Skip to main content

Potential Agrifood Applications of Novel and Sustainable Nanomaterials: An Ecofriendly Approach

  • Living reference work entry
  • First Online:
Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications

Abstract

The nanosize of the fertilizer which confers a high volume to surface area ensures their effective action over conventional fertilizer. This fertilizer improves the efficient use of nutrient, thereby leading to highly productive agriculture. As a result, nanotechnology is expected to ensure the sustainability of the agriculture sector. The nanoforms of fertilizer are better and readily absorbed by plant when compared to ordinary fertilizer. Nanotechnology is a promising domain that can be explored in light of concerns for waste management. With the growing human population globally, there has been an increasing need for food preservative due to global decline in food production occasioned by drought and man-made disaster. Nanotechnology evolution has made a lot of impact and contribution to food industry for food preservation, processing, and packaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Liu R, Lal R (2015) Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci Total Environ 514:131–139

    Article  CAS  Google Scholar 

  2. Feregrino-Perez AA, Magaña-López E, Guzmán C, Esquivel K (2018) A general overview of the benefits and possible negative effects of the nanotechnology in horticulture. Sci Hortic 238:126–137

    Article  Google Scholar 

  3. Khot LR, Sankaran S, Maja JM et al (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70

    Article  CAS  Google Scholar 

  4. Davarpanah S, Tehranifar A, Davarynejad G et al (2016) Effects of foliar applications of zinc and boron nano-fertilizers on pomegranate (Punica granatum cv. Ardestani) fruit yield and quality. Sci Hortic 210:57–64

    Article  CAS  Google Scholar 

  5. Barbara K, Kuiken T, Otto M (2009) Nanotechnology and in situ remediation: a review of the benefits and potential risks. Environ Health Perspect 117(12):1823–1831. https://doi.org/10.1289/ehp.0900793

    Article  Google Scholar 

  6. Mueller NC, Braun J, Bruns J et al (2012) Application of nanoscale zero valent iron (NZVI) for groundwater remediation in Europe. Environ Sci Pollut Res 19(2):550–558. https://doi.org/10.1007/s11356-011-0576-3

    Article  CAS  Google Scholar 

  7. Olayinka AS, Nwankw W, Olayinka TC, Osiele MO (2018) Implementing automated power outlet distribution control system using electronic wastes. Int J Adv Res Comput Commun Eng 7(9):13–18

    Article  Google Scholar 

  8. Nwankwo W, Ukhurebor KE (2020) Green computing policies and regulations: a necessity? Int J Sci Technol Res 9(1). http://www.ijstr.org/final-print/jan2020/Green-Computing-Policies-And-Regulations-A-Necessity.pdf

  9. Neo YP, Ray S, Jin J et al (2013) Encapsulation of food grade antioxidant in natural biopolymer by electrospinning technique: a physicochemical study based on zein–gallic acid system. Food Chem 136(2):1013–1021

    Article  CAS  Google Scholar 

  10. Duncan TV (2011) Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J Colloid Interface Sci 363(1):1–24

    Article  CAS  Google Scholar 

  11. Shang Y, Hasan MK, Ahammed GJ et al (2019) Applications of nanotechnology in plant growth and crop protection: a review. Molecules 24(14):2558. https://doi.org/10.3390/molecules24142558

    Article  CAS  Google Scholar 

  12. Kaphle A, Navya PN, Umapathi A, Daima HK (2018) Nanomaterials for agriculture, food and environment: applications, toxicity and regulation. Environ Chem Lett 16:43–58. https://doi.org/10.1007/s10311-017-0662-y

    Article  CAS  Google Scholar 

  13. Rodrigues SM, Demokritou P, Dokoozlian N et al (2017) Nanotechnology for sustainable food production: promising opportunities and scientific challenges. Environ Sci Nano 4:767. https://doi.org/10.1039/c6en00573j

    Article  CAS  Google Scholar 

  14. Mochizuki H, Gautam PK, Sinha S, Kumar S (2009) Increasing fertilizer and pesticide use efficiency by nanotechnology in desert afforestation, arid agriculture. J Arid Land Stud 19:129–132

    Google Scholar 

  15. Raliya R, Nair R, Chavalmane S et al (2015) Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. Metallomics 7(12):1584–1594

    Article  CAS  Google Scholar 

  16. Siddiquee S, Rovina K, Yusof NA et al (2014) Nanoparticle enhanced electrochemical biosensor with DNA immobilization and hybridization of Trichoderma harzianum gene. Sens Bio-Sens Res 2:16–22

    Article  Google Scholar 

  17. Kottegoda N, Sandaruwan C, Priyadarshana G et al (2017) Urea-hydroxyapatite nanohybrids for slow release of nitrogen. ACS Nano 11(2):1214–1221

    Article  CAS  Google Scholar 

  18. Abdel-Aziz HM, Hasaneen MN, Omer AM (2016) Nano chitosan-NPK fertilizer enhances the growth and productivity of wheat plants grown in sandy soil. Span J Agric Res 14(1):e0902. https://doi.org/10.5424/sjar/2016141-8205

    Article  Google Scholar 

  19. Ma J, Liu J, Zhang ZM (2009) Application study of carbon nano-fertilizer on growth of winter wheat. Humic Acid 2:14–20

    Google Scholar 

  20. Du W, Sun Y, Ji R et al (2011) TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. J Environ Monit 13(4):822–828

    Article  CAS  Google Scholar 

  21. Wang WN, Tarafdar JC, Biswas P (2013) Nanoparticle synthesis and delivery by an aerosol route for watermelon plant foliar uptake. J Nanopart Res 15(1):1417

    Article  CAS  Google Scholar 

  22. Xu J, Fan QJ, Yin ZQ et al (2010) The preparation of neem oil microemulsion (Azadirachta indica) and the comparison of acaricidal time between neem oil microemulsion and other formulations in vitro. Vet Parasitol 169(3–4):399–403

    Article  CAS  Google Scholar 

  23. DiMario RJ, Clayton H, Mukherjee A et al (2017) Plant carbonic anhydrases: structures, locations, evolution, and physiological roles. Mol Plant 10(1):30–46

    Article  CAS  Google Scholar 

  24. El-Kereti M, El-Feky SA, Khater S et al (2013) ZnO nanofertilizer and He Ne laser irradiation for promoting growth and yield of sweet basil plant. Recent patents on food. Nutr Agric 5(3):169–181

    CAS  Google Scholar 

  25. Latef AAHA, Alhmad MFA, Abdelfattah KE (2017) The possible roles of priming with ZnO nanoparticles in mitigation of salinity stress in lupine (Lupinus termis) plants. J Plant Growth Regul 36(1):60–70

    Article  CAS  Google Scholar 

  26. Mahajan P, Dhoke SK, Khanna AS (2011) Effect of nano-ZnO particle suspension on growth of mung (Vigna radiata) and gram (Cicer arietinum) seedlings using plant agar method. J Nanotechnol 2011:1–7. https://doi.org/10.1155/2011/696535

    Article  CAS  Google Scholar 

  27. Prasad TNVKV, Sudhakar P, Sreenivasulu Y et al (2012) Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J Plant Nutr 35(6):905–927

    Article  CAS  Google Scholar 

  28. Singh A, Singh NB, Hussain I et al (2016) Green synthesis of nano zinc oxide and evaluation of its impact on germination and metabolic activity of Solanum lycopersicum. J Biotechnol 233:84–94

    Article  CAS  Google Scholar 

  29. Subbaiah LV, Prasad TNVKV, Krishna TG et al (2016) Novel effects of nanoparticulate delivery of zinc on growth, productivity, and zinc biofortification in maize (Zea mays L.). J Agric Food Chem 64(19):3778–3788

    Article  CAS  Google Scholar 

  30. Sturikova H, Krystofova O, Huska D, Adam V (2018) Zinc, zinc nanoparticles and plants. J Hazard Mater 349:101–110

    Article  CAS  Google Scholar 

  31. Singh G, Rattanpal H (2014) Use of nanotechnology in horticulture: a review. Int J Agric Sci Vet Med 2:34–42

    Google Scholar 

  32. Pradhan S, Mailapalli DR (2017) Interaction of engineered nanoparticles with the agri-environment. J Agric Food Chem 65(38):8279–8294

    Article  CAS  Google Scholar 

  33. Dimkpa CO, Bindraban PS (2017) Nanofertilizers: new products for the industry? J Agric Food Chem 66(26):6462–6473

    Article  CAS  Google Scholar 

  34. Yadav TP, Yadav RM, Singh DP (2012) Mechanical milling: a top down approach for the synthesis of nanomaterials and nanocomposites. Nanosci Nanotechnol 2(3):22–48

    Article  CAS  Google Scholar 

  35. Thakur S, Thakur S, Kumar R (2018) Bio-nanotechnology and its role in agriculture and food industry. J Mol Genet Med 12:324. https://doi.org/10.4172/1747-0862.1000324

    Article  Google Scholar 

  36. Raliya R, Saharan V, Dimkpa C, Biswas P (2017) Nanofertilizer for precision and sustainable agriculture: current state and future perspectives. J Agric Food Chem 66(26):6487–6503

    Article  CAS  Google Scholar 

  37. Malhotra SK (2016) Water soluble fertilizers in horticultural crops – an appraisal. Indian J Agric Sci 86(10):1245–1256

    Google Scholar 

  38. Solanki P, Bhargava A, Chhipa H et al (2015) Nano-fertilizers and their smart delivery system. In: Rai M, Ribeiro C, Mattoso L, Duran N (eds) Nanotechnologies in food and agriculture. Springer, Cham, pp 81–101

    Google Scholar 

  39. Sharonova NL, Yapparov AK, Khisamutdinov NS et al (2015) Nanostructured water-phosphorite suspension is a new promising fertilizer. Nanotechnol Russ 10(7–8):651–661

    Article  CAS  Google Scholar 

  40. Mattiello EM, Ruiz HA, Neves JC et al (2015) Zinc deficiency affects physiological and anatomical characteristics in maize leaves. J Plant Physiol 183:138–143

    Article  CAS  Google Scholar 

  41. Monreal CM, DeRosa M, Mallubhotla SC et al (2016) Nanotechnologies for increasing the crop use efficiency of fertilizer-micronutrients. Biol Fertil Soils 52(3):423–437

    Article  CAS  Google Scholar 

  42. Lü S, Feng C, Gao C et al (2016) Multifunctional environmental smart fertilizer based on L-aspartic acid for sustained nutrient release. J Agric Food Chem 64(24):4965–4974

    Article  CAS  Google Scholar 

  43. Chhipa H (2017) Nanofertilizers and nanopesticides for agriculture. Environ Chem Lett 15(1):15–22

    Article  CAS  Google Scholar 

  44. Ditta A, Arshad M (2016) Applications and perspectives of using nanomaterials for sustainable plant nutrition. Nanotechnol Rev 5(2):209–229

    Article  CAS  Google Scholar 

  45. Wang P, Lombi E, Zhao FJ, Kopittke PM (2016) Nanotechnology: a new opportunity in plant sciences. Trends Plant Sci 21(8):699–712

    Article  CAS  Google Scholar 

  46. Patra S, Mishra P, Mahapatra SC, Mithun SK (2016) Modelling impacts of chemical fertilizer on agricultural production: a case study on Hooghly district, West Bengal, India. Model Earth Syst Environ 2(4):1–11

    Article  Google Scholar 

  47. Simarmata T, Turmuktini T, Fitriatin BN, Setiawati MR (2016) Application of bioameliorant and biofertilizers to increase the soil health and rice productivity. HAYATI J Biosci 23(4):181–184

    Article  Google Scholar 

  48. Malusá E, Sas-Paszt L, Ciesielska J (2012) Technologies for beneficial microorganisms inocula used as biofertilizers. Sci World J. https://doi.org/10.1100/2012/491206

  49. Shukla SK, Kumar R, Mishra RK et al (2015) Prediction and validation of gold nanoparticles (GNPs) on plant growth promoting rhizobacteria (PGPR): a step toward development of nano-biofertilizers. Nanotechnol Rev 4(5):439–448

    Article  CAS  Google Scholar 

  50. Duhan JS, Kumar R, Kumar N et al (2017) Nanotechnology: the new perspective in precision agriculture. Biotechnol Rep 15:11–23

    Article  Google Scholar 

  51. Zulfiqar F, Navarro M, Ashraf M et al (2019) Nanofertilizer use for sustainable agriculture: advantages and limitations. Plant Sci. https://doi.org/10.1016/j.plantsci.2019.110270

  52. Ebbs SD, Bradfield SJ, Kumar P et al (2016) Accumulation of zinc, copper, or cerium in carrot (Daucus carota) exposed to metal oxide nanoparticles and metal ions. Environ Sci Nano 3(1):114–126

    Article  CAS  Google Scholar 

  53. Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3(1):1–30

    Article  CAS  Google Scholar 

  54. Zhang X, Davidson EA, Mauzerall DL et al (2015) Managing nitrogen for sustainable development. Nature 528(7580):51–59

    Article  CAS  Google Scholar 

  55. Larue C, Castillo-Michel H, Sobanska S et al (2014) Foliar exposure of the crop Lactuca sativa to silver nanoparticles: evidence for internalization and changes in ag speciation. J Hazard Mater 264:98–106

    Article  CAS  Google Scholar 

  56. Giorgetti L (2019) Effects of nanoparticles in plants: phytotoxicity and genotoxicity assessment. In: Tripathi DK, Ahmad P, Sharma S et al (eds) Nanomaterials in plants, algae, and microorganisms. Vol. 1 Concepts and controversies. Elsevier, Amsterdam, pp 65–87

    Chapter  Google Scholar 

  57. Odzak N, Kistler D, Behra R, Sigg L (2015) Dissolution of metal and metal oxide nanoparticles under natural freshwater conditions. Environ Chem 12(2):138–148

    Article  CAS  Google Scholar 

  58. López-Moreno ML, Cassé C, Correa-Torres SN (2018) Engineered nanomaterials interactions with living plants: benefits, hazards and regulatory policies. Curr Opin Environ Sci Health 6:36–41

    Article  Google Scholar 

  59. White JC, Gardea-Torresdey J (2018) Achieving food security through the very small. Nat Nanotechnol 13(8):627–629

    Article  CAS  Google Scholar 

  60. Shakiba S, Astete CE, Paudel S et al (2020) Polymeric nanocarriers for agricultural applications: synthesis, characterization, and environmental and biological interactions. Environ Sci Nano 7:37–67. https://doi.org/10.1039/c9en01127g

    Article  CAS  Google Scholar 

  61. Bais HP, Weir TL, Perry LG et al (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  CAS  Google Scholar 

  62. Parsons JG, Lopez ML, Gonzalez CM et al (2010) Toxicity and biotransformation of uncoated and coated nickel hydroxide nanoparticles on mesquite plants. Environ Toxicol Chem 29(5):1146–1154

    CAS  Google Scholar 

  63. Ma C, White JC, Zhao J et al (2018) Uptake of engineered nanoparticles by food crops: characterization, mechanisms, and implications. Annu Rev Food Sci Technol 9:129–153

    Article  CAS  Google Scholar 

  64. Ma Y, He X, Zhang P et al (2017) Xylem and phloem based transport of CeO2 nanoparticles in hydroponic cucumber plants. Environ Sci Technol 51(9):5215–5221

    Article  CAS  Google Scholar 

  65. Ma Y, Zhang P, Zhang Z et al (2015) Where does the transformation of precipitated ceria nanoparticles in hydroponic plants take place? Environ Sci Technol 49(17):10667–10674

    Article  CAS  Google Scholar 

  66. Lowry GV, Gregory KB, Apte SC, Lead JR (2012) Transformations of nanomaterials in the environment. Environ Sci Technol 46:6893–6899

    Article  CAS  Google Scholar 

  67. Pullagurala VLR, Adisa IO, Rawat S et al (2018) ZnO nanoparticles increase photosynthetic pigments and decrease lipid peroxidation in soil grown cilantro (Coriandrum sativum). Plant Physiol Biochem 132:120–127

    Article  CAS  Google Scholar 

  68. Priester JH, Ge Y, Mielke RE et al (2012) Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption. Proc Natl Acad Sci U S A 109(37):E2451–E2456

    Article  CAS  Google Scholar 

  69. De La Torre-Roche R, Hawthorne J, Deng Y et al (2012) Fullerene-enhanced accumulation of p, p′-DDE in agricultural crop species. Environ Sci Technol 46(17):9315–9323

    Article  CAS  Google Scholar 

  70. Worrall EA, Hamid A, Mody KT et al (2018) Nanotechnology for plant disease management. Agronomy 8:285. https://doi.org/10.3390/agronomy8120285

    Article  CAS  Google Scholar 

  71. Vishwakarma K, Upadhyay N, Kumar N et al (2018) Potential applications and avenues of nanotechnology in sustainable agriculture. In: Tripathi DK, Ahmad P, Sharma S et al (eds) Nanomaterials in plants, algae, and microorganisms. Vol. 1 Concepts and controversies. Elsevier, Amsterdam, pp 473–500

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Adetunji, C.O. et al. (2020). Potential Agrifood Applications of Novel and Sustainable Nanomaterials: An Ecofriendly Approach. In: Kharissova, O.V., Martínez, L.M.T., Kharisov, B.I. (eds) Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-11155-7_45-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11155-7_45-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11155-7

  • Online ISBN: 978-3-030-11155-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics