Skip to main content

Use of Syngas for the Production of Organic Molecules by Fermentation

  • Chapter
  • First Online:
Biorefinery

Abstract

Exploring environmentally friendly ways of converting biodegradable organic materials such as biomass and activated sludge to biofuels and chemicals have drawn worldwide interest. Syngas fermentation provides a new platform for organic waste utilization. In this study, basic metabolic pathways—the Wood–Ljungdahl pathway and reverse β-oxidation reaction and thermodynamics—are summarized in Sect. 2. The operating conditions—pH, temperature, CO and H2 partial pressure, syngas impurities, and reactor configuration that could change the microbial community or the metabolic pathway—are discussed in Sect. 3. Lastly, coupling syngas fermentation with other technologies, such as syngas pretreatment and membrane technology, was necessary for its application. Such application is summarized in the last section. Other promising technologies, such as polyhydroxyalkanoate production and microbial fuel cells, are also reviewed. This chapter reviews recent advances in syngas fermentation to promote the development and application of syngas fermentation worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abubackar HN, Veiga MC, Kennes C (2011) Biological conversion of carbon monoxide: rich syngas or waste gases to bioethanol. Biofuels Bioprod Biorefin 5(1):93–114

    Article  Google Scholar 

  • Abubackar HN, Veiga MC, Kennes C (2015) Carbon monoxide fermentation to ethanol by Clostridium autoethanogenum in a bioreactor with no accumulation of acetic acid. Bioresour Technol 186:122–127

    Article  Google Scholar 

  • Ahmed A, Lewis RS (2007) Fermentation of biomass-generated synthesis gas: effects of nitric oxide. Biotechnol Bioeng 97(5):1080–1086

    Article  Google Scholar 

  • Alves JI, Stams AJM, Plugge CM, Madalena Alves M, Sousa DZ (2013) Enrichment of anaerobic syngas-converting bacteria from thermophilic bioreactor sludge. FEMS Microbiol Ecol 86(3):590–597

    Article  Google Scholar 

  • Angenent LT, Richter H, Buckel W, Spirito CM, Steinbusch KJJ, Plugge CM, Strik DPBTB, Grootscholten TIM, Buisman CJN, Hamelers HVM (2016) Chain elongation with reactor microbiomes: open-culture biotechnology to produce biochemicals. Environ Sci Technol 50(6):2796–2810

    Article  Google Scholar 

  • Ayala DF, Ferre V, Judd SJ (2011) Membrane life estimation in full-scale immersed membrane bioreactors. J Membr Sci 378(1):95–100

    Article  Google Scholar 

  • Basen M, Müller V (2017) “Hot” acetogenesis. Extremophiles 21(1):15–26

    Article  Google Scholar 

  • Bastidas-Oyanedel J-R, Aceves-Lara C-A, Ruiz-Filippi G, Steyer J-P (2008) Thermodynamic analysis of energy transfer in acidogenic cultures. Eng Life Sci 8(5):487–498

    Article  Google Scholar 

  • Benalcázar EA, Deynoot BG, Noorman H, Osseweijer P, Posada JA (2017) Production of bulk chemicals from lignocellulosic biomass via thermochemical conversion and syngas fermentation: a comparative techno-economic and environmental assessment of different site-specific supply chain configurations. Biofuels Bioprod Biorefin 11(5):861–886

    Article  Google Scholar 

  • Bengelsdorf FR, Straub M, Dürre P (2013) Bacterial synthesis gas (syngas) fermentation. Environ Technol 34(13–14):1639–1651

    Article  Google Scholar 

  • Bertsch J, Müller V (2015) CO metabolism in the acetogen Acetobacterium woodii. Appl Environ Microbiol 81(17):5949–5956

    Article  Google Scholar 

  • Castro-Dominguez B, Mardilovich IP, Ma R, Kazantzis NK, Dixon AG, Ma YH (2017) Performance of a pilot-scale multitube membrane module under coal-derived syngas for hydrogen production and separation. J Membr Sci 523(suppl C):515–523

    Article  Google Scholar 

  • Dai K, Wen J-L, Zhang F, Zeng RJ (2017) Valuable biochemical production in mixed culture fermentation: fundamentals and process coupling. Appl Microbiol Biotechnol 101(17):6575–6586

    Article  Google Scholar 

  • Datar RP, Shenkman RM, Cateni BG, Huhnke RL, Lewis RS (2004) Fermentation of biomass-generated producer gas to ethanol. Biotechnol Bioeng 86(5):587–594

    Article  Google Scholar 

  • Devarapalli M, Atiyeh HK, Phillips JR, Lewis RS, Huhnke RL (2016) Ethanol production during semi-continuous syngas fermentation in a trickle bed reactor using Clostridium ragsdalei. Bioresour Technol 209:56–65

    Article  Google Scholar 

  • Diender M, Stams AJM, Sousa DZ (2015) Pathways and bioenergetics of anaerobic carbon monoxide fermentation. Front Microbiol 6:1275

    Article  Google Scholar 

  • Drake HL, Gößner AS, Daniel SL (2008) Old acetogens, new light. Ann N Y Acad Sci 1125(1):100–128

    Article  Google Scholar 

  • Drews A (2010) Membrane fouling in membrane bioreactors—characterisation, contradictions, cause and cures. J Membr Sci 363(1–2):1–28

    Article  Google Scholar 

  • Esquivel-Elizondo S, Delgado AG, Rittmann BE, Krajmalnik-Brown R (2017) The effects of CO2 and H2 on CO metabolism by pure and mixed microbial cultures. Biotechnol Biofuels 10(1):220

    Article  Google Scholar 

  • Fabbri D, Torri C (2016) Linking pyrolysis and anaerobic digestion (Py-AD) for the conversion of lignocellulosic biomass. Curr Opin Biotechnol 38:167–173

    Article  Google Scholar 

  • Fernández-Naveira Á, Veiga MC, Kennes C (2017) H-B-E (hexanol-butanol-ethanol) fermentation for the production of higher alcohols from syngas/waste gas. J Chem Technol Biotechnol 92(4):712–731

    Article  Google Scholar 

  • Foley JM, Rozendal RA, Hertle CK, Lant PA, Rabaey K (2010) Life cycle assessment of high-rate anaerobic treatment, microbial fuel cells, and microbial electrolysis cells. Environ Sci Technol 44(9):3629–3637

    Article  Google Scholar 

  • Ganigué R, Sánchez-Paredes P, Bañeras L, Colprim J (2016) Low fermentation pH is a trigger to alcohol production, but a killer to chain elongation. Front Microbiol 7:702

    Article  Google Scholar 

  • Grootscholten TIM, Strik DPBTB, Steinbusch KJJ, Buisman CJN, Hamelers HVM (2014) Two-stage medium chain fatty acid (MCFA) production from municipal solid waste and ethanol. Appl Energy 116:223–229

    Article  Google Scholar 

  • Henstra AM, Sipma J, Rinzema A, Stams AJM (2007) Microbiology of synthesis gas fermentation for biofuel production. Curr Opin Biotechnol 18(3):200–206

    Article  Google Scholar 

  • Hussain A, Mehta P, Raghavan V, Wang H, Guiot SR, Tartakovsky B (2012) The performance of a thermophilic microbial fuel cell fed with synthesis gas. Enzyme Microb Technol 51(3):163–170

    Article  Google Scholar 

  • Jiang L, Wang J, Liang S, Cai J, Xu Z, Cen P, Yang S, Li S (2011) Enhanced butyric acid tolerance and bioproduction by Clostridium tyrobutyricum immobilized in a fibrous bed bioreactor. Biotechnol Bioeng 108(1):31–40

    Article  Google Scholar 

  • Jing Y, Campanaro S, Kougias P, Treu L, Angelidaki I, Zhang S, Luo G (2017) Anaerobic granular sludge for simultaneous biomethanation of synthetic wastewater and CO with focus on the identification of CO-converting microorganisms. Water Res 126(suppl C):19–28

    Article  Google Scholar 

  • Karakashev D, Batstone DJ, Trably E, Angelidaki I (2006) Acetate oxidation is the dominant methanogenic pathway from acetate in the absence of Methanosaetaceae. Appl Environ Microbiol 72(7):5138–5141

    Article  Google Scholar 

  • Khor WC, Andersen S, Vervaeren H, Rabaey K (2017) Electricity-assisted production of caproic acid from grass. Biotechnol Biofuels 10(1):180

    Article  Google Scholar 

  • Kleerebezem R, Van Loosdrecht MCM (2010) A generalized method for thermodynamic state analysis of environmental systems. Crit Rev Environ Sci Technol 40(1):1–54

    Article  Google Scholar 

  • Köpke M, Held C, Hujer S, Liesegang H, Wiezer A, Wollherr A, Ehrenreich A, Liebl W, Gottschalk G, Dürre P (2010) Clostridium ljungdahlii represents a microbial production platform based on syngas. Proc Natl Acad Sci 107(29):13087–13092

    Article  Google Scholar 

  • Köpke M, Mihalcea C, Bromley JC, Simpson SD (2011) Fermentative production of ethanol from carbon monoxide. Curr Opin Biotechnol 22(3):320–325

    Article  Google Scholar 

  • Kucek LA, Spirito CM, Angenent LT (2016) High n-caprylate productivities and specificities from dilute ethanol and acetate: chain elongation with microbiomes to upgrade products from syngas fermentation. Energ Environ Sci 9(11):3482–3494

    Article  Google Scholar 

  • Lagoa-Costa B, Abubackar HN, Fernández-Romasanta M, Kennes C, Veiga MC (2017) Integrated bioconversion of syngas into bioethanol and biopolymers. Bioresour Technol 239(suppl C):244–249

    Article  Google Scholar 

  • Latif H, Zeidan AA, Nielsen AT, Zengler K (2014) Trash to treasure: production of biofuels and commodity chemicals via syngas fermenting microorganisms. Curr Opin Biotechnol 27:79–87

    Article  Google Scholar 

  • Lee HS, Salerno MB, Rittmann BE (2008) Thermodynamic evaluation on H2 production in glucose fermentation. Environ Sci Technol 42(7):2401–2407

    Article  Google Scholar 

  • Lee J, Jang N, Yasin M, Lee EY, Chang IS, Kim C (2016) Enhanced mass transfer rate of methane via hollow fiber membrane modules for Methylosinus trichosporium OB3b fermentation. J Ind Eng Chem 39:149–152

    Article  Google Scholar 

  • Liew F, Martin ME, Tappel RC, Heijstra BD, Mihalcea C, Köpke M (2016) Gas fermentation – a flexible platform for commercial scale production of low carbon fuels and chemicals from waste and renewable feedstocks. Front Microbiol 7:694

    Article  Google Scholar 

  • Liu S, Qureshi N (2009) How microbes tolerate ethanol and butanol. N Biotechnol 26(3–4):117–121

    Article  Google Scholar 

  • Liu K, Atiyeh HK, Stevenson BS, Tanner RS, Wilkins MR, Huhnke RL (2014) Mixed culture syngas fermentation and conversion of carboxylic acids into alcohols. Bioresour Technol 152:337–346

    Article  Google Scholar 

  • Logan B, Regan J (2006) Microbial fuel cells-challenges and applications. Environ Sci Technol 40(17):5172–5180

    Article  Google Scholar 

  • Löser C, Schröder A, Deponte S, Bley T (2005) Balancing the ethanol formation in continuous bioreactors with ethanol stripping. Eng Life Sci 5(4):325–332

    Article  Google Scholar 

  • Louis P, Duncan SH, McCrae SI, Millar J, Jackson MS, Flint HJ (2004) Restricted distribution of the butyrate kinase pathway among butyrate-producing bacteria from the human colon. J Bacteriol 186(7):2099–2106

    Article  Google Scholar 

  • Martin KJ, Nerenberg R (2012) The membrane biofilm reactor (MBfR) for water and wastewater treatment: principles, applications, and recent developments. Bioresour Technol 122:83–94

    Article  Google Scholar 

  • Martin ME, Richter H, Saha S, Angenent LT (2016) Traits of selected Clostridium strains for syngas fermentation to ethanol. Biotechnol Bioeng 113(3):531–539

    Article  Google Scholar 

  • Massaro V, Digiesi S, Mossa G, Ranieri L (2015) The sustainability of anaerobic digestion plants: a win–win strategy for public and private bodies. J Clean Prod 104:445–459

    Article  Google Scholar 

  • Meng X, Ragauskas AJ (2014) Recent advances in understanding the role of cellulose accessibility in enzymatic hydrolysis of lignocellulosic substrates. Curr Opin Biotechnol 27:150–158

    Article  Google Scholar 

  • Meng F, Zhang S, Oh Y, Zhou Z, Shin H-S, Chae S-R (2017) Fouling in membrane bioreactors: an updated review. Water Res 114:151–180

    Article  Google Scholar 

  • Miltner A, Wukovits W, Pröll T, Friedl A (2010) Renewable hydrogen production: a technical evaluation based on process simulation. J Clean Prod 18(suppl 1):S51–S62

    Article  Google Scholar 

  • Mohammadi M, Younesi H, Najafpour G, Mohamed AR (2012) Sustainable ethanol fermentation from synthesis gas by Clostridium ljungdahlii in a continuous stirred tank bioreactor. J Chem Technol Biotechnol 87(6):837–843

    Article  Google Scholar 

  • Moresi M, Sappino F (2000) Electrodialytic recovery of some fermentation products from model solutions: techno-economic feasibility study. J Membr Sci 164(1–2):129–140

    Article  Google Scholar 

  • Muller V (2003) Energy conservation in acetogenic bacteria. Appl Environ Microbiol 69(11):6345–6353

    Article  Google Scholar 

  • Munasinghe PC, Khanal SK (2010) Syngas fermentation to biofuel: evaluation of carbon monoxide mass transfer coefficient (kLa) in different reactor configurations. Biotechnol Prog 26(6):1616–1621

    Article  Google Scholar 

  • Nerenberg R (2016) The membrane-biofilm reactor (MBfR) as a counter-diffusional biofilm process. Curr Opin Biotechnol 38:131–136

    Article  Google Scholar 

  • Parsley D, Ciora RJ, Flowers DL, Laukaitaus J, Chen A, Liu PKT, Yu J, Sahimi M, Bonsu A, Tsotsis TT (2014) Field evaluation of carbon molecular sieve membranes for the separation and purification of hydrogen from coal- and biomass-derived syngas. J Membr Sci 450(suppl C):81–92

    Article  Google Scholar 

  • Peintner C, Zeidan AA, Schnitzhofer W (2010) Bioreactor systems for thermophilic fermentative hydrogen production: evaluation and comparison of appropriate systems. J Clean Prod 18:S15–S22

    Article  Google Scholar 

  • Ramió-Pujol S, Ganigué R, Bañeras L, Colprim J (2015) Incubation at 25 °C prevents acid crash and enhances alcohol production in Clostridium carboxidivorans P7. Bioresour Technol 192:296–303

    Article  Google Scholar 

  • Redwood MD, Orozco RL, Majewski AJ, Macaskie LE (2012) An integrated biohydrogen refinery: synergy of photofermentation, extractive fermentation and hydrothermal hydrolysis of food wastes. Bioresour Technol 119:384–392

    Article  Google Scholar 

  • Revelles O, Tarazona N, García JL, Prieto MA (2016) Carbon roadmap from syngas to polyhydroxyalkanoates in Rhodospirillum rubrum. Environ Microbiol 18(2):708–720

    Article  Google Scholar 

  • Richter H, Molitor B, Wei H, Chen W, Aristilde L, Angenent LT (2016) Ethanol production in syngas-fermenting Clostridium ljungdahlii is controlled by thermodynamics rather than by enzyme expression. Energ Environ Sci 9(7):2392–2399

    Article  Google Scholar 

  • Sancho-Navarro S, Cimpoia R, Bruant G, Guiot SR (2016) Biomethanation of syngas using anaerobic sludge: shift in the catabolic routes with the CO partial pressure increase. Front Microbiol 7:1188

    Article  Google Scholar 

  • Schroder U, Harnisch F, Angenent LT (2015) Microbial electrochemistry and technology: terminology and classification. Energ Environ Sci 8(2):513–519

    Article  Google Scholar 

  • Schuchmann K, Muller V (2014) Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria. Nat Rev Microbiol 12(12):809–821

    Article  Google Scholar 

  • Seedorf H, Fricke WF, Veith B, Brüggemann H, Liesegang H, Strittmatter A, Miethke M, Buckel W, Hinderberger J, Li F, Hagemeier C, Thauer RK, Gottschalk G (2008) The genome of Clostridium kluyveri, a strict anaerobe with unique metabolic features. Proc Natl Acad Sci 105(6):2128–2133

    Article  Google Scholar 

  • Shen Y, Brown R, Wen Z (2014) Syngas fermentation of Clostridium carboxidivoran P7 in a hollow fiber membrane biofilm reactor: evaluating the mass transfer coefficient and ethanol production performance. Biochem Eng J 85:21–29

    Article  Google Scholar 

  • Shen Y, Jarboe L, Brown R, Wen Z (2015) A thermochemical–biochemical hybrid processing of lignocellulosic biomass for producing fuels and chemicals. Biotechnol Adv 33(8):1799–1813

    Article  Google Scholar 

  • Shen Y, Wang J, Ge X, Chen M (2016) By-products recycling for syngas cleanup in biomass pyrolysis – an overview. Renew Sustain Energy Rev 59(suppl C):1246–1268

    Article  Google Scholar 

  • Sheth PN, Babu BV (2010) Production of hydrogen energy through biomass (waste wood) gasification. Int J Hydrogen Energy 35(19):10803–10810

    Article  Google Scholar 

  • Singla A, Verma D, Lal B, Sarma PM (2014) Enrichment and optimization of anaerobic bacterial mixed culture for conversion of syngas to ethanol. Bioresour Technol 172:41–49

    Article  Google Scholar 

  • Speight JG (2005) Lange’s handbook of chemistry. McGraw-Hill, New York

    Google Scholar 

  • Spirito CM, Richter H, Rabaey K, Stams AJM, Angenent LT (2014) Chain elongation in anaerobic reactor microbiomes to recover resources from waste. Curr Opin Biotechnol 27(0):115–122

    Article  Google Scholar 

  • Steinbusch KJJ, Hamelers HVM, Buisman CJN (2008) Alcohol production through volatile fatty acids reduction with hydrogen as electron donor by mixed cultures. Water Res 42(15):4059–4066

    Article  Google Scholar 

  • Steinbusch KJJ, Hamelers HVM, Plugge CM, Buisman CJN (2011) Biological formation of caproate and caprylate from acetate: fuel and chemical production from low grade biomass. Energ Environ Sci 4(1):216–224

    Article  Google Scholar 

  • Temudo MF, Muyzer G, Kleerebezem R, van Loosdrecht MCM (2008) Diversity of microbial communities in open mixed culture fermentations: impact of the pH and carbon source. Appl Microbiol Biotechnol 80(6):1121–1130

    Article  Google Scholar 

  • Thammasittirong SN-R, Thirasaktana T, Thammasittirong A, Srisodsuk M (2013) Improvement of ethanol production by ethanol-tolerant Saccharomyces cerevisiae UVNR56. SpringerPlus 2(1):583

    Article  Google Scholar 

  • Thauer RK, Jungermann K, Henninger H, Wenning J, Decker K (1968) The energy metabolism of Clostridium kluyveri. Eur J Biochem 4(2):173–180

    Article  Google Scholar 

  • Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41(1):100–180

    Google Scholar 

  • Thauer RK, Kaster AK, Seedorf H, Buckel W, Hedderich R (2008) Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol 6(8):579–591

    Article  Google Scholar 

  • Torres W, Pansare SS, Goodwin JG (2007) Hot gas removal of tars, ammonia, and hydrogen sulfide from biomass gasification gas. Catal Rev 49(4):407–456

    Article  Google Scholar 

  • Valgepea K, de Souza Pinto Lemgruber R, Meaghan K, Palfreyman RW, Abdalla T, Heijstra BD, Behrendorff JB, Tappel R, Köpke M, Simpson SD, Nielsen LK, Marcellin E (2017) Maintenance of ATP homeostasis triggers metabolic shifts in gas-fermenting acetogens. Cell Syst 4(5):505–515.e5

    Article  Google Scholar 

  • Wang Z, Ma J, Tang CY, Kimura K, Wang Q, Han X (2014) Membrane cleaning in membrane bioreactors: a review. J Membr Sci 468:276–307

    Article  Google Scholar 

  • Wang Y-Q, Yu S-J, Zhang F, Xia X-Y, Zeng RJ (2017) Enhancement of acetate productivity in a thermophilic (55 °C) hollow-fiber membrane biofilm reactor with mixed culture syngas (H2/CO2) fermentation. Appl Microbiol Biotechnol 101(6):2619–2627

    Article  Google Scholar 

  • Wang H-J, Dai K, Xia X-Y, Wang Y-Q, Zeng RJ, Zhang F (2018a) Tunable production of ethanol and acetate from synthesis gas by mesophilic mixed culture fermentation in a hollow fiber membrane biofilm reactor. J Clean Prod 187:165–170

    Article  Google Scholar 

  • Wang Y-Q, Zhang F, Zhang W, Dai K, Wang H-J, Li X, Zeng RJ (2018b) Hydrogen and carbon dioxide mixed culture fermentation in a hollow-fiber membrane biofilm reactor at 25°C. Bioresour Technol 249:659–665

    Article  Google Scholar 

  • Wilbanks B, Trinh CT (2017) Comprehensive characterization of toxicity of fermentative metabolites on microbial growth. Biotechnol Biofuels 10(1):262

    Article  Google Scholar 

  • Woolcock PJ, Brown RC (2013) A review of cleaning technologies for biomass-derived syngas. Biomass Bioenergy 52(suppl C):54–84

    Article  Google Scholar 

  • Xu D, Tree DR, Lewis RS (2011) The effects of syngas impurities on syngas fermentation to liquid fuels. Biomass Bioenergy 35(7):2690–2696

    Article  Google Scholar 

  • Xu J, Guzman JJL, Andersen SJ, Rabaey K, Angenent LT (2015) In-line and selective phase separation of medium-chain carboxylic acids using membrane electrolysis. Chem Commun 51(31):6847–6850

    Article  Google Scholar 

  • Xue C, Zhao JB, Liu FF, Lu CC, Yang ST, Bai FW (2013) Two-stage in situ gas stripping for enhanced butanol fermentation and energy-saving product recovery. Bioresour Technol 135:396–402

    Article  Google Scholar 

  • Xue C, Liu F, Xu M, Zhao J, Chen L, Ren J, Bai F, Yang S-T (2016) A novel in situ gas stripping-pervaporation process integrated with acetone-butanol-ethanol fermentation for hyper n-butanol production. Biotechnol Bioeng 113(1):120–129

    Article  Google Scholar 

  • Yasin M, Jeong Y, Park S, Jeong J, Lee EY, Lovitt RW, Kim BH, Lee J, Chang IS (2015) Microbial synthesis gas utilization and ways to resolve kinetic and mass-transfer limitations. Bioresour Technol 177:361–374

    Article  Google Scholar 

  • Zeng Y, Zhao S, Yang S, Ding S-Y (2014) Lignin plays a negative role in the biochemical process for producing lignocellulosic biofuels. Curr Opin Biotechnol 27:38–45

    Article  Google Scholar 

  • Zhang F, Huang C, Xu T (2009) Production of sebacic acid using two-phase bipolar membrane electrodialysis. Ind Eng Chem Res 48(16):7482–7488

    Article  Google Scholar 

  • Zhang Y, Pinoy L, Meesschaert B, Van der Bruggen B (2011) Separation of small organic ions from salts by ion-exchange membrane in electrodialysis. AIChE J 57(8):2070–2078

    Article  Google Scholar 

  • Zhang F, Ding J, Shen N, Zhang Y, Ding Z-W, Dai K, Zeng RJ (2013a) In situ hydrogen utilization for high fraction acetate production in mixed culture hollow-fiber membrane biofilm reactor. Appl Microbiol Biotechnol 97(23):10233–10240

    Article  Google Scholar 

  • Zhang F, Ding J, Zhang Y, Chen M, Ding Z-W, van Loosdrecht MCM, Zeng RJ (2013b) Fatty acids production from hydrogen and carbon dioxide by mixed culture in the membrane biofilm reactor. Water Res 47(16):6122–6129

    Article  Google Scholar 

  • Zhang F, Zhang Y, Chen M, van Loosdrecht MCM, Zeng RJ (2013c) A modified metabolic model for mixed culture fermentation with energy conserving electron bifurcation reaction and metabolite transport energy. Biotechnol Bioeng 110(7):1884–1894

    Article  Google Scholar 

  • Zhao H-P, Ontiveros-Valencia A, Tang Y, Kim B-O, VanGinkel S, Friese D, Overstreet R, Smith J, Evans P, Krajmalnik-Brown R, Rittmann B (2014) Removal of multiple electron acceptors by pilot-scale, two-stage membrane biofilm reactors. Water Res 54:115–122

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support from National Natural Science Foundation of China (51478447 and 51408530), Foundation of Hebei Education Department (BJ2017014), and the Program for Changjiang Scholars and Innovative Research Team in University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Raymond Jianxiong Zeng or Fang Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zeng, R.J., Zhang, F. (2019). Use of Syngas for the Production of Organic Molecules by Fermentation. In: Bastidas-Oyanedel, JR., Schmidt, J. (eds) Biorefinery. Springer, Cham. https://doi.org/10.1007/978-3-030-10961-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10961-5_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10960-8

  • Online ISBN: 978-3-030-10961-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics