Skip to main content

Advertisement

Log in

Nanomaterials for agriculture, food and environment: applications, toxicity and regulation

  • Review
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Nanotechnology is expected to have a beneficial influence on agriculture, food and environment, due to the unique properties of nanomaterials. However, little is known about their safety and potential toxicity. Here we review metal nanoparticles, nanometal oxides, carbon nanotubes, liposomes and dendrimers. We present the application of these nanomaterials in agriculture, food and environment for plant protection; disease treatment; packing materials; development of new tastes, textures and sensations; pathogen detection; and delivery systems. We discuss risk assessment of nanomaterials and toxicological impacts of nanomaterials on agriculture, food and environment. We then provide regulatory guidelines for the safer use of nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Reproduced from Sharma et al. (2014)

Fig. 4
Fig. 5

Adopted from Khodakovskaya et al. (2009)

Fig. 6

Adopted from Taylor et al. (2005)

Similar content being viewed by others

References

  • Abbas KA, Saleh AM, Mohamed A, MohdAzhan N (2009) The recent advances in the nanotechnology and its applications in food processing: a review. J Food Agric Environ 7:14–17

    CAS  Google Scholar 

  • AbdElhady MM (2012) Preparation and characterization of chitosan/zinc oxide nanoparticles for imparting antimicrobial and UV protection to cotton fabric. Int J Carbohydr Chem. doi:10.1155/2012/840591

    Google Scholar 

  • Agashe HB, Dutta T, Garg M, Jain NK (2006) Investigations on the toxicological profile of functionalized fifth-generation poly(propylene imine) dendrimer. J Pharm Pharmacol 58:1491–1498

    Article  CAS  Google Scholar 

  • Albanese A, Tang PS, Chan WC (2012) The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 14:1–16

    Article  CAS  Google Scholar 

  • Alfadul SM, Elneshwy AA (2010) Use of nanotechnology in food processing, packaging and safety—review. Afr J Food Agric Nutr Dev. doi:10.4314/ajfand.v10i6.58068

    Google Scholar 

  • Alivov YI, Kalinina EV, Cherenkov AE, Look DC, Ataev BM, Omaev AK, Chukichev MV, Bagnall DM (2003) Fabrication and characterization of n-ZnO/p-AlGaN heterojunction light-emitting diodes on 6H-SiC substrates. Appl Phys Lett 83:4719

    Article  CAS  Google Scholar 

  • An J, Zhang M, Wang S, Tang J (2008) Physical, chemical and microbiological changes in stored green asparagus spears as affected by coating of silver nanoparticles-PVP. LWT Food Sci Technol 41:1100–1107

    Article  CAS  Google Scholar 

  • Asensio-Ramos M, Hernández-Borges J, Borges-Miquel TM, Rodríguez-Delgado MA (2009) Evaluation of multi-walled carbon nanotubes as solid-phase extraction adsorbents of pesticides from agricultural, ornamental and forestal soils. Anal Chim Acta 647:167–176

    Article  CAS  Google Scholar 

  • Astruc D, Boisselier E, Ornelas C (2010) Dendrimers designed for functions: from physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. Chem Rev 110:1857–1959. doi:10.1021/cr900327d

    Article  CAS  Google Scholar 

  • Bang SH, Yu YM, Hwang IC, Park HJ (2009) Formation of size-controlled nano carrier systems by self-assembly. J Microencapsul 26:722–733

    Article  CAS  Google Scholar 

  • Banville C, Vuillemard JC, Lacroix C (2000) Comparison of different methods for fortifying Cheddar cheese with vitamin D. Int Dairy J 10:375–382

    Article  CAS  Google Scholar 

  • Baruah S, Dutta J (2009) Nanotechnology applications in pollution sensing and degradation in agriculture: a review. Environ Chem Lett 7:191–204

    Article  CAS  Google Scholar 

  • Becheri A, Dürr M, Nostro PL, Baglioni P (2008) Synthesis and characterization of zinc oxide nanoparticles: application to textiles as UV-absorbers. J Nanopart Res 10:679–689

    Article  CAS  Google Scholar 

  • Begum P, Fugetsu B (2012) Phytotoxicity of multi-walled carbon nanotubes on red spinach (Amaranthus tricolor L) and the role of ascorbic acid as an antioxidant. J Hazard Mater 243:212–222

    Article  CAS  Google Scholar 

  • Benech R-O, Kheadr EE, Lacroix C, Fliss I (2002) Antibacterial activities of nisin Z encapsulated in liposomes or produced in situ by mixed culture during cheddar cheese ripening. Appl Environ Microbiol 68:5607–5619

    Article  CAS  Google Scholar 

  • Calestani D, Zha M, Mosca R, Zappettini A, Carotta MC, Di Natale V, Zanotti L (2010) Growth of ZnO tetrapods for nanostructure-based gas sensors. Sens Actuators B Chem 144:472–478

    Article  CAS  Google Scholar 

  • Carlson C, Hussain SM, Schrand AM, Braydich-Stolle LK, Hess KL, Jones RL, Schlager JJ (2008) Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B 112:13608–13619

    Article  CAS  Google Scholar 

  • Celardo I, Pedersen JZ, Traversa E, Ghibelli L (2011) Pharmacological potential of cerium oxide nanoparticles. Nanoscale 3:1411–1420

    Article  CAS  Google Scholar 

  • Chau C-F, Shiuan-Huei W, Yen G-C (2007) The development of regulations for food nanotechnology. Trends Food Sci Technol 18:269–280. doi:10.1016/j.tifs.2007.01.007

    Article  CAS  Google Scholar 

  • Chaudhry Q, Scotter M, Blackburn J, Ross B, Boxall A, Castle L, Aitken R, Watkins R (2008a) Applications and implications of nanotechnologies for the food sector. Food Addit Contam Part A 25:241–258. doi:10.1080/02652030701744538

    Article  CAS  Google Scholar 

  • Chaudhry Q, Scotter M, Blackburn J, Ross B, Boxall A, Castle L, Aitken R, Watkins R (2008b) Applications and implications of nanotechnologies for the food sector. Food Addit Contam 25:241–258

    Article  CAS  Google Scholar 

  • Chen LQ, Fang L, Ling J, Ding CZ, Kang B, Huang CZ (2015) Nanotoxicity of silver nanoparticles to red blood cells: size dependent adsorption, uptake, and hemolytic activity. Chem Res Toxicol 28:501–509

    Article  CAS  Google Scholar 

  • Chorianopoulos NG, Tsoukleris DS, Panagou EZ, Falaras P, Nychas G-JE (2011) Use of titanium dioxide (TiO2) photocatalysts as alternative means for Listeria monocytogenes biofilm disinfection in food processing. Food Microbiol 28:164–170

    Article  CAS  Google Scholar 

  • Chrimes AF, Khoshmanesh K, Stoddart PR, Kayani AA, Mitchell A, Daima H, Bansal V, Kalantar-zadeh K (2012) Active control of silver nanoparticles spacing using dielectrophoresis for SERS. Anal Chem. doi:10.1021/ac203381n

    Google Scholar 

  • Chung C-J, Lin H-I, Tsou H-K, Shi Z-Y, He J-L (2008) An antimicrobial TiO2 coating for reducing hospital-acquired infection. J Biomed Mater Res B Appl Biomater 85:220–224

    Article  CAS  Google Scholar 

  • Daima HK (2013) Towards fine-tuning the surface corona of inorganic and organic nanomaterials to control their properties at nano-bio interface. PhD thesis, School of Applied Sciences RMIT

  • Daima HK, Bansal V (2015) Chapter 10—Influence of physicochemical properties of nanomaterials on their antibacterial applications. In: Rai M, Kon K (eds) Nanotechnology in diagnosis, treatment and prophylaxis of infectious diseases. Academic Press, Boston, pp 151–166

    Chapter  Google Scholar 

  • Daima HK, Navya PN (2016) Rational engineering of physicochemical properties of nanomaterials for biomedical applications with nanotoxicological perspectives. Nano Convergence 3:1–14

    Article  CAS  Google Scholar 

  • Daima HK, Selvakannan P, Homan Z, Bhargava SK, Bansal V (2011) Tyrosine mediated gold, silver and their alloy nanoparticles synthesis: antibacterial activity toward gram positive and gram negative bacterial strains. In: Tyrosine mediated gold, silver and their alloy nanoparticles synthesis: antibacterial activity toward gram positive and gram negative bacterial strains, 2011 international conference on nanoscience, technology and societal implications, NSTSI11

  • Daima HK, Selvakannan PR, Shukla R, Bhargava SK, Bansal V (2013) Fine-tuning the antimicrobial profile of biocompatible gold nanoparticles by sequential surface functionalization using polyoxometalates and lysine. PLoS ONE 8:1–14

    Article  CAS  Google Scholar 

  • Daima HK, Selvakannan PR, Kandjani AE, Shukla R, Bhargava SK, Bansal V (2014a) Synergistic influence of polyoxometalate surface corona towards enhancing the antibacterial performance of tyrosine-capped Ag nanoparticles. Nanoscale 6:758–765. doi:10.1039/C3NR03806H

    Article  CAS  Google Scholar 

  • Daima HK, Selvakannan PR, Bhargava SK, Shastry SK, Bansal V (2014b) Amino acids-conjugated gold, silver and their alloy nanoparticles: role of surface chemistry and metal composition on peroxidase like activity. In: Technical proceedings of Nanotech 2014 TechConnect world conference and Expo, pp 275–278, NSTI, Washington, USA

  • Dasgupta N, Ranjan S, Mundekkad D, Ramalingam C, Shanker R, Kumar A (2015) Nanotechnology in agro-food: from field to plate. Food Res Int 69:381–400

    Article  Google Scholar 

  • Dasgupta N, Ranjan S, Rajendran B, Manickam V, Ramalingam C, Avadhani GS, Kumar A (2016) Thermal co-reduction approach to vary size of silver nanoparticle: its microbial and cellular toxicology. Environ Sci Pollut Res 23:4149–4163

    Article  CAS  Google Scholar 

  • Day W (2005) Engineering precision into variable biological systems. Ann Appl Biol 146:155–162. doi:10.1111/j.1744-7348.2005.040064.x

    Article  Google Scholar 

  • de Brabander-van den Berg E, Meijer EW (1993) Poly(propylene imine) dendrimers: large-scale synthesis by hetereogeneously catalyzed hydrogenations. Angew Chem Int Ed Engl 32:1308–1311

    Article  Google Scholar 

  • De Volder MFL, Tawfick SH, Baughman RH, John Hart A (2013) Carbon nanotubes: present and future commercial applications. Science 339:535–539

    Article  CAS  Google Scholar 

  • DeRosa MC, Monreal C, Schnitzer M, Walsh R, Sultan Y (2010) Nanotechnology in fertilizers. Nat Nanotechnol 5:91

    Article  CAS  Google Scholar 

  • Ditta IB, Steele A, Liptrot C, Tobin J, Tyler H, Yates HM, Sheel DW, Foster HA (2008) Photocatalytic antimicrobial activity of thin surface films of TiO2, CuO and TiO2/CuO dual layers on Escherichia coli and bacteriophage T4. Appl Microbiol Biotechnol 79:127–133

    Article  CAS  Google Scholar 

  • Du J, Wang S, You H, Zhao X (2013) Understanding the toxicity of carbon nanotubes in the environment is crucial to the control of nanomaterials in producing and processing and the assessment of health risk for human: a review. Environ Toxicol Pharmacol 36:451–462

    Article  CAS  Google Scholar 

  • Dubey K, Anand BG, Badhwar R, Bagler G, Navya PN, Daima HK, Kar K (2015) Tyrosine- and tryptophan-coated gold nanoparticles inhibit amyloid aggregation of insulin. Amino Acids. doi:10.1007/s00726-015-2046-6

    Google Scholar 

  • Duncan TV (2011) Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J Colloid Interface Sci 363:1–24

    Article  CAS  Google Scholar 

  • El-Sayed IH, Huang X, El-Sayed MA (2005) Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett 5:829–834

    Article  CAS  Google Scholar 

  • El Badawy AM, Silva RG, Morris B, Scheckel KG, Suidan MT, Tolaymat TM (2010) Surface charge-dependent toxicity of silver nanoparticles. Environ Sci Technol 45:283–287

    Article  CAS  Google Scholar 

  • Farokhzad OC, Langer R (2006) Nanomedicine: developing smarter therapeutic and diagnostic modalities. Adv Drug Deliv Rev 58:1456–1459. doi:10.1016/j.addr.2006.09.011

    Article  CAS  Google Scholar 

  • Fernández A, Picouet P, Lloret E (2010) Cellulose-silver nanoparticle hybrid materials to control spoilage-related microflora in absorbent pads located in trays of fresh-cut melon. Int J Food Microbiol 142:222–228

    Article  CAS  Google Scholar 

  • Fernández-Baldo MA, Messina GA, Sanz MI, Raba J (2009) Screen-printed immunosensor modified with carbon nanotubes in a continuous-flow system for the Botrytis cinerea determination in apple tissues. Talanta 79:681–686

    Article  CAS  Google Scholar 

  • Fernández-García M, Rodriguez JA (2011) Metal oxide nanoparticles. Encycl Inorg Bioinorg Chem. doi:10.1002/9781119951438.eibc0331

  • Fischer HC, Chan Warren C W (2007) Nanotoxicity: the growing need for in vivo study. Curr Opin Biotechnol 18:565–571

    Article  CAS  Google Scholar 

  • Folkmann JK, Risom L, Jacobsen NR, Wallin H, Loft S, Møller P (2009) Oxidatively damaged DNA in rats exposed by oral gavage to C sub 60 fullerenes and single-walled carbon nanotubes. Environ Health Perspect 117:703

    Article  CAS  Google Scholar 

  • Fraczek A, Menaszek E, Paluszkiewicz C, Blazewicz M (2008) Comparative in vivo biocompatibility study of single-and multi-wall carbon nanotubes. Acta Biomater 4:1593–1602

    Article  CAS  Google Scholar 

  • Fu G, Vary PS, Lin C-T (2005) Anatase TiO2 nanocomposites for antimicrobial coatings. J Phys Chem B 109:8889–8898

    Article  CAS  Google Scholar 

  • Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M (2009) Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomed Nanotechnol Biol Med 5:382–386

    Article  CAS  Google Scholar 

  • Garnett MC, Kallinteri P (2006) Nanomedicines and nanotoxicology: some physiological principles. Occup Med 56:307–311. doi:10.1093/occmed/kql052

    Article  CAS  Google Scholar 

  • Ghosh P, Han G, De M, Kim CK, Rotello VM (2008) Gold nanoparticles in delivery applications. Adv Drug Deliv Rev 60:1307–1315

    Article  CAS  Google Scholar 

  • Gokhale PC, Zhang C, Newsome JT, Pei J, Ahmad I, Rahman A, Dritschilo A, Kasid UN (2002) Pharmacokinetics, toxicity, and efficacy of ends-modified raf antisense oligodeoxyribonucleotide encapsulated in a novel cationic liposome. Clin Cancer Res 8:3611–3621

    CAS  Google Scholar 

  • Gonzalo S, Rodea-Palomares I, Leganés F, García-Calvo E, Rosal R, Fernández-Piñas F (2015) First evidences of PAMAM dendrimer internalization in microorganisms of environmental relevance: a linkage with toxicity and oxidative stress. Nanotoxicology 9:706–718

    Article  CAS  Google Scholar 

  • Gottesman R, Shukla S, Perkas N, Solovyov LA, Nitzan Y, Gedanken A (2010) Sonochemical coating of paper by microbiocidal silver nanoparticles. Langmuir 27:720–726

    Article  CAS  Google Scholar 

  • Grinstaff MW (2002) Biodendrimers: new polymeric biomaterials for tissue engineering. Chemistry Eur J 8:2838–2846

    Article  CAS  Google Scholar 

  • Hall S, Bradley T, Moore JT, Kuykindall T, Minella L (2009) Acute and chronic toxicity of nano-scale TiO2 particles to freshwater fish, cladocerans, and green algae, and effects of organic and inorganic substrate on TiO2 toxicity. Nanotoxicology 3:91–97

    Article  CAS  Google Scholar 

  • Han G, Ghosh P, De M, Rotello VM (2007) Drug and gene delivery using gold nanoparticles. NanoBiotechnology 3:40–45

    Article  CAS  Google Scholar 

  • Hatzigrigoriou NB, Papaspyrides CD (2011) Nanotechnology in plastic food-contact materials. J Appl Polym Sci 122:3719–3738

    Article  CAS  Google Scholar 

  • Hawker CJ, Frechet JM (1990) Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. J Am Chem Soc 112:7638–7647

    Article  CAS  Google Scholar 

  • Hayes RT, Owen DJ, Chauhan AS, Pulgam VR (2011) PEHAM dendrimers for use in agriculture. In: PEHAM dendrimers for use in agriculture. Google Patents

  • Haynes CL, McFarland AD, Van Duyne RP (2005) Surface-enhanced Raman spectroscopy. Anal Chem 77:338–346

    Article  Google Scholar 

  • Holl MMB (2009) Nanotoxicology: a personal perspective. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1:353–359. doi:10.1002/wnan.27

    Article  CAS  Google Scholar 

  • Hsieh Y-F, Chen T-L, Wang Y-T, Chang J-H, Chang H-M (2002) Properties of liposomes prepared with various lipids. J Food Sci 67:2808–2813

    Article  CAS  Google Scholar 

  • Hu M, Chen J, Li Z-Y, Leslie A, Hartland GV, Li X, Marquez M, Xia Y (2006) Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chem Soc Rev 35:1084–1094

    Article  CAS  Google Scholar 

  • Hu CW, Li M, Cui YB, Li DS, Chen J, Yang LY (2010) Toxicological effects of TiO2 and ZnO nanoparticles in soil on earthworm Eisenia fetida. Soil Biol Biochem 42:586–591

    Article  CAS  Google Scholar 

  • Hussain S, Plückthun A, Allen TM, Zangemeister-Wittke U (2007) Antitumor activity of an epithelial cell adhesion molecule-targeted nanovesicular drug delivery system. Mol Cancer Ther 6:3019–3027

    Article  CAS  Google Scholar 

  • Ihre H, Hult A, Söderlind E (1996) Synthesis, characterization, and 1H NMR self-diffusion studies of dendritic aliphatic polyesters based on 2, 2-bis (hydroxymethyl) propionic acid and 1,1,1-tris(hydroxyphenyl)ethane. J Am Chem Soc 118:6388–6395

    Article  CAS  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  • Jain D, Kumar Daima H, Kachhwaha S, Kothari SL (2009) Synthesis of plant-mediated silver nanoparticles using papaya fruit extract and evaluation of their anti microbial activities. Dig J Nanomater Biostruct 4:557–563

    Google Scholar 

  • Jain A, Ranjan S, Dasgupta N, Ramalingam C (2016) Nanomaterials in food and agriculture: an overview on their safety concerns and regulatory issues. Crit Rev Food Sci Nutr. doi:10.1080/10408398.2016.1160363

    Google Scholar 

  • Jevprasesphant R, Penny J, Jalal R, Attwood D, McKeown NB, D’emanuele A (2003) The influence of surface modification on the cytotoxicity of PAMAM dendrimers. Int J Pharm 252:263–266

    Article  CAS  Google Scholar 

  • Jian F, Zhang Y, Wang J, Ba K, Mao R, Lai W, Lin Y (2012) Toxicity of biodegradable nanoscale preparations. Curr Drug Metab 13:440–446

    Article  CAS  Google Scholar 

  • Jiang L, Yao M, Liu B, Li Q, Liu R, Lv H, Shuangchen L, Gong C, Zou B, Cui T (2012) Controlled synthesis of CeO2/graphene nanocomposites with highly enhanced optical and catalytic properties. J Phys Chem C 116:11741–11745

    Article  CAS  Google Scholar 

  • Kahru A, Dubourguier H-C, Blinova I, Ivask A, Kasemets K (2008) Biotests and biosensors for ecotoxicology of metal oxide nanoparticles: a minireview. Sensors 8:5153–5170

    Article  CAS  Google Scholar 

  • Kalpana Sastry R, Rashmi HB, Rao NH (2011) Nanotechnology for enhancing food security in India. Food Policy 36:391–400. doi:10.1016/j.foodpol.2010.10.012

    Article  Google Scholar 

  • Kaphle A, Navya PN, Umapathi A, Chopra M, Daima HK (2017a) Nanomaterial impact, toxicity and regulation in agriculture, food and environment. In: Dasgupta N, Ranjan S, Lichtfouse E (eds) Nanoscience in food and agriculture 5. Springer, Berlin, pp 205–242

    Chapter  Google Scholar 

  • Kaphle A, Navya PN, Umapathi A, Chopra M, Daima HK (2017b) Nanomaterial impact, toxicity and regulation in agriculture, food and environment nanomaterial impact, toxicity and regulation in agriculture, food and environment. Nanoscience in food and agriculture 5. Springer, Berlin, pp 205–242

    Chapter  Google Scholar 

  • Kašpar J, Fornasiero P, Graziani M (1999) Use of CeO2-based oxides in the three-way catalysis. Catal Today 50:285–298

    Article  Google Scholar 

  • Khan SB, Faisal M, Rahman MM, Jamal A (2011) Exploration of CeO 2 nanoparticles as a chemi-sensor and photo-catalyst for environmental applications. Sci Total Environ 409:2987–2992

    Article  CAS  Google Scholar 

  • Khodakovskaya M, Dervishi E, Mahmood M, Yang X, Li Z, Watanabe F, Biris AS (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3:3221–3227

    Article  CAS  Google Scholar 

  • Kirby CJ, Whittle CJ, Rigby N, Coxon DT, Law BA (1991) Stabilization of ascorbic acid by microencapsulation in liposomes. Int J Food Sci Technol 26:437–449

    Article  CAS  Google Scholar 

  • Kneipp J, Kneipp H, Rice WL, Kneipp K (2005) Optical probes for biological applications based on surface-enhanced Raman scattering from indocyanine green on gold nanoparticles. Anal Chem 77:2381–2385

    Article  CAS  Google Scholar 

  • Kong H, Jang J (2008) Antibacterial properties of novel poly(methyl methacrylate) nanofiber containing silver nanoparticles. Langmuir 24:2051–2056

    Article  CAS  Google Scholar 

  • Kostarelos K, Lacerda L, Pastorin G, Wei W, Wieckowski S, Luangsivilay J, Godefroy S, Pantarotto D, Briand J-P, Muller S (2007) Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat Nanotechnol 2:108–113

    Article  CAS  Google Scholar 

  • Krug HF, Wick P (2011) Nanotoxicology: an interdisciplinary challenge. Angew Chem Int Ed 50:1260–1278. doi:10.1002/anie.201001037

    Article  CAS  Google Scholar 

  • Kubacka A, Diez MS, Rojo D, Bargiela R, Ciordia S, Zapico I, Albar JP, Barbas C, Martins dos Santos VAP, dos Fernández-García M (2014) Understanding the antimicrobial mechanism of TiO2-based nanocomposite films in a pathogenic bacterium. Sci Rep. doi:10.1038/srep04134

    Google Scholar 

  • Kuzma J (2007) Moving forward responsibly: oversight for the nanotechnology-biology interface. In: Maynard AD, Pui DYH (eds) Nanotechnology and occupational health. Springer, Dordrecht

    Google Scholar 

  • Lee K-S, El-Sayed MA (2006) Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. J Phys Chem B 110:19220–19225

    Article  CAS  Google Scholar 

  • Lee CC, MacKay JA, Fréchet JM, Szoka FC (2005) Designing dendrimers for biological applications. Nat Biotechnol 23:1517–1526

    Article  CAS  Google Scholar 

  • Levard C, Matt Hotze E, Lowry GV, Brown GE Jr (2012) Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environ Sci Technol 46:6900–6914

    Article  CAS  Google Scholar 

  • Li Y, Tseng YD, Kwon SY, Leo d’Espaux J, Bunch S, McEuen PL, Luo D (2004) Controlled assembly of dendrimer-like DNA. Nat Mater 3:38–42

    Article  CAS  Google Scholar 

  • Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250. doi:10.1016/j.envpol.2007.01.016

    Article  CAS  Google Scholar 

  • Lotem M, Hubert A, Lyass O, Goldenhersh MA, Ingber A, Peretz T, Gabizon A (2000) Skin toxic effects of polyethylene glycol-coated liposomal doxorubicin. Arch Dermatol 136:1475–1480

    Article  CAS  Google Scholar 

  • Lu C, Chiu H (2006) Adsorption of zinc(II) from water with purified carbon nanotubes. Chem Eng Sci 61:1138–1145

    Article  CAS  Google Scholar 

  • Luo Z, Zheng K, Xie J (2014) Engineering ultrasmall water-soluble gold and silver nanoclusters for biomedical applications. Chem Commun 50:5143–5155

    Article  CAS  Google Scholar 

  • Lyass O, Uziely B, Ben-Yosef R, Tzemach D, Heshing NI, Lotem M, Brufman G, Gabizon A (2000) Correlation of toxicity with pharmacokinetics of pegylated liposomal doxorubicin (Doxil) in metastatic breast carcinoma. Cancer 89:1037–1047

    Article  CAS  Google Scholar 

  • Ma H, Williams PL, Diamond SA (2013) Ecotoxicity of manufactured ZnO nanoparticles—a review. Environ Pollut 172:76–85

    Article  CAS  Google Scholar 

  • Maddinedi B, Sireesh BK, Mandal SR, Dasgupta N (2015) Diastase assisted green synthesis of size-controllable gold nanoparticles. RSC Adv 5:26727–26733

    Article  CAS  Google Scholar 

  • Mahmoudi M, Azadmanesh K, Shokrgozar MA, Journeay WS, Laurent S (2011) Effect of nanoparticles on the cell life cycle. Chem Rev 111:3407–3432

    Article  CAS  Google Scholar 

  • Maynard AD, Warheit DB, Philbert MA (2010) The new toxicology of sophisticated materials: nanotoxicology and beyond. Toxicol Sci. doi:10.1093/toxsci/kfq372

    Google Scholar 

  • Maysinger D (2007) Nanoparticles and cells: good companions and doomed partnerships. Org Biomol Chem 5:2335–2342

    Article  CAS  Google Scholar 

  • McFarland AD, Van Duyne RP (2003) Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett 3:1057–1062

    Article  CAS  Google Scholar 

  • Melaine F, Roupioz Y, Buhot A (2015) Gold nanoparticles surface plasmon resonance enhanced signal for the detection of small molecules on split-aptamer microarrays (small molecules detection from split-aptamers). Microarrays 4:41–52

    Article  Google Scholar 

  • Milani N, McLaughlin MJ, Stacey SP, Kirby JK, Hettiarachchi GM, Beak DG, Cornelis G (2012) Dissolution kinetics of macronutrient fertilizers coated with manufactured zinc oxide nanoparticles. J Agric Food Chem 60:3991–3998

    Article  CAS  Google Scholar 

  • Miller DD (2010) Food nanotechnology: new leverage against iron deficiency. Nat Nanotechnol 5:318–319

    Article  CAS  Google Scholar 

  • Mirkin CA, Niemeyer CM (2007) Nanobiotechnology II: more concepts and applications. Wiley, Weinheim

    Book  Google Scholar 

  • Moghimi SM, Christy Hunter A, Clifford Murray J (2005) Nanomedicine: current status and future prospects. FASEB J 19:311–330. doi:10.1096/fj.04-2747rev

    Article  CAS  Google Scholar 

  • Mohammed Fayaz A, Balaji K, Girilal M, Kalaichelvan PT, Venkatesan R (2009) Mycobased synthesis of silver nanoparticles and their incorporation into sodium alginate films for vegetable and fruit preservation. J Agric Food Chem 57:6246–6252

    Article  CAS  Google Scholar 

  • Mondal A, Basu R, Das S, Nandy P (2011) Beneficial role of carbon nanotubes on mustard plant growth: an agricultural prospect. J Nanopart Res 13:4519–4528

    Article  CAS  Google Scholar 

  • Monnappa S, Firdose N, Shree M, Nath K, Navya PN, Daima HK (2017) Influence of amino acid corona, metallic core and surface functionalization of nanoparticles on their in-vitro biological behaviour. Int J Nanotechnol 816–832 (in press)

  • Murphy CJ, Gole AM, Stone JW, Sisco PN, Alkilany AM, Goldsmith EC, Baxter SC (2008) Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc Chem Res 41:1721–1730

    Article  CAS  Google Scholar 

  • Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627

    Article  CAS  Google Scholar 

  • Niemeyer CM, Mirkin CA (2004) Nanobiotechnology: concept, application and perspectives. Wiley, Weinheim

    Book  Google Scholar 

  • Oberdarster G, Stone V, Donaldson K (2007) Toxicology of nanoparticles: a historical perspective. Nanotoxicology 1:2–25

    Article  CAS  Google Scholar 

  • Othman SH, Abd Salam NR, Zainal N, Basha RK, Talib RA (2014) Antimicrobial activity of TiO2 nanoparticle-coated film for potential food packaging applications. Int J Photoenergy. doi:10.1155/2014/945930

    Google Scholar 

  • Pare B, Jonnalagadda SB, Tomar H, Singh P, Bhagwat VW (2008) ZnO assisted photocatalytic degradation of acridine orange in aqueous solution using visible irradiation. Desalination 232:80–90

    Article  CAS  Google Scholar 

  • Pasupathy K, Lin S, Qian H, Luo H, Ke PC (2008) Direct plant gene delivery with a poly (amidoamine) dendrimer. Biotechnol J 3:1078–1082

    Article  CAS  Google Scholar 

  • Patil S, Kuiry SC, Seal S, Vanfleet R (2002) Synthesis of nanocrystalline ceria particles for high temperature oxidation resistant coating. J Nanopart Res 4:433–438

    Article  CAS  Google Scholar 

  • Pearson A, Bhargava SK, Bansal V (2011a) UV-switchable polyoxometalate sandwiched between TiO2 and metal nanoparticles for enhanced visible and solar light photococatalysis. Langmuir 27:9245–9252

    Article  CAS  Google Scholar 

  • Pearson A, Jani H, Kalantar-Zadeh K, Bhargava SK, Bansal V (2011b) Gold nanoparticle-decorated Keggin ions/TiO2 photococatalyst for improved solar light photocatalysis. Langmuir 27:6661–6667

    Article  CAS  Google Scholar 

  • Piccinno F, Gottschalk F, Seeger S, Nowack B (2012) Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J Nanopart Res 14:1–11

    Article  Google Scholar 

  • Pissuwan D, Niidome T, Cortie MB (2011) The forthcoming applications of gold nanoparticles in drug and gene delivery systems. J Controlled Release 149:65–71

    Article  CAS  Google Scholar 

  • Qu X, Alvarez PJ, Li Q (2013) Applications of nanotechnology in water and wastewater treatment. Water Res 47:3931–3946

    Article  CAS  Google Scholar 

  • Radovic-Moreno AF, Lu TK, Puscasu VA, Yoon CJ, Langer R, Farokhzad OC (2012) Surface charge-switching polymeric nanoparticles for bacterial cell wall-targeted delivery of antibiotics. ACS Nano 6:4279–4287. doi:10.1021/nn3008383

    Article  CAS  Google Scholar 

  • Ranjan S, Dasgupta N, Chakraborty AR, Melvin Samuel S, Ramalingam C, Shanker R, Kumar A (2014) Nanoscience and nanotechnologies in food industries: opportunities and research trends. J Nanopart Res 16:1–23

    Article  Google Scholar 

  • Ranjan S, Dasgupta N, Rajendran B, Avadhani GS, Ramalingam C, Kumar A (2016) Microwave-irradiation-assisted hybrid chemical approach for titanium dioxide nanoparticle synthesis: microbial and cytotoxicological evaluation. Environ Sci Pollut Res. doi:10.1007/s11356-016-6440-8

    Google Scholar 

  • Rashidi L, Khosravi-Darani K (2011) The applications of nanotechnology in food industry. Crit Rev Food Sci Nutr 51:723–730. doi:10.1080/10408391003785417

    Article  CAS  Google Scholar 

  • Ravichandran R (2010) Nanotechnology applications in food and food processing: innovative green approaches, opportunities and uncertainties for global market. Int J Green Nanotechnol Phys Chem 1:P72–P96. doi:10.1080/19430871003684440

    Article  Google Scholar 

  • Raynolds LT (2004) The globalization of organic agro-food networks. World Dev 32:725–743. doi:10.1016/j.worlddev.2003.11.008

    Article  Google Scholar 

  • Rico CM, Morales MI, McCreary R, Castillo-Michel H, Barrios AC, Hong J, Tafoya A, Lee W-Y, Varela-Ramirez A, Peralta-Videa JR (2013a) Cerium oxide nanoparticles modify the antioxidative stress enzyme activities and macromolecule composition in rice seedlings. Environ Sci Technol 47:14110–14118

    Article  CAS  Google Scholar 

  • Rico CM, Morales MI, Barrios AC, McCreary R, Hong J, Lee W-Y, Nunez J, Peralta-Videa JR, Gardea-Torresdey JL (2013b) Effect of cerium oxide nanoparticles on the quality of rice (Oryza sativa L.) grains. J Agric Food Chem 61:11278–11285

    Article  CAS  Google Scholar 

  • Rodriguez-Nogales JM (2004) Kinetic behaviour and stability of glucose oxidase entrapped in liposomes. J Chem Technol Biotechnol 79:72–78

    Article  CAS  Google Scholar 

  • Sadler K, Tam JP (2002) Peptide dendrimers: applications and synthesis. Rev Mol Biotechnol 90:195–229

    Article  CAS  Google Scholar 

  • Sakthivel S, Janczarek M, Kisch H (2004) Visible light activity and photoelectrochemical properties of nitrogen-doped TiO2. J Phys Chem B 108:19384–19387

    Article  CAS  Google Scholar 

  • Samuel JP, Samboju NC, Yau KY, Webb SR, Burroughs F (2014) Use of dendrimer nanotechnology for delivery of biomolecules into plant cells. In: Use of dendrimer nanotechnology for delivery of biomolecules into plant cells. Google Patents

  • Savage N, Diallo MS (2005) Nanomaterials and water purification: opportunities and challenges. J Nanopart Res 7:331–342

    Article  CAS  Google Scholar 

  • Saxena RK, Williams W, Mcgee JK, Daniels MJ, Boykin E, Ian Gilmour M (2007) Enhanced in vitro and in vivo toxicity of poly-dispersed acid-functionalized single-wall carbon nanotubes. Nanotoxicology 1:291–300

    Article  CAS  Google Scholar 

  • Scott NR (2007) Nanoscience in veterinary medicine. Vet Res Commun 31:139–144

    Article  Google Scholar 

  • Scrinis G, Lyons K (2007) The emerging nano-corporate paradigm: nanotechnology and the transformation of nature, food and agri-food systems. Int J Sociol Agric Food 15:22–44

    Google Scholar 

  • Seabra AB, Rai M, Durán N (2014) Nano carriers for nitric oxide delivery and its potential applications in plant physiological process: a mini review. J Plant Biochem Biotechnol 23:1–10

    Article  CAS  Google Scholar 

  • Seeger EM, Baun A, Kästner M, Trapp S (2009) Insignificant acute toxicity of TiO2 nanoparticles to willow trees. J Soils Sediments 9:46–53

    Article  CAS  Google Scholar 

  • Senapati T, Senapati D, Singh AK, Fan Z, Kanchanapally R, Ray PC (2011) Highly selective SERS probe for Hg(II) detection using tryptophan-protected popcorn shaped gold nanoparticles. Chem Commun 47:10326–10328

    Article  CAS  Google Scholar 

  • Shankar S, Soni SK, Daima HK, Periasamy S, Khire JM, Bhargava SK, Bansal V (2015) Charge-switchable gold nanoparticles for enhanced enzymatic thermostability. Phys Chem Chem Phys. doi:10.1039/C5CP03021H

    Google Scholar 

  • Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Mariñas BJ, Mayes AM (2008) Science and technology for water purification in the coming decades. Nature 452:301–310

    Article  CAS  Google Scholar 

  • Sharma VK (2013) Chapter 10—Stability and toxicity of silver nanoparticles in aquatic environment: A review. In: Sustainable nanotechnology and the environment: advances and achievements, ACS symposium series, vol 1124, pp 165–179. doi:10.1021/bk-2013-1124.ch010

  • Sharma A, Sharma US (1997) Liposomes in drug delivery: progress and limitations. Int J Pharm 154:123–140

    Article  CAS  Google Scholar 

  • Sharma TK, Ramanathan R, Weerathunge P, Mohammadtaheri M, Daima HK, Shukla R, Bansal V (2014) Aptamer-mediated ‘turn-off/turn-on’nanozyme activity of gold nanoparticles for kanamycin detection. Chem Commun 50:15856–15859

    Article  CAS  Google Scholar 

  • Sharon M, Choudhary AK, Kumar R (2010) Nanotechnology in agricultural diseases and food safety. J Phytol 2:83–92

    Google Scholar 

  • Silvestre C, Duraccio D, Cimmino S (2011) Food packaging based on polymer nanomaterials. Prog Polym Sci 36:1766–1782

    Article  CAS  Google Scholar 

  • Son WK, Youk JH, Park WH (2006) Antimicrobial cellulose acetate nanofibers containing silver nanoparticles. Carbohydr Polym 65:430–434

    Article  CAS  Google Scholar 

  • Song J, Zhou J, Wang ZL (2006) Piezoelectric and semiconducting coupled power generating process of a single ZnO belt/wire. A technology for harvesting electricity from the environment. Nano Lett 6:1656–1662

    Article  CAS  Google Scholar 

  • Sorrentino A, Gorrasi G, Vittoria V (2007) Potential perspectives of bio-nanocomposites for food packaging applications. Trends Food Sci Technol 18:84–95

    Article  CAS  Google Scholar 

  • Sozer N, Kokini JL (2009) Nanotechnology and its applications in the food sector. Trends Biotechnol 27:82–89

    Article  CAS  Google Scholar 

  • Stambouli AB, Traversa E (2002) Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy. Renew Sustain Energy Rev 6:433–455

    Article  CAS  Google Scholar 

  • Suh WH, Suslick KS, Stucky GD, Suh Y-H (2009) Nanotechnology, nanotoxicology, and neuroscience. Prog Neurobiol 87:133–170

    Article  CAS  Google Scholar 

  • Tankhiwale R, Bajpai SK (2009) Graft copolymerization onto cellulose-based filter paper and its further development as silver nanoparticles loaded antibacterial food-packaging material. Colloids Surf B 69:164–168

    Article  CAS  Google Scholar 

  • Tankhiwale R, Bajpai SK (2012) Preparation, characterization and antibacterial applications of ZnO-nanoparticles coated polyethylene films for food packaging. Colloids Surf B 90:16–20

    Article  CAS  Google Scholar 

  • Taylor TM, Jochen Weiss P, Davidson M, Bruce BD (2005) Liposomal nanocapsules in food science and agriculture. Crit Rev Food Sci Nutr 45:587–605

    Article  CAS  Google Scholar 

  • Teow Y, Asharani PV, Prakash Hande M, Valiyaveettil S (2011) Health impact and safety of engineered nanomaterials. Chem Commun 47:7025–7038

    Article  CAS  Google Scholar 

  • Thirumurugan A, Ramachandran S, Shiamala Gowri A (2013) Combined effect of bacteriocin with gold nanoparticles against food spoiling bacteria-an approach for food packaging material preparation. Int Food Res J 20:1909–1912

    Google Scholar 

  • Thorley AJ, Tetley TD (2013) New perspectives in nanomedicine. Pharmacol Ther 140:176–185. doi:10.1016/j.pharmthera.2013.06.008

    Article  CAS  Google Scholar 

  • Tomalia DA, Naylor AM, Goddard WA (1990) Starburst dendrimers: molecular-level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter. Angew Chem Int Ed Engl 29:138–175

    Article  Google Scholar 

  • Trovarelli A (1996) Catalytic properties of ceria and CeO2-containing materials. Catal Rev 38:439–520

    Article  CAS  Google Scholar 

  • Tsuji K (2001) Microencapsulation of pesticides and their improved handling safety. J Microencapsul 18:137–147

    Article  CAS  Google Scholar 

  • Turnbull WB, Stoddart JF (2002) Design and synthesis of glycodendrimers. Rev Mol Biotechnol 90:231–255

    Article  CAS  Google Scholar 

  • Unrine JM, Tsyusko OV, Hunyadi SE, Judy JD, Bertsch PM (2010) Effects of particle size on chemical speciation and bioavailability of copper to earthworms (Eisenia fetida) exposed to copper nanoparticles. J Environ Qual 39:1942–1953

    Article  CAS  Google Scholar 

  • Vecchio G, Galeone A, Brunetti V, Maiorano G, Rizzello L, Sabella S, Cingolani R, Pompa PP (2012) Mutagenic effects of gold nanoparticles induce aberrant phenotypes in Drosophila melanogaster. Nanomed Nanotechnol Biol Med 8:1–7

    Article  CAS  Google Scholar 

  • Velmurugan P, Lee S-M, Iydroose M, Lee K-J, Byung-Taek O (2013) Pine cone-mediated green synthesis of silver nanoparticles and their antibacterial activity against agricultural pathogens. Appl Microbiol Biotechnol 97:361–368

    Article  CAS  Google Scholar 

  • Wan Q, Li QH, Chen YJ, Ta-Hung Wang XL, He JL, Lin CL (2004) Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl Phys Lett 84:3654–3656

    Article  CAS  Google Scholar 

  • Wang R-M, Wang B-Y, He Y-F, Lv W-H, Wang J-F (2010) Preparation of composited nano-TiO2 and its application on antimicrobial and self-cleaning coatings. Polym Adv Technol 21:331–336

    Article  CAS  Google Scholar 

  • Wang X, Liu X, Han H (2013) Evaluation of antibacterial effects of carbon nanomaterials against copper-resistant Ralstonia solanacearum. Colloids Surf B 103:136–142

    Article  CAS  Google Scholar 

  • Wilschut J, Hoekstra D (1986) Membrane fusion: lipid vesicles as a model system. Chem Phys Lipid 40:145–166

    Article  CAS  Google Scholar 

  • Wu Y, Zhou Q (2013) Silver nanoparticles cause oxidative damage and histological changes in medaka (Oryzias latipes) after 14 days of exposure. Environ Toxicol Chem 32:165–173

    Article  CAS  Google Scholar 

  • Xiong D, Li H (2008) Colorimetric detection of pesticides based on calixarene modified silver nanoparticles in water. Nanotechnology 19:465502

    Article  CAS  Google Scholar 

  • Xu C, Qu X (2014) Cerium oxide nanoparticle: a remarkably versatile rare earth nanomaterial for biological applications. NPG Asia Mater 6:e90

    Article  CAS  Google Scholar 

  • Yang H, Liu C, Yang D, Zhang H, Xi Z (2009) Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition. J Appl Toxicol 29:69–78. doi:10.1002/jat.1385

    Article  CAS  Google Scholar 

  • Yin H, Ai S, Jing X, Shi W, Zhu L (2009) Amperometric biosensor based on immobilized acetylcholinesterase on gold nanoparticles and silk fibroin modified platinum electrode for detection of methyl paraoxon, carbofuran and phoxim. J Electroanal Chem 637:21–27

    Article  CAS  Google Scholar 

  • Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC (2007) Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther 83:761–769

    Article  CAS  Google Scholar 

  • Zhang X, Guo Q, Cui D (2009) Recent advances in nanotechnology applied to biosensors. Sensors 9:1033–1053

    Article  CAS  Google Scholar 

  • Zhang M, Yuan R, Chai Y, Wang C, Xiaoping W (2013) Cerium oxide–graphene as the matrix for cholesterol sensor. Anal Biochem 436:69–74

    Article  CAS  Google Scholar 

  • Zhu Z-J, Carboni R, Quercio MJ, Yan B, Miranda OR, Anderton DL, Arcaro KF, Rotello VM, Vachet RW (2010) Surface properties dictate uptake, distribution, excretion, and toxicity of nanoparticles in fish. Small 6:2261–2265

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hemant Kumar Daima.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaphle, A., Navya, P.N., Umapathi, A. et al. Nanomaterials for agriculture, food and environment: applications, toxicity and regulation. Environ Chem Lett 16, 43–58 (2018). https://doi.org/10.1007/s10311-017-0662-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-017-0662-y

Keywords

Navigation