Skip to main content

GPS, Tectonic Geodesy

  • Living reference work entry
  • First Online:
Encyclopedia of Solid Earth Geophysics

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Synonyms

Crustal deformation

Definition

Earthquake cycle :

A conceptual model that explains the buildup of stress that causes earthquakes, through a period of steady tectonic loading that culminates in sudden slip in an earthquake.

Slip deficit :

The difference between the slip that has occurred over a period of time on a fault and the amount expected from the long-term fault slip rate; a measure of the accumulated slip “available” for an earthquake on the fault.

Displacement :

The change in position of a point on the Earth’s surface.

Coseismic displacement :

The final, static displacement of the surface caused by slip in an earthquake.

Postseismic displacement :

Displacements caused by postseismic processes, which are transient deformation processes that follow large earthquakes.

Creep :

Steady gradual fault slip that is aseismic (does not result in an earthquake).

Volcanic inflation :

Dilatational deformation caused by pressurization of a volcanic system.

Glacial isostatic adjustment...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  • Albright JA, Gregg PM, Lu Z, Freymueller JT (2019) Hindcasting magma reservoir stability preceding the 2008 eruption of Okmok, Alaska. Geophys Res Lett 46. https://doi.org/10.1029/2019GL083395

  • Aloisi M, Bonaccorso A, Cannavò F, Currenti GM (2018) Coupled short- and medium-term geophysical signals at Etna volcano: using deformation and strain to infer magmatic processes from 2009 to 2017. Front Earth Sci. https://doi.org/10.3389/feart.2018.00109

  • Altamimi Z, Rebischung P, Métivier L, Collilieux X (2016) ITRF2014: a new release of the international terrestrial reference frame modeling nonlinear station motions. J Geophys Res Solid Earth 121:6109–6131. https://doi.org/10.1002/2016JB013098

    Article  Google Scholar 

  • Altamimi Z, Métivier L, Rebischung P, Rouby H, Collilieux X (2017) ITRF2014 plate motion model. Geophys J Int 209:1906–1912. https://doi.org/10.1093/gji/ggx136

    Article  Google Scholar 

  • Amey RMJ, Hooper A, Walters RJ (2018) A Bayesian method for incorporating self-similarity into earthquake slip inversions. J Geophys Res Solid Earth 123:6052–6071. https://doi.org/10.1029/2017JB015316

    Article  Google Scholar 

  • Anderson KR, Poland MP (2016) Bayesian estimation of magma supply, storage, and eruption rates using a multiphysical volcano model: Kīlauea volcano, 2000–2012. Earth Planet Sci Lett 447:161–171. https://doi.org/10.1016/j.epsl.2016.04.029

    Article  Google Scholar 

  • Anderson K, Segall P (2011) Physics-based models of ground deformation and extrusion rate at effusively erupting volcanoes. J Geophys Res 116(B7):20. https://doi.org/10.1029/2010JB007939

    Article  Google Scholar 

  • Argus DF, Heflin MB (1995) Plate motion and crustal deformation estimated with geodetic data from the global positioning system. Geophys Res Lett 22:1973–1976

    Article  Google Scholar 

  • Argus DF, Gordon RG, Heflin MB, Ma C, Eanes RJ, Willis P, Peltier WR, Owen SE (2010) The angular velocities of the plates and the velocity of Earth’s centre from space geodesy. Geophys J Int 181:1–48. https://doi.org/10.1111/j.1365-246X.2009.04463.x

    Article  Google Scholar 

  • Auriac A, Spaans KH, Sigmundsson F, Hooper A, Schmidt P, Lund B (2013) Iceland rising: solid Earth response to ice retreat inferred from satellite radar interferometry and viscoelastic modeling. J Geophys Res Solid Earth 118:1331–1344. https://doi.org/10.1002/jgrb.50082

    Article  Google Scholar 

  • Bagnardi M, Hooper A (2018) Inversion of surface deformation data for rapid estimates of source parameters and uncertainties: a Bayesian approach. Geochem Geophys Geosyst 19:2194–2211. https://doi.org/10.1029/2018GC007585

    Article  Google Scholar 

  • Banerjee P, Pollitz FF, Bürgmann R (2005) The size and duration of the Sumatra-Andaman earthquake from far-field static offsets. Science 308:1769–1772

    Article  Google Scholar 

  • Barbot S, Fialko Y, Bock Y (2009) Postseismic deformation due to the mw 6.0 2004 Parkfield earthquake: stress-driven creep on a fault with spatially variable rate-and-state friction parameters. J Geophys Res 114:B07405. https://doi.org/10.1029/2008JB005748

    Article  Google Scholar 

  • Barletta VR, Bevis M, Smith BE, Wilson T, Brown A, Bordoni A, Willis M, Khan SA, Rovira-Navarro M, Dalziel I, Smalley R Jr, Kendrick E, Konfal S, Caccamise DJ II, Aster RC, Nyblade A, Wiens DA (2018) Observed rapid bedrock uplift in Amundsen Sea Embayment promotes ice-sheet stability. Science 360:1335–1339. https://doi.org/10.1126/science.aao1447

    Article  Google Scholar 

  • Barnhart WD, Lohman RB (2010) Automated fault model discretization for inversions for coseismic slip distributions. J Geophys Res 115:B10419. https://doi.org/10.1029/2010JB007545

    Article  Google Scholar 

  • Bartlow NM, Wallace LM, Beavan RJ, Bannister S, Segall P (2014) Time-dependent modeling of slow slip events and associated seismicity and tremor at the Hikurangi subduction zone, New Zealand. J Geophys Res Solid Earth 119:734–753. https://doi.org/10.1002/2013JB010609

    Article  Google Scholar 

  • Bevis M, Harig C, Khan SA, Brown A, Simons FJ, Willis M, Fettweis X, van den Broeke MR, Madsen FB, Kendrick E, Caccamise DJ II, van Dam T, Knudsen P, Nylen T (2019) Accelerating changes in ice mass within Greenland, and the ice sheet’s sensitivity to atmospheric forcing. PNAS 116(6):1934–1939. https://doi.org/10.1073/pnas.1806562116

    Article  Google Scholar 

  • Bird P (2003) An updated digital model of plate boundaries. Geochem Geophys Geosyst 4(3):1027. https://doi.org/10.1029/2001GC000252

    Article  Google Scholar 

  • Blewitt G, Heflin M, Hurst K, Jefferson D, Webb F, Zumberge J (1993) Absolute far-field displacements from the 28 June 1992 landers earthquake sequence. Nature 361:340–342

    Article  Google Scholar 

  • Bock Y, Agnew DC, Fang P, Genrich JF, Hager BH, Herring TA, Hudnut KW, King RW, Larsen S, Minister JB, Stark K, Wdowinski S, Wyatt FK (1993) Detection of crustal deformation from the landers earthquake using continuous geodetic measurements. Nature 361:337–340

    Article  Google Scholar 

  • Bonafede M, Strehlau J, Ritsema AR (1992) Geophysical and structural aspects of fault mechanics – a brief historical overview. Terra Nova 4:458–463

    Article  Google Scholar 

  • Bürgmann R, Dresen G (2008) Rheology of the lower crust and upper mantle: evidence from rock mechanics, geodesy, and field observations. Annu Rev Earth Planet Sci 36:531–567. https://doi.org/10.1146/annurev.earth.36.031207.124326

    Article  Google Scholar 

  • Bürgmann R, Segall P, Lisowski M, Svarc JL (1997) Postseismic strain following the 1989 Loma Prieta earthquake from GPS and leveling measurements. J Geophys Res 102:4933–4955

    Article  Google Scholar 

  • Calais E, Han JY, DeMets C, Nocquet JM (2006) Deformation of the North American plate interior from a decade of continuous GPS measurements. J Geophys Res 111:B06402. https://doi.org/10.1029/2005JB004253

    Article  Google Scholar 

  • Cervelli P, Fournier T, Freymueller JT, Power J (2006) Ground deformation associated with the precursory unrest and early phases of the January 2006 Eruption of Augustine Volcano, Alaska. Geophys Res Lett 33:L18304. https://doi.org/10.1029/2006GL027219

    Article  Google Scholar 

  • Cervelli P, Fournier TJ, Freymueller JT, Power JA, Lisowski M, Pauk BA (2010) Geodetic constraints on magma movement and withdrawal during the 2006 Eruption of Augustine Volcano. In: Power JA, Coombs ML, Freymueller JT (eds) The 2006 Eruption of Augustine Volcano, Alaska, U.S. Geological Survey professional paper, vol 1769. U.S. Geological Survey, Reston

    Google Scholar 

  • Chen Q, Freymueller J, Wang Q, Yang Z, Xu C, Liu J (2004) A deforming block model for the present-day tectonics of Tibet. J Geophys Res 109(B1):B01403. https://doi.org/10.1029/2002JB002151

    Article  Google Scholar 

  • Chlieh M, Avouac JP, Sieh K, Natawidjaja DH, Galetzka J (2008) Heterogeneous coupling of the Sumatran megathrust constrained by geodetic and paleogeodetic measurements. J Geophys Res 113:B05305. https://doi.org/10.1029/2007JB004981

    Article  Google Scholar 

  • Chlieh M, Mothes PA, Nocqueat J-M, Jarrin P, Charvis P, Cisneros D, Font Y, Collot J-Y, Villegas-Lanza J-C, Rolandone F, Vallée M, Regnier M, Segovia M, Martin X, Yepes H (2014) Distribution of discrete seismic asperities and aseismic slip along the Ecuadorian megathrust. Earth Planet Sci Lett 400(2014):292–301. https://doi.org/10.1016/j.epsl.2014.05.027

    Article  Google Scholar 

  • Chuang R, Johnson K (2011) Reconciling geologic and geodetic model fault slip-rate discrepancies in Southern California: consideration of nonsteady mantle flow and lower crustal fault creep. Geology 39(7):627–630. https://doi.org/10.1130/G32120.1

    Article  Google Scholar 

  • Clark JA, Farrell WE, Peltier WR (1978) Global changes in postglacial sea level: A numerical calculation. Quat Res 9(3):265–287. https://doi.org/10.1016/0033-5894(78)90033-9

  • Cross RS, Freymueller JT (2008) Evidence for and implications of a Bering plate based on geodetic measurements from the Aleutians and western Alaska. J Geophys Res 113:B07405. https://doi.org/10.1029/2007JB005136

    Article  Google Scholar 

  • Crowell BW, Bock Y, Melgar D (2012) Real-time inversion of GPS data for finite fault modeling and rapid hazard assessment. Geophys Res Lett 39:L09305

    Article  Google Scholar 

  • Crowell BW, Melgar D, Bock Y, Haase JS, Geng J (2013) Earthquake magnitude scaling using seismogeodetic data. Geophys Res Lett 40:6089–6094

    Article  Google Scholar 

  • DeMets C, Gordon RG, Argus DF, Stein S (1994) Effect of recent revisions to the geomagnetic reversal time-scale on estimates of current plate motions. Geophys Res Lett 21:2191–2194

    Article  Google Scholar 

  • DeMets C, Gordon RG, Argus DF (2010) Geologically current plate motions. Geophys J Int 181:1–80. https://doi.org/10.1111/j.1365-246X.2009.04491.x

    Article  Google Scholar 

  • DeVries PMR, Krastev PG, Dolan JF, Meade BJ (2016) Viscoelastic block models of the North Anatolian fault: a unified earthquake cycle representation of pre- and postseismic geodetic observations. Bull Seismol Soc Am 107:403–417

    Article  Google Scholar 

  • Ding K, Freymueller JT, He P, Wang Q, Xu C (2019) Glacial isostatic adjustment, intraplate strain, and relative sea level changes in the eastern United States. J Geophys Res Solid Earth 124:6056–6071. https://doi.org/10.1029/2018JB017060

    Article  Google Scholar 

  • Dolan JF, Bowman DD, Sammis CG (2007) Long range and long-term fault interactions in Southern California. Geology 35:855–858. https://doi.org/10.1130/G23789A.1

    Article  Google Scholar 

  • Dragert H, Wang K, James TS (2001) A silent slip even on the deeper Cascadia subduction interface. Science 292:1525–1528. https://doi.org/10.1126/science.1060152

    Article  Google Scholar 

  • Dvorak JJ, Dzurisin D (1993) Variations in magma supply rate at Kilauea volcano, Hawaii. J Geophys Res 98:22255–22268

    Article  Google Scholar 

  • Dvorak JJ, Dzurisin D (1997) Volcano geodesy: the search for magma reservoirs and the formation of eruptive vents. Rev Geophys 35:343–384

    Article  Google Scholar 

  • Dvorak JJ, Mastrolorenzo G (1991) The mechanisms of recent vertical crustal movements in Campi Flegrei caldera, southern Italy, Geological Society of America special paper. Geological Society of America, Boulder, p 263

    Google Scholar 

  • Dyurgerov MB, Meier MF (2005) Glaciers and the changing earth system: a 2004 snapshot. INSTAAR occasional paper 58. Institute of Arctic and Alpine Research, University of Colorado, Boulder

    Google Scholar 

  • Elliott JL, Larsen CF, Freymueller JT, Motyka RJ (2010) Tectonic block motion and glacial isostatic adjustment in Southeast Alaska and adjacent Canada constrained by GPS measurements. J Geophys Res 115:B09407. https://doi.org/10.1029/2009JB007139

    Article  Google Scholar 

  • Elliott J, Freymueller JT, Larsen CF (2013) Active tectonics of the St. Elias orogen, Alaska, observed with GPS measurements. J Geophys Res Solid Earth 118:5625–5642. https://doi.org/10.1002/jgrb.50341

    Article  Google Scholar 

  • Fang R, Shi C, Song W, Wang G, Liu J (2014) Determination of earthquake magnitude using GPS displacement waveforms from real-time precise point positioning. Geophys J Int 196:461–472. https://doi.org/10.1093/gji/ggt378

    Article  Google Scholar 

  • Farrell WE (1972) Deformation of the earth by surface loads. Rev Geophys 10:761–797

    Article  Google Scholar 

  • Fournier T, Freymueller JT, Cervelli P (2009) Tracking magma volume recovery at Okmok volcano using GPS and an unscented Kalman filter. J Geophys Res 114:B02405. https://doi.org/10.1029/2008JB005837

    Article  Google Scholar 

  • Frank WB, Rousset B, Lasserre C, Campillo M (2018) Revealing the cluster of slow transients behind a large slow slip event. Sci Adv 4:eaat0661

    Article  Google Scholar 

  • Freed AM, Bürgmann R, Calais E, Freymueller J, Hreinsdóttir S (2006a) Implications of deformation following the 2002 Denali, Alaska earthquake for postseismic relaxation processes and lithospheric rheology. J Geophys Res 111:B01401. https://doi.org/10.1029/2005JB003894

    Article  Google Scholar 

  • Freed A, Burgmann R, Calais E, Freymueller J (2006b) Stress-dependent power-law flow in the upper mantle following the 2002 Denali, Alaska, earthquake. Earth Planet Sci Lett 252:481–489

    Article  Google Scholar 

  • Freymueller JT, King NE, Segall P (1994) The co-seismic slip distribution of the landers earthquake. Bull Seismol Soc Am 84:646–659

    Google Scholar 

  • Freymueller JT, Woodard H, Cohen S, Cross R, Elliott J, Larsen C, Hreinsdóttir S, Zweck C (2008) Active deformation processes in Alaska, based on 15 years of GPS measurements. In: Freymueller JT, Haeussler PJ, Wesson R, Ekstrom G (eds) Active tectonics and seismic potential of Alaska, AGU geophysical monograph, vol 179. AGU, Washington, DC, pp 1–42

    Chapter  Google Scholar 

  • Freymueller, J. T., A. M. Freed, K. M. Johnson, R. Bürgmann, E. Calais, F. F. Pollitz, and J. Biggs, 2009. Denali fault earthquake Postseismic deformation models. Eos transactions of the AGU, 90, fall meet. Supplement, abstract G34A-05

    Google Scholar 

  • Fukuda J, Johnson KM (2008) A fully Bayesian inversion for spatial distribution of fault slip with objective smoothing. Bull Seismol Soc Am 98(3):1128–1146. https://doi.org/10.1785/0120070194

    Article  Google Scholar 

  • Fukuda J, Johnson KM (2010) Mixed linear–non-linear inversion of crustal deformation data: Bayesian inference of model, weighting and regularization parameters. Geophys J Int 181:1441–1458. https://doi.org/10.1111/j.1365-246X.2010.04564.x

    Article  Google Scholar 

  • Gan W, Zhang P, Shen Z-K, Niu Z, Wang M, Wan Y, Zhou D, Cheng J (2007) Present-day crustal motion within the Tibetan plateau inferred from GPS measurements. J Geophys Res 112:B08416. https://doi.org/10.1029/2005JB004120

    Article  Google Scholar 

  • Gilbert GK (1884) A theory of the earthquakes of the Great Basin with a practical application. Am J Sci 27:49–53. Reprinted from the Salt lake Tribune of 20 Sept. 1883

    Article  Google Scholar 

  • Gladwin MT, Gwyther RL, Hart RHG, Breckenridge KS (1994) Measurements of the strain field associated with episodic creep events on the San Andreas fault at San Juan Bautista, California. J Geophys Res 99(B3):4559–4565. https://doi.org/10.1029/93JB02877

    Article  Google Scholar 

  • Graham SE, Loveless JP, Meade BJ (2018) Global plate motions and earthquake cycle effects. Geochem Geophys Geosyst 19:2032–2048. https://doi.org/10.1029/2017GC007391

    Article  Google Scholar 

  • Grapenthin R, Freymueller JT, Kaufman AM (2013) Geodetic observations during the 2009 eruption of redoubt volcano, Alaska. J Volcanol Geotherm Res 259:115–132, electronic access at. https://doi.org/10.1016/j.jvolgeores.2012.04.021

    Article  Google Scholar 

  • Grapenthin R, Johanson IA, Allen RM (2014) Operational real-time GPS-enhanced earth- quake early warning. J Geophys Res 119(10):7944–7965. https://doi.org/10.1002/2014JB011400

    Article  Google Scholar 

  • Gutenberg B (1945) Amplitudes of surface waves and magnitudes of shallow earthquakes. Bull Seismol Soc Am 35:3–12

    Google Scholar 

  • Hearn EH, McClusky S, Ergintav S, Reilinger RE (2009) Izmit earthquake postseismic deformation and dynamics of the North Anatolian Fault Zone. J Geophys Res 114:B08405. https://doi.org/10.1029/2008JB006026

    Article  Google Scholar 

  • Heki K, Miyazaki S, Tsuji H (1997) Silent fault slip following an interplate thrust earthquake at the Japan Trench. Nature 386:595–598

    Article  Google Scholar 

  • Hsu YJ, Simons M, Avouac J-P, Galetzka J, Sieh K, Chlieh M, Natawidjaja D, Prawirodirdjo L, Bock Y (2006) Frictional Afterslip following the 2005 Nias-Simeulue earthquake Sumatra. Science 312:1921–1926. https://doi.org/10.1126/science.1126960

    Article  Google Scholar 

  • Hu Y, Freymueller JT (2019) Geodetic observations of time-variable glacial isostatic adjustment in Southeast Alaska and its implications for earth rheology. J Geophys Res. 2018JB017028. https://doi.org/10.1029/2018JB017028

  • Hu Y, Bürgmann R, Uchida N, Banerjee P, Freymueller JT (2016) Stress-driven relaxation of heterogeneous upper mantle and time-dependent afterslip following the 2011 Tohoku earthquake. J Geophys Res Solid Earth 121:385–411. https://doi.org/10.1002/2015JB012508

    Article  Google Scholar 

  • Hudnut KW, Bock Y, Cline M, Fang P, Feng Y, Freymueller J, Ge X, Gross WK, Jackson D, Kim M, King NE, Langbein J, Larsen SC, Lisowski M, Shen Z-K, Svarc J, Zhang J (1994) Co-seismic displacements of the 1992 landers earthquake sequence. Bull Seismol Soc Am 84:625–645

    Google Scholar 

  • Ide S, Beroza GC, Shelly DR, Uchide T (2007) A scaling law for slow earthquakes. Nature 447:76–79. https://doi.org/10.1038/nature05780

    Article  Google Scholar 

  • Ikari M (2019) Laboratory slow slip events in natural geological materials. Geophys J Int 218:354–387. https://doi.org/10.1093/gji/ggz143

    Article  Google Scholar 

  • Ji KH, Herring TA (2013) A method for detecting transient signals in GPS position time-series: smoothing and principal component analysis. Geophys J Int 193(1):171–186. https://doi.org/10.1093/gji/ggt003

    Article  Google Scholar 

  • Ji C, Larson KM, Tan Y, Hudnut KW, Choi K (2004) Slip history of the 2003 San Simeon earthquake constrained by combining 1-Hz GPS, strong motion, and teleseismic data. Geophys Res Lett 31:L17608. https://doi.org/10.1029/2004GL020448

    Article  Google Scholar 

  • Johansson JM et al (2002) Continuous GPS measurements of postglacial adjustment in Fennoscandia 1. Geodetic results. J Geophys Res 107:2157. https://doi.org/10.1029/2001JB000400

    Article  Google Scholar 

  • Johnson KM (2013) Slip rates and off-fault deformation in Southern California inferred from GPS data and models. J Geophys Res Solid Earth 118(10):5643–5664

    Article  Google Scholar 

  • Johnson KM, Hilley G, Bürgmann R (2007) Influence of lithosphere viscosity structure on estimates of fault slip rates in the Mojave region of the San Andreas fault system. J Geophys Res 112:B07408. https://doi.org/10.1029/2006JB004842

    Article  Google Scholar 

  • Johnson K, Bürgmann R, Freymueller JT (2009) Coupled afterslip and viscoelastic flow following the 2002 Denali fault, Alaska earthquake. Geophys J Int 176:670–682. https://doi.org/10.1111/j.1365-246X.2008.04029.x

    Article  Google Scholar 

  • Jousset P, Mori H, Okada H (2003) Elastic models for the magma intrusion associated with the 2000 eruption of Usu volcano, Hokkaido, Japan. J Volcanol Geotherm Res 125:81–106. https://doi.org/10.1016/S0377-0273(03)00090-8

    Article  Google Scholar 

  • Kanda RVS, Simons M (2010) An elastic plate model for interseismic deformation in subduction zones. J Geophys Res 115:B03405

    Article  Google Scholar 

  • Kanda RVS, Simons M (2012) Practical implications of the geometrical sensitivity of elastic dislocation models for field geologic surveys. Tectonophysics 560–561:94–104

    Article  Google Scholar 

  • Khan SA, Wahr J, Leuliette E, van Dam T, Larson KM, Francis O (2008) Geodetic measurements of postglacial adjustments in Greenland. J Geophys Res 113:B02402. https://doi.org/10.1029/2007JB004956

    Article  Google Scholar 

  • Khan SA, Wahr J, Bevis M, Velicogna I, Kendrick E (2010) Spread of ice mass loss into Northwest Greenland observed by GRACE and GPS. Geophys Res Lett 37:L06501. https://doi.org/10.1029/2010GL042460

    Article  Google Scholar 

  • Kogan MG, Vasilenko NF, Frolov DI, Freymueller JT, Steblov GM, Levin BW, Prytkov AS (2011) The mechanism of postseismic deformation triggered by the 2006–2007 great Kuril earthquakes. Geophys Res Lett 38:L06304. https://doi.org/10.1029/2011GL046855

    Article  Google Scholar 

  • Kreemer C, Blewitt G, Maerten F (2006) Co- and postseismic deformation of the 28 March 2005 Nias Mw 8.7 earthquake from continuous GPS data. Geophys Res Lett 33:L07307. https://doi.org/10.1029/2005GL025566

    Article  Google Scholar 

  • Kreemer C, Blewitt G, Klein EC (2014) A geodetic plate motion and global strain rate model. Geochem Geophys Geosyst 15:3849–3889. https://doi.org/10.1002/2014GC005407

    Article  Google Scholar 

  • Kreemer C, Hammond WC, Blewitt G (2018) A robust estimation of the 3-D intraplate deformation of the North American plate from GPS. J Geophys Res Solid Earth 123:4388–4412. https://doi.org/10.1029/2017JB015257

    Article  Google Scholar 

  • Larsen CF, Motyka RJ, Freymueller JT, Echelmeyer KA, Ivins ER (2005) Rapid viscoelastic uplift in southeast Alaska caused by post-little ice age glacial retreat. Earth Planet Sci Lett 237:548–560

    Article  Google Scholar 

  • Larsen CF, Motyka RJ, Arendt AA, Echelmeyer KA, Geissler PE (2007) Glacier changes in Southeast Alaska and Northwest British Columbia and contribution to sea level rise. J Geophys Res 112:F01007. https://doi.org/10.1029/2006JF000586

    Article  Google Scholar 

  • Larsen CF, Burgess E, Arendt AA, O’Neel S, Johnson AJ, Kienholz C (2015) Surface melt dominates Alaska glacier mass balance. Geophys Res Lett 42:5902–5908. https://doi.org/10.1002/2015GL064349

    Article  Google Scholar 

  • Larson K, Freymueller J, Philipsen S (1997) Global plate velocities from the global positioning system. J Geophys Res 102:9961–9981

    Article  Google Scholar 

  • Larson KM, Bodin P, Gomberg J (2003) Using 1-Hz GPS data to measure deformations caused by the Denali fault earthquake. Science 300:1421–1424

    Article  Google Scholar 

  • Lau HCP, Mitrovica JX, Austermann J, Crawford O, Al-Attar D, Latychev K (2016) Inferences of mantle viscosity based on ice age data sets: radial structure. J Geophys Res Solid Earth 121:6991–7012. https://doi.org/10.1002/2016JB013043

    Article  Google Scholar 

  • Lemke P, Ren J, Alley RB, Allison I, Carrasco J, Flato G, Fujii Y, Kaser G, Mote P, Thomas RH, Zhang T (2007) Observations: changes in snow, ice and frozen ground. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Li S, Freymueller J, McCaffrey R (2016) Slow slip events and time-dependent variations in locking beneath lower cook inlet of the Alaska-Aleutian subduction zone. J Geophys Res Solid Earth 121. https://doi.org/10.1002/2015JB012491

  • Lidberg M, Johansson JM, Scherneck H-G, Davis JL (2007) An improved and extended GPS-derived 3D velocity field of the glacial isostatic adjustment (GIA) in Fennoscandia. J Geod 81:213–230

    Article  Google Scholar 

  • Lienkaemper JJ, Galehouse JS, Simpson RW (1997) Creep response of the Hayward fault to stress changes caused by the Loma Prieta earthquake. Science 276:2014–2016. https://doi.org/10.1126/science.276.5321.2014

    Article  Google Scholar 

  • Lisowski M, Dzurisin D, Denlinger RP, Iwatsubo EY (2008) Analysis of GPS-measured deformation associated with the 2004–2006 dome-building eruption of Mount St. Helens, Washington. In: Sherrod DR, Scott WE, Stauffer PH (eds) A volcano rekindled; the renewed eruption of Mount St. Helens, 2004–2006, U.S. Geological Survey professional paper, vol 1750. U.S. Geological Survey, Reston, p 856. DVD-ROM [http://pubs.usgs.gov/pp/1750/]

    Google Scholar 

  • Loveless JP, Meade BJ (2010) Geodetic imaging of plate motions, slip rates, and partitioning of deformation in Japan. J Geophys Res 115:B02410. https://doi.org/10.1029/2008JB006248

    Article  Google Scholar 

  • Loveless JP, Meade BJ (2011) Partitioning of localized and diffuse deformation in the Tibetan Plateau from joint inversions of geologic and geodetic observations TS AT. Earth Planet Sci Lett 303(1–2):11–24. https://doi.org/10.1016/j.epsl.2010.12.014

    Article  Google Scholar 

  • Lu Z, Masterlark T, Dzurisin D (2005) Interferometric synthetic aperture radar study of Okmok volcano, Alaska, 1992–2003: Magma supply dynamics and postemplacement lava flow deformation. J Geophys Res 110:B02403. https://doi.org/10.1029/2004JB003148

    Article  Google Scholar 

  • Massonnet D, Rossi M, Carmona C, Adragna F, Peltzer G, Feigl K, Rabaute T (1993) The displacement field of the landers earthquake mapped by radar interferometry. Nature 364:138–142

    Article  Google Scholar 

  • Mattia M, Rossi M, Guglielmino F, Aloisi M, Bock Y (2004) The shallow plumbing system of Stromboli Island as imaged from 1 Hz instantaneous GPS positions. Geophys Res Lett 31:L24610

    Article  Google Scholar 

  • Mavrommatis AP, Segall P, Uchida N, Johnson KM (2015) Long-term acceleration of aseismic slip preceding the Mw 9 Tohoku-oki earthquake: constraints from repeating earthquakes. Geophys Res Lett 42. https://doi.org/10.1002/2015gl066069

  • McCaffrey R (2002) Crustal block rotations and plate coupling. In: Stein S, Freymueller J (eds) Plate boundary zones, AGU geodynamics series, vol 30. American Geophysical Union, Washington, pp 101–122

    Google Scholar 

  • McCaffrey R (2008) The tectonic framework of the Sumatran subduction zone. Annu Rev Earth Planet Sci 37:345–366

    Article  Google Scholar 

  • McCaffrey R, Qamar AI, King RW, Wells R, Khazaradze G, Williams CA, Stevens CW, Vollick JJ, Zwick PC (2007) Fault locking, block rotation and crustal deformation in the Pacific Northwest. Geophys J Int 169:1315–1340. https://doi.org/10.1111/j.1365-246X.2007.03371.x

    Article  Google Scholar 

  • McCaffrey R, Wallace LM, Beavan J (2008) Slow slip and frictional transition at low temperature at the Hikurangi subduction zone. Nat Geosci 1:316–320

    Article  Google Scholar 

  • McGill SF, Wells SG, Fortner SK, Kuzma HA, McGill JD (2009) Slip rate of the western Garlock fault, at Clark Wash, near Lone Tree Canyon, Mojave Desert, California. Geol Soc Am Bull 121:536–554. https://doi.org/10.1130/B26123.1

    Article  Google Scholar 

  • Meade BJ (2007) Present-day kinematics at the India-Asia collision zone. Geology 35:81–84. https://doi.org/10.1130/G22924A.1

    Article  Google Scholar 

  • Meade BJ, Hager BH (2005a) Block models of crustal motion in southern California constrained by GPS measurements. J Geophys Res 110:B03403. https://doi.org/10.1029/2004JB003209

    Article  Google Scholar 

  • Meade BJ, Hager BH (2005b) Spatial localization of moment deficits in southern California. J Geophys Res 110:B04402. https://doi.org/10.1029/2004JB003331

    Article  Google Scholar 

  • Meade BJ, Loveless JP (2009) Predicting the geodetic signature of MW > 8 slow slip events. Geophys Res Lett 36:L01306. https://doi.org/10.1029/2008GL036364

    Article  Google Scholar 

  • Meade BJ, Klinger Y, Hetland E (2013) Inference of multiple earthquake-cycle relaxation timescales from irregular geodetic sampling of interseismic deformation. Bull Seismol Soc Am 103:2824–2835. https://doi.org/10.1785/0120130006

    Article  Google Scholar 

  • Melbourne TI, Webb FH, Stock JM, Reigber C (2002) Rapid postseismic transients in subduction zones from continuous GPS. J Geophys Res 107:2241. https://doi.org/10.1029/2001JB000555

    Article  Google Scholar 

  • Milne GA, Davis JL, Mitrovica JX, Scherneck H-G, Johansson JM, Vermeer M, Koivula H (2001) Space-Geodetic Constraints on Glacial Isostatic Adjustment in Fennoscandia. Science 291:2381–2385

    Google Scholar 

  • Milne GA, Mitrovica JX, Scherneck H-G, Davis JL, Johansson JM, Koivula H, Vermeer M (2004) Continuous GPS measurements of postglacial adjustment in Fennoscandia: 2. Modeling results. J Geophys Res 109:B02412. https://doi.org/10.1029/2003JB002619

    Article  Google Scholar 

  • Minson SE, Simons M, Beck JL (2013) Bayesian inversion for finite fault earthquake source models I - theory and algorithm. Geophys J Int 194(3):1701–1726. https://doi.org/10.1093/gji/ggt180

  • Minson SE, Murray JR, Langbein JO, Gomberg JS (2014) Real-time inversions for finite fault slip models and rupture geometry based on high-rate GPS data. J Geophys Res Solid Earth 119:3201–3231. https://doi.org/10.1002/2013JB010622

    Article  Google Scholar 

  • Mitrovica JX, Tamisiea M, Davis JL, Milne GA (2001) Recent mass balance of polar ice sheets inferred from patterns of Global Sea-level change. Nature 409:1026–1029

    Article  Google Scholar 

  • Mitrovica JX, Gomez N, Clark PU (2009) The sea-level fingerprint of West Antarctic collapse. Science 323:753. https://doi.org/10.1126/science.1166510

    Article  Google Scholar 

  • Miyagi Y, Freymueller JT, Kimata F, Sato T, Mann D (2004) Surface deformation caused by shallow magmatic activity at Okmok volcano, Alaska, detected by GPS campaigns 2000–2002. Earth Planets Space 56:e29-e32

    Article  Google Scholar 

  • Miyazaki S, Larson KM, Choi K, Hikima K, Koketsu K, Bodin P, Haase J, Emore G, Yamagiwa A (2004a) Modeling the rupture process of the 2003 September 25 Tokachi-Oki (Hokkaido) earthquake using 1-Hz GPS data. Geophys Res Lett 31:L21603. https://doi.org/10.1029/2004GL021457

    Article  Google Scholar 

  • Miyazaki S, Segall P, Fukuda J, Kato T (2004b) Space time distribution of afterslip following the 2003 Tokachi-oki earthquake: implications for variations in fault zone frictional properties. Geophys Res Lett 31:L06623. https://doi.org/10.1029/2003GL019410

    Article  Google Scholar 

  • Mogi K (1958) Relations between the eruptions of various volcanoes and the deformations of the ground surfaces around them. Bull Earthq Res Inst, Univ Tokyo 36:99–134

    Google Scholar 

  • Moreno M, Melnick D, Rosenau M, Bolte J, Klotz J, Echtler H, Baez J, Bataille K, Chen J, Bevis M, Hase H, Oncken O (2011) Heterogeneous plate locking in the South-Central Chile subduction zone: building up the next great earthquake. Earth Planet Sci Lett 305(3):413–424

    Article  Google Scholar 

  • Neal CA, Brantley SR, Antolik L, Babb J, Burgess M, Calles K, Cappos M, Chang JC, Conway S, Desmither L, Dotray P, Elias T, Fukunaga P, Fuke S, Johanson IA, Kamibayashi K, Kauahikaua J, Lee RL, Pekalib S, Miklius A, Million W, Moniz CJ, Nadeau PA, Okubo P, Parcheta C, Patrick MP, Shiro B, Swanson DA, Tollett W, Trusdell F, Younger EF, Zoeller MH, Montgomery-Brown EK, Anderson KR, Poland MP, Ball J, Bard J, Coombs M, Dietterich HR, Kern C, Thelen WA, Cervelli PF, Orr T, Houghton BF, Gansecki C, Hazlett R, Lundgren P, Diefenbach AK, Lerner AH, Waite G, Kelly P, Clor L, Werner C, Mulliken K, Fisher G (2018) The 2018 rift eruption and summit collapse of Kīlauea volcano. Science. https://doi.org/10.1126/science.aav7046

  • Neri M, Casu F, Acocella V, Solaro G, Pepe S, Berardino P, Sansosti E, Caltabiano T, Lundgren P, Lanari R (2009) Deformation and eruptions at Mt. Etna (Italy): a lesson from 15 years of observations. Geophys Res Lett 36:L02309. https://doi.org/10.1029/2008GL036151

    Article  Google Scholar 

  • Nield GA, Barletta VR, Bordoni A, King MA, Whitehouse PL, Clarke PJ, Domack E, Scambos TA, Berthier E (2014) Rapid bedrock uplift in the Antarctic Peninsula explained by viscoelastic response to recent ice unloading. Earth Planet Sci Lett 397:32–41. https://doi.org/10.1016/j.epsl.2014.04.019

    Article  Google Scholar 

  • Nikolaidis R, Bock Y, de Jonge P, Shearer P, Agnew D, Van Domselaar M (2001) Seismic wave observations with the global positioning system. J Geophys Res 106:21897–21916

    Article  Google Scholar 

  • Nocquet J-M, Villegas-Lanza JC, Chlieh M, Mothes PA, Rolandone F, Jarrin P, Cisneros D, Alvarado A, Audin L, Bondoux F, Martin X, Font Y, Régnier M, Vallée M, Tran T, Beauval C, Mendoza JMM, Martinez W, Tavera H, Yepes H (2014) Motion of continental slivers and creeping subduction in the northern Andes. Nat Geosci 7:287–291. https://doi.org/10.1038/NGEO2099

    Article  Google Scholar 

  • Norabuena E, Leffler-Griffin L, Mao AL, Dixon T, Stein S, Sacks IS, Ocola L, Ellis M (1998) Space geodetic observations of Nazca-South America convergence across the central Andes. Science 279:358–362

    Article  Google Scholar 

  • Norabuena EO, Dixon TH, Stein S, Harrison CGA (1999) Decelerating Nazca-South America and Nazca-Pacific Plate motions. Geophys Res Lett 26:3405–3408

    Article  Google Scholar 

  • Nyst M, Thatcher W (2004) New constraints on the active tectonic deformation of the Aegean. J Geophys Res 109:B11406. https://doi.org/10.1029/2003JB002830

    Article  Google Scholar 

  • Ohta Y et al (2012) Quasi real-time fault model estimation for near-field tsunami forecasting based on RTK-GPS analysis: application to the 2011 Tohoku-Oki earthquake (Mw 9.0). J Geophys Res 117:B02311. https://doi.org/10.1029/2011JB008750

    Article  Google Scholar 

  • Oskin M, Perg L, Shelef E, Strane M, Gurney E, Singer B, Zhang X (2008) Elevated shear zone loading rate during an earthquake cluster in eastern California. Geology 36:507–510. https://doi.org/10.1130/G24814A.1

    Article  Google Scholar 

  • Patrick M, Orr T, Anderson K, Swanson D (2019) Eruptions in sync: improved constraints on Kīlauea Volcano’s hydraulic connection. Earth Planet Sci Lett 507:50–61. https://doi.org/10.1016/j.epsl.2018.11.030

  • Peltier WR, Andrews JT (1976) Glacial-Isostatic Adjustment—I. The Forward Problem Geophysical Journal International 46(3):605–646. https://doi.org/10.1111/j.1365-246X.1976.tb01251.x

  • Peltier WR, Argus DF, Drummond R (2015) Space geodesy constrains ice-age terminal deglaciation: the global ICE-6G_C (VM5a) model. J Geophys Res Solid Earth 120:450–487. https://doi.org/10.1002/2014JB011176

    Article  Google Scholar 

  • Peltier WR, Argus DF, Drummond R (2018) Comment on “an assessment of the ICE-6G_C (VM5a) glacial isostatic adjustment model” by Purcell et al. J Geophys Res Solid Earth 123:2019–2018. https://doi.org/10.1002/2016JB013844

    Article  Google Scholar 

  • Pritchard ME, Simons M, Rosen PA, Hensley S, Webb FH (2002) Co-seismic slip from the 1995 July 30 M (sub w) = 8.1 Antofagasta, Chile, earthquake as constrained by InSAR and GPS observations. Geophys J Int 150:362–376

    Article  Google Scholar 

  • Protti M, González V, Newman AV, Dixon TH, Schwartz SY, Marshall JS, Feng L, Walter JI, Malservisi R, Owen SE (2013) Nicoya earthquake rupture anticipated by geodetic measurement of the locked plate interface. Nat Geosci 7:117–121. https://doi.org/10.1038/NGEO2038

    Article  Google Scholar 

  • Ragon T, Sladen A, Simons M (2018) Accounting for uncertain fault geometry in earthquake source inversions – I: theory and simplified application. Geophys J Int 214:1174–1190. https://doi.org/10.1093/gji/ggy187

    Article  Google Scholar 

  • Reid HF (1910) Permanent displacements of the ground, in the California earthquake of April 18, 1906. In: Report of the state earthquake investigation commission. Carnegie Inst. Wash, Washington, D.C., pp 16–28

    Google Scholar 

  • Reid HF (1911) The elastic rebound theory of earthquakes. Bull Dep Geol Univ Calif Publ 6(19):413–444

    Google Scholar 

  • Reilinger R et al (2006) GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. J Geophys Res 111:B05411. https://doi.org/10.1029/2005JB004051

    Article  Google Scholar 

  • Richter A, Ivins E, Lange H, Mendoza L, Schröder L, Hormaechea JL, Casassa G, Marderwald E, Fritsche M, Perdomo R et al (2016) Crustal deformation across the Southern Patagonian Ice field observed by GNSS. Earth Planet Sci Lett 452:206–215

    Article  Google Scholar 

  • Riel B, Simons M, Agram P, Zhan Z (2014) Detecting transient signals in geodetic time series using sparse estimation techniques. J Geophys Res Solid Earth 119:5140–5160. https://doi.org/10.1002/2014JB011077

    Article  Google Scholar 

  • Robbins JW, Smith DE, Ma C (1993) Global scale tectonic plate motions measured with CDP VLBI data. In: Smith DE, Turcotte DL (eds) Contributions of space geodesy to geodynamics: crustal dynamics, AGU geophysical monograph, vol 23. American Geophysical Union, Washington, pp 21–36

    Chapter  Google Scholar 

  • Rogers G, Dragert H (2003) Episodic tremor and slip on the Cascadia subduction zone: the chatter of silent slip. Science 300:1942–1943. https://doi.org/10.1126/science.1084783

    Article  Google Scholar 

  • Roy K, Peltier WR (2017) Space-geodetic and water level gauge constraints on continental uplift and tilting over North America: regional convergence of the ICE-6G_C (VM5a/VM6) models. Geophys J Int 210:1115–1142

    Article  Google Scholar 

  • Ruhl C, Melgar D, Grapenthin R, Allen RM (2017) The value of real-time GNSS to earthquake early warning. Geophys Res Lett 44(16):8311–8319. https://doi.org/10.1002/2017GL074502

    Article  Google Scholar 

  • Sasgen I, Martín-Español A, Horvath A, Klemann V, Petrie EJ, Wouters B, Horwath M, Pail R, Bamber JL, Clarke PJ, Konrad H, Wilson T, Drinkwater MR (2018) Altimetry, gravimetry, GPS and viscoelastic modeling data for the joint inversion for glacial isostatic adjustment in Antarctica (ESA STSE project REGINA). Earth Syst Sci Data 10:493–523. https://doi.org/10.5194/essd-10-493-2018

    Article  Google Scholar 

  • Savage J (1983) A dislocation model of strain accumulation and release at a subduction zone. J Geophys Res 88:4984–4996

    Article  Google Scholar 

  • Savage JC, Burford RO (1970) Accumulation of tectonic strain in California. Bull Seismol Soc Am 60:1877–1896

    Google Scholar 

  • Savage JC, Langbein J (2008) Postearthquake relaxation after the 2004 M6 Parkfield, California, earthquake and rate-and-state friction. J Geophys Res 113:B10407. https://doi.org/10.1029/2008JB005723

    Article  Google Scholar 

  • Savage J, Prescott W (1978) Asthenosphere readjustment and the earthquake cycle. J Geophys Res 83:3369–3376

    Article  Google Scholar 

  • Scholz C (1990) The mechanics of earthquakes and faulting. Cambridge University Press, Cambridge

    Google Scholar 

  • Schwartz SY, Rokosky JM (2007) Slow slip events and seismic tremor at circum-pacific subduction zones. Rev Geophys 45:RG3004. https://doi.org/10.1029/2006RG000208

    Article  Google Scholar 

  • Sella GF, Stein S, Dixon TH, Craymer M, James TS, Mazzotti S, Dokka RK (2007) Observation of glacial isostatic adjustment in “stable” North America with GPS. Geophys Res Lett 34:L02306. https://doi.org/10.1029/2006GL027081

    Article  Google Scholar 

  • Sieh K, Jones L, Hauksson E, Hudnut K, Eberhart-Phillips D, Heaton T, Hough S, Hutton K, Kanamori H, Lilje A, Lindvall S, McGill S, Mori J, Rubin C, Spotila JA, Stock J, Thio H, Treiman J, Wernicke B, Zachariasen J (1993) Near-field investigations of the landers earthquake sequence, April to July, 1992. Science 260:171–176

    Article  Google Scholar 

  • Smith SW, Wyss M (1968) Displacement on the San Andreas fault subsequent to the 1966 Parkfield earthquake. Bull Seismol Soc Am 58:1955–1973

    Google Scholar 

  • Steblov GM, Kogan MG, Levin BV, Vasilenko NF, Prytkov AS, Frolov DI (2008) Spatially linked asperities of the 2006–2007 great Kuril earthquakes revealed by GPS. Geophys Res Lett 35:L22306. https://doi.org/10.1029/2008GL035572

    Article  Google Scholar 

  • Suito H, Freymueller JT (2009) A viscoelastic and afterslip postseismic deformation model for the 1964 Alaska earthquake. J Geophys Res 114:B11404. https://doi.org/10.1029/2008JB005954

    Article  Google Scholar 

  • Sun T, Wang K, Iinuma T, Hino R, He J, Fujimoto H, Kido M, Osada Y, Miura S, Ohta Y, Hu Y (2014) Prevalence of viscoelastic relaxation after the 2011 Tohoku-oki earthquake. Nature 514(7520):84–87. https://doi.org/10.1038/nature13778

    Article  Google Scholar 

  • Taira T, Bürgmann R, Nadeau RM, Dreger DS (2014) Variability of fault slip behavior along the San Andreas fault in the San Juan Bautista region. J Geophys Res Solid Earth 119:8827–8844. https://doi.org/10.1002/2014JB011427

    Article  Google Scholar 

  • Tamisiea ME, Mitrovica JX, Milne GA, Davis JL (2001) Global geoid and sea level changes due to present-day ice mass fluctuations. J Geophys Res 106:30849–30863

    Article  Google Scholar 

  • Tamisiea ME, Leuliette EW, Davis JL, Mitrovica JX (2005) Constraining hydrological and cryospheric mass flux in southeastern Alaska using space-based gravity measurements. Geophys Res Lett 32:L20501. https://doi.org/10.1029/2005GL023961

    Article  Google Scholar 

  • Taylor M, Yin A (2009) Active structures of the Himalayan-Tibetan orogen and their relationships to earthquake distribution, contemporary strain field, and Cenozoic volcanism. Geosphere 5:199–214. https://doi.org/10.1130/GES00217.1

    Article  Google Scholar 

  • Thatcher W (2003) GPS constraints on the kinematics of continental deformation. Int Geol Rev 45:191–212

    Article  Google Scholar 

  • Thatcher W (2009) How the continents deform: the evidence from tectonic geodesy. Annu Rev Earth Planet Sci 17:237–262. https://doi.org/10.1146/annurev.earth.031208.100035

    Article  Google Scholar 

  • Tong X, Smith-Konter B, Sandwell DT (2014) Is there a discrepancy between geological and geodetic slip rates along the San Andreas fault system? J Geophys Res Solid Earth 119:2518–2538. https://doi.org/10.1002/2013JB010765

    Article  Google Scholar 

  • Tregoning P, Burgette R, McClusky SC, Lejeune S, Watson CS, McQueen H (2013) A decade of horizontal deformation from great earthquakes. J Geophys Res Solid Earth 118:2371–2381. https://doi.org/10.1002/jgrb.50154

    Article  Google Scholar 

  • Tsang LLH, Meltzner AJ, Hill EM, Freymueller JT, Sieh K (2015) A paleogeodetic record of variable interseismic rates and megathrust coupling at Simeulue Island, Sumatra. Geophys Res Lett 42:10,585–10,594. https://doi.org/10.1002/2015GL066366

    Article  Google Scholar 

  • van der Wal W, Whitehouse PL, Schrama EJO (2015) Effect of GIA models with 3D mantle viscosity on GRACE mass balance estimates for Antarctica. Earth Planet Sci Lett 414(0):134–143. https://doi.org/10.1016/j.epsl.2015.01.001

    Article  Google Scholar 

  • Wallace LM, Beavan J (2010) Diverse slow slip behavior at the Hikurangi subduction margin, New Zealand. J Geophys Res 115:B12402. https://doi.org/10.1029/2010JB007717

    Article  Google Scholar 

  • Wallace LM, Beavan RJ, McCaffrey R, Darby DJ (2004) Subduction zone coupling and tectonic block rotations in the North Island, New Zealand. J Geophys Res Solid Earth 109(B12):B12406. https://doi.org/10.1029/2004JB003241

    Article  Google Scholar 

  • Wallace LM, Beavan RJ, McCaffrey R, Berryman KR, Denys P (2007) Balancing the plate motion budget in the South Island, New Zealand using GPS, geological and seismological data. Geophys J Int 168(1):332–352. https://doi.org/10.1111/j.1365-246X.2006.03183.x

    Article  Google Scholar 

  • Wallace LM, Webb SC, Ito Y, Mochizuki K, Hino R, Henrys S, Schwartz SY, Sheehan AF (2016) Slow slip near the trench at the Hikurangi subduction zone, New Zealand. Science 352(6286):701–704. https://doi.org/10.1126/science.aaf2349

    Article  Google Scholar 

  • Wallace LM, Kaneko Y, Hreinsdottir S, Hamling I, Peng Z, Bartlow N et al (2017) Large-scale dynamic triggering of shallow slow slip enhanced by overlying sedimentary wedge. Nat Geosci 10(10):765–770. https://doi.org/10.1038/ngeo3021

    Article  Google Scholar 

  • Wallace LM, Hreinsdóttir S, Ellis S, Hamling I, D’Anastasio E, Denys P (2018) Triggered slow slip and afterslip on the southern Hikurangi subduction zone following the Kaikōura earthquake. Geophys Res Lett 45:4710–4718. https://doi.org/10.1002/2018GL077385

    Article  Google Scholar 

  • Wang K (2007) Elastic and viscoelastic models of crustal deformation in subduction earthquake cycles. In: Dixon TH, Moore JC (eds) The Seismogenic zone of subduction thrust faults. Columbia University Press, New York, pp 540–575

    Google Scholar 

  • Wang K, Fialko Y (2018) Observations and modeling of coseismic and postseismic deformation due to the 2015 Mw 7.8 Gorkha (Nepal) earthquake. J Geophys Res Solid Earth 123:761–779. https://doi.org/10.1002/2017JB014620

    Article  Google Scholar 

  • Wang K, Hu Y, He J (2012) Deformation cycles of subduction earthquakes in a viscoelastic earth. Nature 484:327–332. https://doi.org/10.1038/nature11032

    Article  Google Scholar 

  • Wang K, Sun T, Brown L, Hino R, Tomita F, Kido M, Iinuma T, Kodaira S, Fujiwara T (2018) Learning from crustal deformation associated with the M9 2011 Tohoku-oki earthquake. Geosphere 14:552–571. https://doi.org/10.1130/GES01531.1

    Article  Google Scholar 

  • Wöppelmann G, Marcos M (2016) Vertical land motion as a key to understanding sea level change and variability. Rev Geophys 54:64–92. https://doi.org/10.1002/2015RG000502

    Article  Google Scholar 

  • Wöppelmann G, Letetrel C, Santamaria A, Bouin M-N, Collilieux X, Altamimi Z, Williams SDP, Miguez BM (2009) Rates of sea-level change over the past century in a geocentric reference frame. Geophys Res Lett 36:L12607. https://doi.org/10.1029/2009GL038720

    Article  Google Scholar 

  • Yohler R, Bartlow N, Wallace LM, Williams C (2019) Time-dependent behavior of a near-trench slow-slip event at the Hikurangi subduction zone. Geochem Geophys Geosyst 20:4292–4304. https://doi.org/10.1029/2019GC008229

    Article  Google Scholar 

  • Zeng Y, Shen Z-K (2014) Fault network modeling of crustal deformation in California constrained using GPS and geologic observations. Tectonophysics 612–613:1–17. https://doi.org/10.1016/j.tecto.2013.11.030

    Article  Google Scholar 

  • Zhao B, Bürgmann R, Wang D, Tan K, Du R, Zhang R (2017) Dominant controls of downdip afterslip and viscous relaxation on the postseismic displacements following the Mw7.9 Gorkha, Nepal, earthquake. J Geophys Res Solid Earth 122:8376–8401. https://doi.org/10.1002/2017JB014366

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey T. Freymueller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Freymueller, J.T. (2020). GPS, Tectonic Geodesy. In: Gupta, H. (eds) Encyclopedia of Solid Earth Geophysics. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-030-10475-7_77-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10475-7_77-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10475-7

  • Online ISBN: 978-3-030-10475-7

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics