Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria

Key Points

  • Acetogenic bacteria are an anaerobic group of microorganisms that use the Wood–Ljungdahl pathway (WLP) to live from the conversion of two molecules of carbon dioxide (CO2) to acetate.

  • The WLP is suggested to be one of the oldest biochemical pathways and is the only pathway that couples the fixation of inorganic carbon to energy conservation.

  • In acetogenic bacteria, the WLP is not directly involved in energy conservation but is coupled to one of two membrane-bound enzyme complexes.

  • Acetogenic bacteria use either the Rnf complex (a ferredoxin–NAD+ oxidoreductase) or potentially an Ech hydrogenase (a ferredoxin–H2 oxidoreductase) for chemiosmotic energy conservation. The coupling ion can be either Na+ or H+.

  • The actual energy equivalent in the acetogenic metabolism is the iron–sulphur cluster of the small protein ferredoxin. The metabolism is focused on transferring electrons to this soluble electron carrier.

  • Acetogenic bacteria should be classified as Rnf- and Ech-containing acetogens according to the bioenergetic differences between organisms in these two groups.

Abstract

Life on earth evolved in the absence of oxygen with inorganic gases as potential sources of carbon and energy. Among the alternative mechanisms for carbon dioxide (CO2) fixation in the living world, only the reduction of CO2 by the Wood–Ljungdahl pathway, which is used by acetogenic bacteria, complies with the two requirements to sustain life: conservation of energy and production of biomass. However, how energy is conserved in acetogenic bacteria has been an enigma since their discovery. In this Review, we discuss the latest progress on the biochemistry and genetics of the energy metabolism of model acetogens, elucidating how these bacteria couple CO2 fixation to energy conservation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Wood–Ljungdahl pathway of acetogenesis.
Figure 2: Model for acetogenesis in Acetobacterium woodii.
Figure 3: Model for acetogenesis in Clostridium ljungdahlii.
Figure 4: Model for acetogenesis in Moorella thermoacetica.

Similar content being viewed by others

References

  1. Drake, H. L., Gößner, A. S. & Daniel, S. L. Old acetogens, new light. Ann. NY Acad. Sci. 1125, 100–128 (2008). This elaborate review describes the history and physiology of acetogenic bacteria in detail.

    Article  CAS  PubMed  Google Scholar 

  2. Fontaine, F. E., Peterson, W. H., McCoy, E., Johnson, M. J. & Ritter, G. J. A new type of glucose fermentation by Clostridium thermoaceticum. J. Bacteriol. 43, 701–715 (1942).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Daniel, S. L., Hsu, T., Dean, S. I. & Drake, H. L. Characterization of the H2-dependent and CO-dependent chemolithotrophic potentials of the acetogens Clostridium thermoaceticum and Acetogenium kivui. J. Bacteriol. 172, 4464–4471 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Daniel, S. L., Keith, E. S., Yang, H. C., Lin, Y. S. & Drake, H. L. Utilization of methoxylated aromatic compounds by the acetogen Clostridium thermoaceticum — expression and specificity of the CO-dependent O-demethylating activity. Biochem. Biophys. Res. Commun. 180, 416–422 (1991).

    Article  CAS  PubMed  Google Scholar 

  5. Gössner, A., Daniel, S. L. & Drake, H. L. Acetogenesis coupled to the oxidation of aromatic aldehyde groups. Arch. Microbiol. 161, 126–131 (1994).

    Article  Google Scholar 

  6. Drake, H. L. & Daniel, S. L. Physiology of the thermophilic acetogen Moorella thermoacetica. Res. Microbiol. 155, 869–883 (2004).

    Article  PubMed  Google Scholar 

  7. Seifritz, C., Fröstl, J. M., Drake, H. L. & Daniel, S. L. Influence of nitrate on oxalate- and glyoxylate-dependent growth and acetogenesis by Moorella thermoacetica. Arch. Microbiol. 178, 457–464 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Beaty, P. S. & Ljungdahl, L. G. Thiosulfate reduction by Clostridium thermoaceticum and Clostridium thermoautothrophicum during growth on methanol. Ann. Meet. Am. Soc. Microbiol. Abstr. 1–7, 199 (1990).

  9. Beaty, P. S. & Ljungdahl, L. G. Growth of Clostridium thermoaceticum on methanol, ethanol or dimethylsulfoxide. Ann. Meet. Am. Soc. Microbiol. Abstr. K-131, 236 (1991).

    Google Scholar 

  10. Seifritz, C., Daniel, S. L., Gössner, A. & Drake, H. L. Nitrate as a preferred electron sink for the acetogen Clostridium thermoaceticum. J. Bacteriol. 175, 8008–8013 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Seifritz, C., Drake, H. L. & Daniel, S. L. Nitrite as an energy-conserving electron sink for the acetogenic bacterium Moorella thermoacetica. Curr. Microbiol. 46, 329–333 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Ljungdahl, L. G. in Acetogenesis (eds Drake, H. L.) 63–87 (Chapman & Hall, 1994).

    Book  Google Scholar 

  13. Das, A. & Ljungdahl, L. G. in Biochemistry and Physiology of Anaerobic Bacteria (eds Ljungdahl, L. G. et al.) 191–204 (Springer, 2003).

    Book  Google Scholar 

  14. Müller, V. Energy conservation in acetogenic bacteria. Appl. Environ. Microbiol. 69, 6345–6353 (2003). This review gives a historical perspective on the bioenergetics of acetogens.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Balch, W. E., Schoberth, S., Tanner, R. S. & Wolfe, R. S. Acetobacterium, a new genus of hydrogen-oxidizing, carbon-dioxide-reducing, anaerobic bacteria. Int. J. Syst. Bact. 27, 355–361 (1977).

    Article  CAS  Google Scholar 

  16. Bache, R. & Pfennig, N. Selective isolation of Acetobacterium woodii on methoxylated aromatic acids and determination of growth yields. Arch. Microbiol. 130, 255–261 (1981).

    Article  CAS  Google Scholar 

  17. Eichler, B. & Schink, B. Oxidation of primary aliphatic alcohols by Acetobacterium carbinolicum sp. nov., a homoacetogenic anaerobe. Arch. Microbiol. 140, 147–152 (1984).

    Article  CAS  Google Scholar 

  18. Sharak Genthner, B. R. & Bryant, M. P. Additional characteristics of one-carbon-compound utilization by Eubacterium limosum and Acetobacterium woodii. Appl. Environ. Microbiol. 53, 471–476 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Tschech, A. & Pfennig, N. Growth yield increase linked to caffeate reduction in Acetobacterium woodii. Arch. Microbiol. 137, 163–167 (1984).

    Article  CAS  Google Scholar 

  20. Heise, R., Müller, V. & Gottschalk, G. Sodium dependence of acetate formation by the acetogenic bacterium Acetobacterium woodii. J. Bacteriol. 171, 5473–5478 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Müller, V. & Bowien, S. Differential effects of sodium ions on motility in the homoacetogenic bacteria Acetobacterium woodii and Sporomusa sphaeroides. Arch. Microbiol. 164, 363–369 (1995).

    Article  Google Scholar 

  22. Tanner, R. S., Miller, L. M. & Yang, D. Clostridium ljungdahlii sp. nov., an acetogenic species in clostridial rRNA homology Group-I. Int. J. Syst. Bact. 43, 232–236 (1993).

    Article  CAS  Google Scholar 

  23. Martin, W. F., Sousa, F. L. & Lane, N. Evolution. Energy at life's origin. Science 344, 1092–1093 (2014). This report details the current view of the origin of life and the role of the WLP therein.

    Article  CAS  PubMed  Google Scholar 

  24. Ragsdale, S. W. Pyruvate ferredoxin oxidoreductase and its radical intermediate. Chem. Rev. 103, 2333–2346 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Ragsdale, S. W. Enzymology of the Wood–Ljungdahl pathway of acetogenesis. Ann. NY Acad. Sci. 1125, 129–136 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Ljungdahl, L. G. The autotrophic pathway of acetate synthesis in acetogenic bacteria. Ann. Rev. Microbiol. 40, 415–450 (1986). This is a review of the WLP by L. G. Ljungdahl — one of the two people who were mainly responsible for the elucidation of the pathway.

    Article  CAS  Google Scholar 

  27. Wood, H. G. & Ljungdahl, L. G. in Variations in autotrophic life (eds Shively, J. M. & Barton, L. L.) (Academic press, 1991).

    Google Scholar 

  28. Wood, H. G., Ragsdale, S. W. & Pezacka, E. The acetyl-CoA pathway of autotrophic growth. FEMS Microbiol. Rev. 39, 345–362 (1986). This is a review of the WLP by H. G. Wood — one of the two people who were mainly responsible for the elucidation of the pathway.

    Article  CAS  Google Scholar 

  29. Thauer, R. K., Jungermann, K. & Decker, K. Energy conservation in chemotrophic anaerobic bacteria. Bact. Rev. 41, 100–180 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Fuchs, G. Alternative pathways of carbon dioxide fixation: insights into the early evolution of life? Annu. Rev. Microbiol. 65, 631–658 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Fuchs, G. & Stupperich, E. Acetyl CoA, a central intermediate of autotrophic CO2 fixation in Methanobacterium thermoautotrophicum. Arch. Microbiol. 127, 267–272 (1980).

    Article  CAS  Google Scholar 

  32. Buckel, W. & Thauer, R. K. Energy conservation via electron bifurcating ferredoxin reduction and proton/Na+ translocating ferredoxin oxidation. Biochim. Biophys. Acta 1827, 94–113 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Poehlein, A. et al. An ancient pathway combining carbon dioxide fixation with the generation and utilization of a sodium ion gradient for ATP synthesis. PLoS ONE 7, e33439 (2012). This study reports the elucidation of the genome sequence of the model acetogen A. woodii.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang, S. et al. NADP-specific electron-bifurcating [FeFe]-hydrogenase in a functional complex with formate dehydrogenase in Clostridium autoethanogenum grown on CO. J. Bacteriol. 195, 4373–4386 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Blakeley, R. L. & Benkovic, S. J. Folates and Pterins (John Wiley and Sons, 1984).

    Google Scholar 

  36. Ragsdale, S. W. & Ljungdahl, L. G. Purification and properties of NAD-dependent 5,10-methylenetetrahydrofolate dehydrogenase from Acetobacterium woodii. J. Biol. Chem. 259, 3499–3503 (1984).

    CAS  PubMed  Google Scholar 

  37. O'Brien, W. E., Brewer, J. M. & Ljungdahl, L. G. Purification and characterization of thermostable 5,10-methylenetetrahydrofolate dehydrogenase from Clostridium thermoaceticum. J. Biol. Chem. 248, 403–408 (1973).

    CAS  PubMed  Google Scholar 

  38. Maden, B. E. Tetrahydrofolate and tetrahydromethanopterin compared: functionally distinct carriers in C1 metabolism. Biochem. J. 350, 609–629 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mock, J., Wang, S., Huang, H., Kahnt, J. & Thauer, R. K. Evidence for a hexaheteromeric methylenetetrahydrofolate reductase in Moorella thermoacetica. J. Bacteriol. 196, 3303–3314 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Huang, H., Wang, S., Moll, J. & Thauer, R. K. Electron bifurcation involved in the energy metabolism of the acetogenic bacterium Moorella thermoacetica growing on glucose or H2 plus CO2 . J. Bacteriol. 194, 3689–3699 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Köpke, M. et al. Clostridium ljungdahlii represents a microbial production platform based on syngas. Proc. Natl Acad. Sci. USA 107, 13087–13092 (2010). This study provides the basis of the understanding of the industrially relevant acetogen C. ljungdahlii.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Müller, V., Aufurth, S. & Rahlfs, S. The Na+ cycle in Acetobacterium woodii: identification and characterization of a Na+-translocating F1F0-ATPase with a mixed oligomer of 8 and 16 kDa proteolipids. Biochim. Biophys. Acta 1505, 108–120 (2001).

    Article  PubMed  Google Scholar 

  43. Fritz, M. et al. An intermediate step in the evolution of ATPases: a hybrid F1F0 rotor in a bacterial Na+ F1F0 ATP synthase. FEBS J. 275, 1999–2007 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Brandt, K. et al. Functional production of the Na+ F1F0 ATP synthase from Acetobacterium woodii in Escherichia coli requires the native AtpI. J. Bioenerg. Biomembr. 45, 15–23 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Dangel, W., Schulz, H., Diekert, G., König, H. & Fuchs, G. Occurence of corrinoid-containing membrane proteins in anaerobic bacteria. Arch. Microbiol. 148, 52–56 (1987).

    Article  CAS  Google Scholar 

  46. Biegel, E. & Müller, V. Bacterial Na+-translocating ferredoxin:NAD+ oxidoreductase. Proc. Natl Acad. Sci. USA 107, 18138–18142 (2010). This study showed an energy-conserving coupling site in acetogenic bacteria for the first time.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Biegel, E., Schmidt, S. & Müller, V. Genetic, immunological and biochemical evidence of a Rnf complex in the acetogen Acetobacterium woodii. Environ. Microbiol. 11, 1438–1443 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Blaut, M. & Gottschalk, G. Protonmotive force-driven synthesis of ATP during methane formation from molecular hydrogen and formaldehyde or carbon dioxide in Methanosarcina barkeri. FEMS Microbiol. Lett. 24, 103–107 (1984).

    Article  CAS  Google Scholar 

  49. Schuchmann, K. & Müller, V. A bacterial electron bifurcating hydrogenase. J. Biol. Chem. 287, 31165–31171 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Herrmann, G., Jayamani, E., Mai, G. & Buckel, W. Energy conservation via electron-transferring flavoprotein in anaerobic bacteria. J. Bacteriol. 190, 784–791 (2008). This review describes the mechanism of flavin-based electron bifurcation shortly after its discovery.

    Article  CAS  PubMed  Google Scholar 

  51. Ragsdale, S. W., Ljungdahl, L. G. & DerVartanian, D. V. Isolation of carbon monoxide dehydrogenase from Acetobacterium woodii and comparison of its properties with those of the Clostridium thermoaceticum enzyme. J. Bacteriol. 155, 1224–1237 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Hess, V., Schuchmann, K. & Müller, V. The ferredoxin:NAD+ oxidoreductase (Rnf) from the acetogen Acetobacterium woodii requires Na+ and is reversibly coupled to the membrane potential. J. Biol. Chem. 288, 31496–31502 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Schuchmann, K. & Müller, V. Direct and reversible hydrogenation of CO2 to formate by a bacterial carbon dioxide reductase. Science 342, 1382–1385 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Grüber, G., Manimekalai, M. S., Mayer, F. & Müller, V. ATP synthases from archaea: the beauty of a molecular motor. Biochim. Biophys. Acta 1837, 940–952 (2014).

    Article  PubMed  CAS  Google Scholar 

  55. Tremblay, P. L., Zhang, T., Dar, S. A., Leang, C. & Lovley, D. R. The Rnf complex of Clostridium ljungdahlii is a proton-translocating ferredoxin:NAD+ oxidoreductase essential for autotrophic growth. mBio 4, e00406-12 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Sowa, Y. & Berry, R. M. Bacterial flagellar motor. Q. Rev. Biophys. 41, 103–132 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Mayer, F. & Müller, V. Adaptations of anaerobic archaea to life under extreme energy limitation. FEMS Microbiol. Rev. 38, 449–472 (2013).

    Article  PubMed  CAS  Google Scholar 

  58. Nagarajan, H. et al. Characterizing acetogenic metabolism using a genome-scale metabolic reconstruction of Clostridium ljungdahlii. Microb. Cell. Fact. 12, 118 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Schut, G. J. & Adams, M. W. The iron-hydrogenase of Thermotoga maritima utilizes ferredoxin and NADH synergistically: a new perspective on anaerobic hydrogen production. J. Bacteriol. 191, 4451–4457 (2009). This is the first report of an electron-bifurcating mechanism associated with a hydrogenase.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wang, S., Huang, H., Kahnt, J. & Thauer, R. K. A reversible electron-bifurcating ferredoxin- and NAD-dependent [FeFe]-hydrogenase (HydABC) in Moorella thermoacetica. J. Bacteriol. 195, 1267–1275 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang, S., Huang, H., Moll, J. & Thauer, R. K. NADP+ reduction with reduced ferredoxin and NADP+ reduction with NADH are coupled via an electron bifurcating enzyme complex in Clostridium kluyveri. J. Bacteriol. 192, 5115–5123 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pierce, E. et al. The complete genome sequence of Moorella thermoacetica (f. Clostridium thermoaceticum). Environ. Microbiol. 10, 2550–2573 (2008). This report describes the elucidation of the genome sequence of the model acetogen M. thermoacetica.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hugenholtz, J. & Ljungdahl, L. G. Metabolism and energy generation in homoacetogenic clostridia. FEMS Microbiol. Rev. 87, 383–389 (1990).

    Article  CAS  Google Scholar 

  64. Hedderich, R. & Forzi, L. Energy-converting [NiFe] hydrogenases: more than just H2 activation. J. Mol. Microbiol. Biotechnol. 10, 92–104 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Künkel, A., Vorholt, J. A., Thauer, R. K. & Hedderich, R. An Escherichia coli hydrogenase-3-type hydrogenase in methanogenic archaea. Eur. J. Biochem. 252, 467–476 (1998).

    Article  PubMed  Google Scholar 

  66. Fox, J. D., He, Y., Shelver, D., Roberts, G. P. & Ludden, P. W. Characterization of the region encoding the CO-induced hydrogenase of Rhodospirillum rubrum. J. Bacteriol. 178, 6200–6208 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sauter, M., Böhm, R. & Böck, A. Mutational analysis of the operon (hyc) determining hydrogenase 3 formation in Escherichia coli. Mol. Microbiol. 6, 1523–1532 (1992).

    Article  CAS  PubMed  Google Scholar 

  68. Welte, C., Krätzer, C. & Deppenmeier, U. Involvement of Ech hydrogenase in energy conservation of Methanosarcina mazei. FEBS J. 277, 3396–3403 (2010). This report describes an ion-translocating mechanism associated with an Ech hydrogenase.

    Article  CAS  PubMed  Google Scholar 

  69. Welte, C. & Deppenmeier, U. Bioenergetics and anaerobic respiratory chains of aceticlastic methanogens. Biochim. Biophys. Acta 1837, 1130–1147 (2014).

    Article  CAS  PubMed  Google Scholar 

  70. Yamamoto, I., Saiki, T., Liu, S. M. & Ljungdahl, L. G. Purification and properties of NADP-dependent formate dehydrogenase from Clostridium thermoaceticum, a tungsten–selenium–iron protein. J. Biol. Chem. 258, 1826–1832 (1983).

    CAS  PubMed  Google Scholar 

  71. Ljungdahl, L. G. & Andreesen, J. R. Tungsten, a component of active formate dehydrogenase from Clostridium thermoacetium. FEBS Lett. 54, 279–282 (1975).

    Article  CAS  PubMed  Google Scholar 

  72. Fröstl, J. M., Seifritz, C. & Drake, H. L. Effect of nitrate on the autotrophic metabolism of the acetogens Clostridium thermoautotrophicum and Clostridium thermoaceticum. J. Bacteriol. 178, 4597–4603 (1996).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Arendsen, A. F., Soliman, M. Q. & Ragsdale, S. W. Nitrate-dependent regulation of acetate biosynthesis and nitrate respiration by Clostridium thermoaceticum. J. Bacteriol. 181, 1489–1495 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Ragsdale, S. W., Clark, J. E., Ljungdahl, L. G., Lundie, L. L. & Drake, H. L. Properties of purified carbon monoxide dehydrogenase from Clostridium thermoaceticum, a nickel, iron–sulfur protein. J. Biol. Chem. 258, 2364–2369 (1983).

    CAS  PubMed  Google Scholar 

  75. Oehler, D. et al. Genome-guided analysis of physiological and morphological traits of the fermentative acetate oxidizer Thermacetogenium phaeum. BMC Genomics 13, 723 (2012). Analysis of the metabolism of the first acetogen able to catalyse reverse acetogenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Banerjee, A., Leang, C., Ueki, T., Nevin, K. P. & Lovley, D. R. Lactose-inducible system for metabolic engineering of Clostridium ljungdahlii. Appl. Environ. Microbiol. 80, 2410–2416 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Leang, C., Ueki, T., Nevin, K. P. & Lovley, D. R. A genetic system for Clostridium ljungdahlii: a chassis for autotrophic production of biocommodities and a model homoacetogen. Appl. Environ. Microbiol. 79, 1102–1109 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ragsdale, S. W. & Pierce, E. Acetogenesis and the Wood–Ljungdahl pathway of CO2 fixation. Biochim. Biophys. Acta 1784, 1873–1898 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bennett, B. D. et al. Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nature Chem. Biol. 5, 593–599 (2009).

    Article  CAS  Google Scholar 

  80. Bar-Even, A. Does acetogenesis really require especially low reduction potential? Biochim. Biophys. Acta 1827, 395–400 (2013).

    Article  CAS  PubMed  Google Scholar 

  81. Bender, G. & Ragsdale, C. W. Evidence that ferredoxin interfaces with an internal redox shuttle in Acetyl-CoA synthase during reductive activation and catalysis. Biochemistry 50, 276–286 (2011).

    Article  CAS  PubMed  Google Scholar 

  82. Li, F. et al. Coupled ferredoxin and crotonyl coenzyme A (CoA) reduction with NADH catalyzed by the butyryl-CoA dehydrogenase/Etf complex from Clostridium kluyveri. J. Bacteriol. 190, 843–850 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Chowdhury, N. P. et al. Studies on the mechanism of electron bifurcation catalyzed by electron transferring flavoprotein (Etf) and butyryl-CoA dehydrogenase (Bcd) of Acidaminococcus fermentans. J. Biol. Chem. 289, 5145–5157 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in the authors' laboratory was supported by the Deutsche Forschungsgemeinschaft. K.S. received a fellowship of the Studienstiftung des deutschen Volkes. V.M. thanks his co-workers for their excellent contributions over the years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Müller.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (box)

SLP or chemiosmotic gradients (PDF 189 kb)

PowerPoint slides

Glossary

Wood–Ljungdahl pathway

(WLP). The pathway was named according to its discoverers, Harland G. Wood and Lars G. Ljungdahl. It is also referred to as the reductive acetyl-CoA pathway. In this pathway, two molecules of CO2 are reduced and joined to form acetyl-CoA and then acetate.

Autotrophs

Organisms that have the ability to grow in the absence of organic carbon. The organic carbon for biosynthesis is assimilated from inorganic carbon sources such as CO2. (Heterotrophy is used to describe a dependence on organic carbon sources).

Cytochromes

Membrane-bound, haem group-containing electron-transfer proteins that are especially involved in chemiosmotic energy conservation in the aerobic and anaerobic respiratory chains or photosynthesis.

Quinones

Lipid-soluble electron carriers that are often associated with chemiosmotic respiratory chains.

Exergonic reaction

A reaction that releases energy (the change in the free energy is negative) and thus takes place without external energy input.

Tetrahydrofolate

(THF). A cofactor that is involved in transfer reactions of single carbon groups. It is important not only in acetogenesis but also in the metabolism of amino acids or nucleic acids.

Corrinoid

A cofactor based on the corrin skeleton that is, in acetogenesis, involved in methyl-transfer reactions. Cobalamines (as vitamin B12) are the most prominent example of this group of cofactors that contain a cobalt ion bound in the centre of the corrin system.

Endergonic

A term used to describe a reaction that consumes energy (the change in the free energy is positive) and thus can only take place with external energy input.

Flavin

A cofactor for redox reactions based on pteridine. Depending on the attached moiety, flavins are found as flavine adenine dinucleotide or flavine adenine mononucleotide.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schuchmann, K., Müller, V. Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria. Nat Rev Microbiol 12, 809–821 (2014). https://doi.org/10.1038/nrmicro3365

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro3365

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology