 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Hechard, Y. & Sahl, H. G. Mode of action of modified and unmodified bacteriocins from Gram-positive bacteria. Biochimie 84, 545–557 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Montville, T. J. & Chen, Y. Mechanistic action of pediocin and nisin: recent progress and unresolved questions. Appl. Microbiol. Biotechnol. 50, 511–519 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Hastings, J. W. et al. Characterization of leucocin A-UAL 187 and cloning of the bacteriocin gene from Leuconostoc gelidum. J. Bacteriol. 173, 7491–7500 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hechard, Y., Derijard, B., Letellier, F. & Cenatiempo, Y. Characterization and purification of mesentericin Y105, an anti-Listeria bacteriocin from Leuconostoc mesenteroides. J. Gen. Microbiol. 138, 2725–2731 (1992).

    Article  CAS  PubMed  Google Scholar 

  37. Quadri, L. E., Sailer, M., Roy, K. L., Vederas, J. C. & Stiles, M. E. Chemical and genetic characterization of bacteriocins produced by Carnobacterium piscicola LV17B. J. Biol. Chem. 269, 12204–12211 (1994).

    CAS  PubMed  Google Scholar 

  38. Nieto Lozano, J. C., Meyer, J. N., Sletten, K., Pelaz, C. & Nes, I. F. Purification and amino acid sequence of a bacteriocin produced by Pediococcus acidilactici. J. Gen. Microbiol. 138, 1985–1990 (1992).

    Article  CAS  PubMed  Google Scholar 

  39. Eijsink, V. G., Skeie, M., Middelhoven, P. H., Brurberg, M. B. & Nes, I. F. Comparative studies of class IIa bacteriocins of lactic acid bacteria. Appl. Environ. Microbiol. 64, 3275–3281 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Chen, Y., Ludescher, R. D. & Montville, T. J. Electrostatic interactions, but not the YGNGV consensus motif, govern the binding of pediocin PA-1 and its fragments to phospholipid vesicles. Appl. Environ. Microbiol. 63, 4770–4777 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Kazazic, M., Nissen-Meyer, J. & Fimland, G. Mutational analysis of the role of charged residues in target-cell binding, potency and specificity of the pediocin-like bacteriocin sakacin P. Microbiology 148, 2019–2027 (2002). Analysis of the role of the class IIa bacteriocins to explain C-termini variations in target species.

    Article  CAS  PubMed  Google Scholar 

  42. Johnsen, L., Fimland, G. & Nissen-Meyer, J. The C-terminal domain of pediocin-like antimicrobial peptides (class IIa bacteriocins) is involved in specific recognition of the C-terminal part of cognate immunity proteins and in determining the antimicrobial spectrum. J. Biol. Chem. 280, 9243–9250 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Fimland, G. et al. New biologically active hybrid bacteriocins constructed by combining regions from various pediocin-like bacteriocins: the C-terminal region is important for determining specificity. Appl. Environ. Microbiol. 62, 3313–3318 (1996). Describes the creation of hybrid class IIa bacteriocins.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Miller, K. W., Schamber, R., Osmanagaoglu, O. & Ray, B. Isolation and characterization of pediocin AcH chimeric protein mutants with altered bactericidal activity. Appl. Environ. Microbiol. 64, 1997–2005 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Dalet, K., Cenatiempo, Y., Cossart, P. & Hechard, Y. A σ54-dependent PTS permease of the mannose family is responsible for sensitivity of Listeria monocytogenes to mesentericin Y105. Microbiology 147, 3263–3269 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Robichon, D. et al. The rpoN (σ54) gene from Listeria monocytogenes is involved in resistance to mesentericin Y105, an antibacterial peptide from Leuconostoc mesenteroides. J. Bacteriol. 179, 7591–7594 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Xue, J. et al. Novel activator of mannose-specific phosphotransferase system permease expression in Listeria innocua, identified by screening for pediocin AcH resistance. Appl. Environ. Microbiol. 71, 1283–1290 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ramnath, M., Beukes, M., Tamura, K. & Hastings, J. W. Absence of a putative mannose-specific phosphotransferase system enzyme IIAB component in a leucocin A-resistant strain of Listeria monocytogenes, as shown by two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Appl. Environ. Microbiol. 66, 3098–3101 (2000). First link between the absence of EII tMan and resistance to class IIa bacteriocins.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ramnath, M., Arous, S., Gravesen, A., Hastings, J. W. & Hechard, Y. Expression of mptC of Listeria monocytogenes induces sensitivity to class IIa bacteriocins in Lactococcus lactis. Microbiology 150, 2663–2668 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Garneau, S., Martin, N. I. & Vederas, J. C. Two-peptide bacteriocins produced by lactic acid bacteria. Biochimie 84, 577–592 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Marciset, O., Jeronimus-Stratingh, M. C., Mollet, B. & Poolman, B. Thermophilin 13, a nontypical antilisterial poration complex bacteriocin, that functions without a receptor. J. Biol. Chem. 272, 14277–14284 (1997).

    Article  CAS  PubMed  Google Scholar 

  52. Kawai, Y., Kemperman, R., Kok, J. & Saito, T. The circular bacteriocins gassericin A and circularin A. Curr. Protein Pept. Sci. 5, 393–398 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Maqueda, M. et al. Peptide AS-48: prototype of a new class of cyclic bacteriocins. Curr. Protein Pept. Sci. 5, 399–416 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Kawai, Y. et al. Structural and functional differences in two cyclic bacteriocins with the same sequences produced by lactobacilli. Appl. Environ. Microbiol. 70, 2906–2911 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Joerger, M. C. & Klaenhammer, T. R. Cloning, expression, and nucleotide sequence of the Lactobacillus helveticus 481 gene encoding the bacteriocin helveticin J. J. Bacteriol. 172, 6339–6347 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Simmonds, R. S., Simpson, W. J. & Tagg, J. R. Cloning and sequence analysis of zooA, a Streptococcus zooepidemicus gene encoding a bacteriocin-like inhibitory substance having a domain structure similar to that of lysostaphin. Gene 189, 255–261 (1997).

    Article  CAS  PubMed  Google Scholar 

  57. Hickey, R. M., Twomey, D. P., Ross, R. P. & Hill, C. Production of enterolysin A by a raw milk enterococcal isolate exhibiting multiple virulence factors. Microbiology 149, 655–664 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Nilsen, T., Nes, I. F. & Holo, H. Enterolysin A, a cell wall-degrading bacteriocin from Enterococcus faecalis LMG 2333. Appl. Environ. Microbiol. 69, 2975–2984 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Beukes, M., Bierbaum, G., Sahl, H. G. & Hastings, J. W. Purification and partial characterization of a murein hydrolase, millericin B, produced by Streptococcus milleri NMSCC 061. Appl. Environ. Microbiol. 66, 23–28 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Valdes-Stauber, N. & Scherer, S. Isolation and characterization of Linocin M18, a bacteriocin produced by Brevibacterium linens. Appl. Environ. Microbiol. 60, 3809–3814 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Eppert, I., Valdes-Stauber, N., Gotz, H., Busse, M. & Scherer, S. Growth reduction of Listeria spp. caused by undefined industrial red smear cheese cultures and bacteriocin-producing Brevibacterium lines as evaluated in situ on soft cheese. Appl. Environ. Microbiol. 63, 4812–4817 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Lai, A. C., Tran, S. & Simmonds, R. S. Functional characterization of domains found within a lytic enzyme produced by Streptococcus equi subsp. zooepidemicus. FEMS Microbiol. Lett. 215, 133–138 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Johnsen, L., Fimland, G. & Nissen-Meyer, J. The C-terminal domain of pediocin-like antimicrobial peptides (class IIa bacteriocins) is involved in specific recognition of the C-terminal part of cognate immunity proteins and in determining the antimicrobial spectrum. J. Biol. Chem. 280, 9243–9250 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Coakley, M., Fitzgerald, G. & Ros, R. P. Application and evaluation of the phage resistance- and bacteriocin-encoding plasmid pMRC01 for the improvement of dairy starter cultures. Appl. Environ. Microbiol. 63, 1434–1440 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. van der Meer, J. R. et al. Influence of amino acid substitutions in the nisin leader peptide on biosynthesis and secretion of nisin by Lactococcus lactis. J. Biol. Chem. 269, 3555–3562 (1994).

    CAS  PubMed  Google Scholar 

  66. Neis, S. et al. Effect of leader peptide mutations on biosynthesis of the lantibiotic Pep5. FEMS Microbiol. Lett. 149, 249–255 (1997).

    Article  CAS  PubMed  Google Scholar 

  67. Chen, P., Qi, F. X., Novak, J., Krull, R. E. & Caufield, P. W. Effect of amino acid substitutions in conserved residues in the leader peptide on biosynthesis of the lantibiotic mutacin II. FEMS Microbiol. Lett. 195, 139–144 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Xie, L. et al. Lacticin 481: in vitro reconstitution of lantibiotic synthetase activity. Science 303, 679–681 (2004). This landmark study describes the in vitro activity of a lantibiotic synthetase and has important implications for the creation of novel antimicrobials.

    Article  CAS  PubMed  Google Scholar 

  69. Havarstein, L. S., Diep, D. B. & Nes, I. F. A family of bacteriocin ABC transporters carry out proteolytic processing of their substrates concomitant with export. Mol. Microbiol. 16, 229–240 (1995).

    Article  CAS  PubMed  Google Scholar 

  70. Venema, K. et al. Functional analysis of the pediocin operon of Pediococcus acidilactici PAC1.0: PedB is the immunity protein and PedD is the precursor processing enzyme. Mol. Microbiol. 17, 515–522 (1995).

    Article  CAS  PubMed  Google Scholar 

  71. van der Meer, J. R. et al. Characterization of the Lactococcus lactis nisin A operon genes nisP, encoding a subtilisin-like serine protease involved in precursor processing, and nisR, encoding a regulatory protein involved in nisin biosynthesis. J. Bacteriol. 175, 2578–2588 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Brede, D. A. et al. Molecular and genetic characterization of propionicin F, a bacteriocin from Propionibacterium freudenreichii. Appl. Environ. Microbiol. 70, 7303–7310 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Corvey, C., Stein, T., Dusterhus, S., Karas, M. & Entian, K. D. Activation of subtilin precursors by Bacillus subtilis extracellular serine proteases subtilisin (AprE), WprA, and Vpr. Biochem. Biophys. Res. Commun. 304, 48–54 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Stein, T. & Entian, K. D. Maturation of the lantibiotic subtilin: matrix-assisted laser desorption/ionization time-of-flight mass spectrometry to monitor precursors and their proteolytic processing in crude bacterial cultures. Rapid Commun. Mass Spectrom. 16, 103–110 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Diep, D. B., Myhre, R., Johnsborg, O., Aakra, A. & Nes, I. F. Inducible bacteriocin production in Lactobacillus is regulated by differential expression of the pln operons and by two antagonizing response regulators, the activity of which is enhanced upon phosphorylation. Mol. Microbiol. 47, 483–494 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Guder, A., Schmitter, T., Wiedemann, I., Sahl, H. G. & Bierbaum, G. Role of the single regulator MrsR1 and the two-component system MrsR2/K2 in the regulation of mersacidin production and immunity. Appl. Environ. Microbiol. 68, 106–113 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. McAuliffe, O., O'Keeffe, T., Hill, C. & Ross, R. P. Regulation of immunity to the two-component lantibiotic, lacticin 3147, by the transcriptional repressor LtnR. Mol. Microbiol. 39, 982–993 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Kreth, J., Merritt, J., Bordador, C., Shi, W. & Qi, F. Transcriptional analysis of mutacin I (mutA) gene expression in planktonic and biofilm cells of Streptococcus mutans using fluorescent protein and glucuronidase reporters. Oral Microbiol. Immunol. 19, 252–256 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Gajic, O. et al. Novel mechanism of bacteriocin secretion and immunity carried out by lactococcal multidrug resistance proteins. J. Biol. Chem. 278, 34291–34298 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Otto, M., Peschel, A. & Gotz, F. Producer self-protection against the lantibiotic epidermin by the ABC transporter EpiFEG of Staphylococcus epidermidis Tu3298. FEMS Microbiol. Lett. 166, 203–211 (1998).

    CAS  PubMed  Google Scholar 

  81. Rince, A., Dufour, A., Uguen, P., Le Pennec, J. P. & Haras, D. Characterization of the lacticin 481 operon: the Lactococcus lactis genes lctF, lctE, and lctG encode a putative ABC transporter involved in bacteriocin immunity. Appl. Environ. Microbiol. 63, 4252–4260 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Stein, T., Heinzmann, S., Dusterhus, S., Borchert, S. & Entian, K. D. Expression and functional analysis of the subtilin immunity genes spaIFEG in the subtilin-sensitive host Bacillus subtilis MO1099. J. Bacteriol. 187, 822–828 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Peschel, A. & Gotz, F. Analysis of the Staphylococcus epidermidis genes epiF, -E, and-G involved in epidermin immunity. J. Bacteriol. 178, 531–536 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Diaz, M. et al. Characterization of a new operon, as-48EFGH, from the as-48 gene cluster involved in immunity to enterocin AS-48. Appl. Environ. Microbiol. 69, 1229–1236 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hoffmann, A., Schneider, T., Pag, U. & Sahl, H. G. Localization and functional analysis of PepI, the immunity peptide of Pep5-producing Staphylococcus epidermidis strain 5. Appl. Environ. Microbiol. 70, 3263–3271 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Venema, K. et al. Mode of action of LciA, the lactococcin A immunity protein. Mol. Microbiol. 14, 521–532 (1994).

    Article  CAS  PubMed  Google Scholar 

  87. van Belkum, M. J., Kok, J. & Venema, G. Cloning, sequencing, and expression in Escherichia coli of lcnB, a third bacteriocin determinant from the lactococcal bacteriocin plasmid p9B4–6. Appl. Environ. Microbiol. 58, 572–577 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. van Belkum, M. J., Hayema, B. J., Jeeninga, R. E., Kok, J. & Venema, G. Organization and nucleotide sequences of two lactococcal bacteriocin operons. Appl. Environ. Microbiol. 57, 492–498 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Heidrich, C. et al. Isolation, characterization, and heterologous expression of the novel lantibiotic epicidin 280 and analysis of its biosynthetic gene cluster. Appl. Environ. Microbiol. 64, 3140–3146 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Franz, C. M., van Belkum, M. J., Worobo, R. W., Vederas, J. C. & Stiles, M. E. Characterization of the genetic locus responsible for production and immunity of carnobacteriocin A: the immunity gene confers cross-protection to enterocin B. Microbiology 146, 621–631 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Beukes, M. & Hastings, J. W. Self-protection against cell wall hydrolysis in Streptococcus milleri NMSCC 061 and analysis of the millericin B operon. Appl. Environ. Microbiol. 67, 3888–3896 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Gravesen, A., Jydegaard Axelsen, A. M., Mendes da Silva, J., Hansen, T. B. & Knochel, S. Frequency of bacteriocin resistance development and associated fitness costs in Listeria monocytogenes. Appl. Environ. Microbiol. 68, 756–764 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Severina, E., Severin, A. & Tomasz, A. Antibacterial efficacy of nisin against multidrug-resistant Gram-positive pathogens. J. Antimicrob. Chemother. 41, 341–347 (1998).

    Article  CAS  PubMed  Google Scholar 

  94. Li, J., Chikindas, M. L., Ludescher, R. D. & Montville, T. J. Temperature- and surfactant-induced membrane modifications that alter Listeria monocytogenes nisin sensitivity by different mechanisms. Appl. Environ. Microbiol. 68, 5904–5910 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Verheul, A., Russell, N. J., Van, T. H. R., Rombouts, F. M. & Abee, T. Modifications of membrane phospholipid composition in nisin-resistant Listeria monocytogenes Scott A. Appl. Environ. Microbiol. 63, 3451–3457 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Maisnier-Patin, S. & Richard, J. Cell wall changes in nisin-resistant variants of Listeria innocua grown in the presence of high nisin concentrations. FEMS Microbiol. Lett. 140, 29–35 (1996).

    Article  CAS  PubMed  Google Scholar 

  97. Mantovani, H. C. & Russell, J. B. Nisin resistance of Streptococcus bovis. Appl. Environ. Microbiol. 67, 808–813 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Abachin, E. et al. Formation of D-alanyl-lipoteichoic acid is required for adhesion and virulence of Listeria monocytogenes. Mol. Microbiol. 43, 1–14 (2002).

    Article  CAS  PubMed  Google Scholar 

  99. Bierbaum, G. & Sahl, H. G. Autolytic system of Staphylococcus simulans 22: influence of cationic peptides on activity of N-acetylmuramoyl-L-alanine amidase. J. Bacteriol. 169, 5452–5458 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Crandall, A. D. & Montville, T. J. Nisin resistance in Listeria monocytogenes ATCC 700302 is a complex phenotype. Appl. Environ. Microbiol. 64, 231–237 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. van Schaik, W., Gahan, C. G. & Hill, C. Acid-adapted Listeria monocytogenes displays enhanced tolerance against the lantibiotics nisin and lacticin 3147. J. Food Prot. 62, 536–539 (1999).

    Article  CAS  PubMed  Google Scholar 

  102. Kramer, N. E. et al. Resistance of Gram-positive bacteria to nisin is not determined by lipid II levels. FEMS Microbiol. Lett. 239, 157–161 (2004).

    Article  CAS  PubMed  Google Scholar 

  103. Cotter, P. D., Guinane, C. M. & Hill, C. The LisRK signal transduction system determines the sensitivity of Listeria monocytogenes to nisin and cephalosporins. Antimicrob. Agents Chemother. 46, 2784–2790 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Gravesen, A. et al. pbp2229-mediated nisin resistance mechanism in Listeria monocytogenes confers cross-protection to class IIa bacteriocins and affects virulence gene expression. Appl. Environ. Microbiol. 70, 1669–1679 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Gravesen, A., Sorensen, K., Aarestrup, F. M. & Knochel, S. Spontaneous nisin-resistant Listeria monocytogenes mutants with increased expression of a putative penicillin-binding protein and their sensitivity to various antibiotics. Microb. Drug Resist. 7, 127–135 (2001).

    Article  CAS  PubMed  Google Scholar 

  106. Peschel, A. et al. Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides. J. Biol. Chem. 274, 8405–8410 (1999).

    Article  CAS  PubMed  Google Scholar 

  107. Cao, M. & Helmann, J. D. The Bacillus subtilis extracytoplasmic-function σX factor regulates modification of the cell envelope and resistance to cationic antimicrobial peptides. J. Bacteriol. 186, 1136–1146 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Vadyvaloo, V., Hastings, J. W., van der Merwe, M. J. & Rautenbach, M. Membranes of class IIa bacteriocin-resistant Listeria monocytogenes cells contain increased levels of desaturated and short-acyl-chain phosphatidylglycerols. Appl. Environ. Microbiol. 68, 5223–5230 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Vadyvaloo, V. et al. Cell-surface alterations in class IIa bacteriocin-resistant Listeria monocytogenes strains. Microbiology 150, 3025–3033 (2004).

    Article  CAS  PubMed  Google Scholar 

  110. Wang, B. Y. & Kuramitsu, H. K. Interactions between oral bacteria: inhibition of Streptococcus mutans bacteriocin production by Streptococcus gordonii. Appl. Environ. Microbiol. 71, 354–362 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Bouttefroy, A. & Milliere, J. B. Nisin-curvaticin 13 combinations for avoiding the regrowth of bacteriocin resistant cells of Listeria monocytogenes ATCC 15313. Int. J. Food Microbiol. 62, 65–75 (2000).

    Article  CAS  PubMed  Google Scholar 

  112. Bonev, B. B., Breukink, E., Swiezewska, E., De Kruijff, B. & Watts, A. Targeting extracellular pyrophosphates underpins the high selectivity of nisin. FASEB J. 18, 1862–1869 (2004).

    Article  CAS  PubMed  Google Scholar 

  113. Rollema, H. S., Kuipers, O. P., Both, P., de Vos, W. M. & Siezen, R. J. Improvement of solubility and stability of the antimicrobial peptide nisin by protein engineering. Appl. Environ. Microbiol. 61, 2873–2878 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Yuan, J., Zhang, Z. Z., Chen, X. Z., Yang, W. & Huan, L. D. Site-directed mutagenesis of the hinge region of nisinZ and properties of nisinZ mutants. Appl. Microbiol. Biotechnol. 64, 806–815 (2004). Creation of nisin derivatives with activity against certain Gram-negative bacteria.

    Article  CAS  PubMed  Google Scholar 

  115. Liu, W. & Hansen, J. N. Enhancement of the chemical and antimicrobial properties of subtilin by site-directed mutagenesis. J. Biol. Chem. 267, 25078–25085 (1992).

    CAS  PubMed  Google Scholar 

  116. Johnsen, L., Fimland, G., Eijsink, V. & Nissen-Meyer, J. Engineering increased stability in the antimicrobial peptide pediocin PA-1. Appl. Environ. Microbiol. 66, 4798–4802 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Richard, C., Drider, D., Elmorjani, K., Marion, D. & Prevost, H. Heterologous expression and purification of active divercin V41, a class IIa bacteriocin encoded by a synthetic gene in Escherichia coli. J. Bacteriol. 186, 4276–4284 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Schoeman, H., Vivier, M. A., du Toit, M., Dicks, L. M. & Pretorius, I. S. The development of bactericidal yeast strains by expressing the Pediococcus acidilactici pediocin gene (pedA) in Saccharomyces cerevisiae. Yeast 15, 647–656 (1999).

    Article  CAS  PubMed  Google Scholar 

  119. Rodriguez, J. M., Martinez, M. I. & Kok, J. Pediocin PA-1, a wide-spectrum bacteriocin from lactic acid bacteria. Crit. Rev. Food Sci. Nutr. 42, 91–121 (2002).

    Article  CAS  PubMed  Google Scholar 

  120. Ennahar, S., Sashihara, T., Sonomoto, K. & Ishizaki, A. Class IIa bacteriocins: biosynthesis, structure and activity. FEMS Microbiol. Rev. 24, 85–106 (2000).

    Article  CAS  PubMed  Google Scholar 

  121. Holzapfel, W. H., Geisen, R. & Schillinger, U. Biological preservation of foods with reference to protective cultures, bacteriocins and food-grade enzymes. Int. J. Food Microbiol. 24, 343–362 (1995).

    Article  CAS  PubMed  Google Scholar 

  122. Chen, H. & Hoover, D. G. Bacteriocins and their food applications. Comp. Rev. Food Sci. Food Safety 2, 82–100 (2003). Reviews the contribution of bacteriocins to food safety.

    CAS  Google Scholar 

  123. O'Sullivan, L., Ross, R. P. & Hill, C. Potential of bacteriocin-producing lactic acid bacteria for improvements in food safety and quality. Biochimie 84, 593–604 (2002).

    Article  CAS  PubMed  Google Scholar 

  124. Ryan, M. P., Hill, C. & Ross, R. P. Exploitation of Lantibiotic Peptides for Food and Medical Uses (eds Dutton, C. J., Haxell, M. A., McArthur, H. A. I. & Wax, R. G.) (Marcel Dekker, New York/Basel, 2002).

    Google Scholar 

  125. Luders, T., Birkemo, G. A., Fimland, G., Nissen-Meyer, J. & Nes, I. F. Strong synergy between a eukaryotic antimicrobial peptide and bacteriocins from lactic acid bacteria. Appl. Environ. Microbiol. 69, 1797–1799 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Boziaris, I. S. & Adams, M. R. Temperature shock, injury and transient sensitivity to nisin in Gram negatives. J. Appl. Microbiol. 91, 715–724 (2001).

    Article  CAS  PubMed  Google Scholar 

  127. Masschalck, B., Deckers, D. & Michiels, C. W. Sensitization of outer-membrane mutants of Salmonella typhimurium and Pseudomonas aeruginosa to antimicrobial peptides under high pressure. J. Food Prot. 66, 1360–1367 (2003).

    Article  CAS  PubMed  Google Scholar 

  128. Boziaris, I. S. & Adams, M. R. Transient sensitivity to nisin in cold-shocked Gram negatives. Lett. Appl. Microbiol. 31, 233–237 (2000).

    Article  CAS  PubMed  Google Scholar 

  129. Stevens, K. A., Sheldon, B. W., Klapes, N. A. & Klaenhammer, T. R. Nisin treatment for inactivation of Salmonella species and other Gram-negative bacteria. Appl. Environ. Microbiol. 57, 3613–3615 (1991). First indication that disruption of the outer membrane sensitizes Gram-negative bacteria to bacteriocins.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Kalchayanand, N., Sikes, A., Dunne, C. P. & Ray, B. Interaction of hydrostatic pressure, time and temperature of pressurization and pediocin AcH on inactivation of foodborne bacteria. J. Food Prot. 61, 425–431 (1998).

    Article  CAS  PubMed  Google Scholar 

  131. Baker, S. H., Ekinci Kitis, F. Y., Quattlebaum, R. G. & Barefoot, S. F. Sensitization of gram-negative and gram-positive bacteria to jenseniin G by sublethal injury. J. Food Prot. 67, 1009–1013 (2004).

    Article  CAS  PubMed  Google Scholar 

  132. Suma, K., Misra, M. C. & Varadaraj, M. C. Plantaricin LP84, a broad spectrum heat-stable bacteriocin of Lactobacillus plantarum NCIM 2084 produced in a simple glucose broth medium. Int. J. Food Microbiol. 40, 17–25 (1998).

    Article  CAS  PubMed  Google Scholar 

  133. Delves-Broughton, J., Blackburn, P., Evans, R. J. & Hugenholtz, J. Applications of the bacteriocin, nisin. Antonie Van Leeuwenhoek 69, 193–202 (1996).

    Article  CAS  PubMed  Google Scholar 

  134. Abriouel, H., Valdivia, E., Martinez-Bueno, M., Maqueda, M. & Galvez, A. A simple method for semi-preparative-scale production and recovery of enterocin AS-48 derived from Enterococcus faecalis subsp. liquefaciens A-48-32. J. Microbiol. Methods 55, 599–605 (2003).

    Article  CAS  PubMed  Google Scholar 

  135. Mead, P. S. et al. Food-related illness and death in the United States. Emerg. Infect. Dis. 5, 607–625 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Wong, S., Street, D., Delgado, S. I. & Klontz, K. C. Recalls of foods and cosmetics due to microbial contamination reported to the U. S. Food and Drug Administration. J. Food Prot. 63, 1113–1116 (2000).

    Article  CAS  PubMed  Google Scholar 

  137. Thomas, T. D. & Crow, V. L. Mechanism of D-lactic acid formation in cheddar cheese. N. Z. J. Dairy Sci. Technol 18, 131–141 (1983).

    CAS  Google Scholar 

  138. Ryan, M. P., Rea, M. C., Hill, C. & Ross, R. P. An application in cheddar cheese manufacture for a strain of Lactococcus lactis producing a novel broad-spectrum bacteriocin, lacticin 3147. Appl. Environ. Microbiol. 62, 612–619 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Oumer, A., Garde, S., Gaya, P., Medina, M. & Nunez, M. The effects of cultivating lactic starter cultures with bacteriocin-producing lactic acid bacteria. J. Food Prot. 64, 81–86 (2001).

    Article  CAS  PubMed  Google Scholar 

  140. O'Sullivan, L., Ross, R. P. & Hill, C. A lacticin 481-producing adjunct culture increases starter lysis while inhibiting nonstarter lactic acid bacteria proliferation during cheddar cheese ripening. J. Appl. Microbiol. 95, 1235–1241 (2003).

    Article  CAS  PubMed  Google Scholar 

  141. Daeschel, M. A., Jung, D. S. & Watson, B. T. Controlling wine malolactic fermentations with nisin and nisin-resistant strains of Leuconostoc oenos. Appl. Environ. Microbiol. 57, 601–603 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Radler, F. Possible use of nisin in winemaking. II. Experiments to control lactic acid bacteria in the production of wine. Am. J. Enol. Vitic. 41, 7–11 (1990).

    CAS  Google Scholar 

  143. Fox, P. F., McSweeney, P. L. H. & Lynch, C. M. Significance of non-starter lactic acid bacteria in cheddar cheese. Aust. J. Dairy Technol. 53, 83–89 (1998).

    Google Scholar 

  144. Ryan, M. P., Ross, R. P. & Hill, C. Strategy for manipulation of cheese flora using combinations of lacticin 3147-producing and-resistant cultures. Appl. Environ. Microbiol. 67, 2699–2704 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Martinez-Cuesta, C., Requena, T. & Pelaez, C. Effect of bacteriocin-induced cell damage on the branched-chain amino acid transamination by Lactococcus lactis. FEMS Microbiol. Lett. 217, 109–113 (2002).

    Article  CAS  PubMed  Google Scholar 

  146. Garde, S., Tomillo, J., Gaya, P., Medina, M. & Nunez, M. Proteolysis in Hispanico cheese manufactured using a mesophilic starter, a thermophilic starter, and bacteriocin-producing Lactococcus lactis subsp. lactis INIA 415 adjunct culture. J. Agric. Food Chem. 50, 3479–3485 (2002).

    Article  CAS  PubMed  Google Scholar 

  147. Dunne, C. et al. Probiotics: from myth to reality. Demonstration of functionality in animal models of disease and in human clinical trials. Antonie Van Leeuwenhoek 76, 279–292 (1999).

    Article  CAS  PubMed  Google Scholar 

  148. Marteau, P. & Rambaud, J. C. Potential of using lactic acid bacteria for therapy and immunomodulation in man. FEMS Microbiol. Rev. 12, 207–220 (1993).

    Article  CAS  PubMed  Google Scholar 

  149. Tannock, G. W. Probiotic properties of lactic-acid bacteria: plenty of scope for fundamental R & D. Trends Biotechnol. 15, 270–274 (1997).

    Article  CAS  PubMed  Google Scholar 

  150. Hickey, R. M., Ross, R. P. & Hill, C. Controlled autolysis and enzyme release in a recombinant lactococcal strain expressing the metalloendopeptidase enterolysin A. Appl. Environ. Microbiol. 70, 1744–1748 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Galvin, M., Hill, C. & Ross, R. P. Lacticin 3147 displays activity in buffer against gram-positive bacterial pathogens which appear insensitive in standard plate assays. Lett. Appl. Microbiol. 28, 355–358 (1999).

    Article  CAS  PubMed  Google Scholar 

  152. Goldstein, B. P., Wei, J., Greenberg, K. & Novick, R. Activity of nisin against Streptococcus pneumoniae, in vitro, and in a mouse infection model. J. Antimicrob. Chemother. 42, 277–278 (1998).

    Article  CAS  PubMed  Google Scholar 

  153. Niu, W. W. & Neu, H. C. Activity of mersacidin, a novel peptide, compared with that of vancomycin, teicoplanin, and daptomycin. Antimicrob. Agents Chemother. 35, 998–1000 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Kruszewska, D. et al. Mersacidin eradicates methicillin-resistant Staphylococcus aureus (MRSA) in a mouse rhinitis model. J. Antimicrob. Chemother. 54, 648–653 (2004).

    Article  CAS  PubMed  Google Scholar 

  155. Blackburn, P. & Goldstein, B. P. Applied Microbiology Inc. International Patent Application WO 97/10801 (1995).

  156. McConville, P. Smithkline Beecham Plc. International Patent Application WO 97/06772 (1995).

  157. Patel, M. M. William Wrigley Jr Co. International Patent Application WO 97/20473 (1995).

  158. Howell, T. H. et al. The effect of a mouthrinse based on nisin, a bacteriocin, on developing plaque and gingivitis in beagle dogs. J. Clin. Periodontol. 20, 335–339 (1993).

    Article  CAS  PubMed  Google Scholar 

  159. Ryan, M. P., Flynn, J., Hill, C., Ross, R. P. & Meaney, W. J. The natural food grade inhibitor, lacticin 3147, reduced the incidence of mastitis after experimental challenge with Streptococcus dysgalactiae in nonlactating dairy cows. J. Dairy Sci. 82, 2625–2631 (1999).

    Article  CAS  PubMed  Google Scholar 

  160. Tagg, J. R. Prevention of streptococcal pharyngitis by anti-Streptococcus pyogenes bacteriocin-like inhibitory substances (BLIS) produced by Streptococcus salivarius. Indian J. Med. Res. 119, 13–16 (2004).

    CAS  PubMed  Google Scholar 

  161. Aranha, C., Gupta, S. & Reddy, K. V. Contraceptive efficacy of antimicrobial peptide nisin: in vitro and in vivo studies. Contraception 69, 333–338 (2004).

    Article  CAS  PubMed  Google Scholar 

  162. Reddy, K. V., Aranha, C., Gupta, S. M. & Yedery, R. D. Evaluation of antimicrobial peptide nisin as a safe vaginal contraceptive agent in rabbits: in vitro and in vivo studies. Reproduction 128, 117–126 (2004).

    Article  CAS  PubMed  Google Scholar 

  163. Kleerebezem, M. Quorum sensing control of lantibiotic production; nisin and subtilin autoregulate their own biosynthesis. Peptides 25, 1405–1414 (2004).

    Article  CAS  PubMed  Google Scholar 

  164. Kleerebezem, M. & Quadri, L. E. Peptide pheromone-dependent regulation of antimicrobial peptide production in Gram-positive bacteria: a case of multicellular behavior. Peptides 22, 1579–1596 (2001). Review of the involvement of cell signalling in bacteriocin production.

    Article  CAS  PubMed  Google Scholar 

  165. Kleerebezem, M., Kuipers, O. P., de Vos, W. M., Stiles, M. E. & Quadri, L. E. A two-component signal-transduction cascade in Carnobacterium piscicola LV17B: two signaling peptides and one sensor-transmitter. Peptides 22, 1597–1601 (2001).

    Article  CAS  PubMed  Google Scholar 

  166. Nilsen, T., Nes, I. F. & Holo, H. An exported inducer peptide regulates bacteriocin production in Enterococcus faecium CTC492. J. Bacteriol. 180, 1848–1854 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Maldonado, A., Jimenez-Diaz, R. & Ruiz-Barba, J. L. Induction of plantaricin production in Lactobacillus plantarum NC8 after coculture with specific gram-positive bacteria is mediated by an autoinduction mechanism. J. Bacteriol. 186, 1556–1564 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Maldonado, A., Ruiz-Barba, J. L. & Jimenez-Diaz, R. Production of plantaricin NC8 by Lactobacillus plantarum NC8 is induced in the presence of different types of gram-positive bacteria. Arch. Microbiol. 181, 8–16 (2004).

    Article  CAS  PubMed  Google Scholar 

  169. Coburn, P. S., Pillar, C. M., Jett, B. D., Haas, W. & Gilmore, M. S. Enterococcus faecalis senses target cells and in response expresses cytolysin. Science 306, 2270–2272 (2004).

    Article  CAS  PubMed  Google Scholar 

  170. Gomez, A., Ladire, M., Marcille, F. & Fons, M. Trypsin mediates growth phase-dependent transcriptional regulation of genes involved in biosynthesis of ruminococcin A, a lantibiotic produced by a Ruminococcus gnavus strain from a human intestinal microbiota. J. Bacteriol. 184, 18–28 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Hickey, R. M., Twomey, D. P., Ross, R. P. & Hill, C. Potential of the enterocin regulatory system to control expression of heterologous genes in Enterococcus. J. Appl. Microbiol. 95, 390–397 (2003).

    Article  CAS  PubMed  Google Scholar 

  172. Mathiesen, G. et al. High-level gene expression in Lactobacillus plantarum using a pheromone-regulated bacteriocin promoter. Lett. Appl. Microbiol. 39, 137–143 (2004).

    Article  CAS  PubMed  Google Scholar 

  173. Hilman, J. D. Genetically modified Streptococcus mutans for the prevention of dental caries. Antonie Van Leeuwenhoek 82, 361–366 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are supported by the Irish Government under the National Development Plan (2000–2006) and by Science Foundation Ireland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin Hill.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez

Escherichia coli

Lactococcus lactis

Leuconostoc oenos

Listeria monocytogenes

Staphylococcus aureus

Streptococcus mutans

Streptococcus pneumoniae

FURTHER INFORMATION

Alimentary Pharmabiotic Centre

Gateway to Government Food Safety Information

Glossary

BACTERIOCINS

Bacterially produced, small, heat-stable peptides that are active against other bacteria and to which the producer has a specific immunity mechanism. Bacteriocins can have a narrow or broad target spectrum.

LANTIBIOTIC

Lanthionine-containing bacteriocins. Lanthionines are formed when a dehydrated serine or threonine is covalently bridged (through the sulphur atom) with a cysteine.

BACTERIOLYSINS

Large, heat-labile, lytic proteins produced by bacteria.

LIPID II

Lipid II (Undecaprenyl-pyrophosphate–MurNAc(pentapeptide)–GlcNAc) has an essential role in peptidoglycan synthesis by translocating the peptidoglycan subunits across the cell membrane. Lipid II is also the target of vancomycin, the drug of last resort in the treatment of MRSA.

BACTERIOCINOGENIC

Bacteriocin-producing strains are said to be bacteriocinogenic.

GRAS

An acronym for substances that are 'generally recognized as safe'. This group includes several hundred substances that experts consider safe for use in food on the basis of either a history of safe use before 1958 or on published scientific evidence.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cotter, P., Hill, C. & Ross, R. Bacteriocins: developing innate immunity for food. Nat Rev Microbiol 3, 777–788 (2005). https://doi.org/10.1038/nrmicro1273

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1273

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing