Skip to main content

Phosphate Homeostasis: Links with Seed Quality and Stress Tolerance in Chickpea

  • Chapter
  • First Online:
Pulse Improvement

Abstract

Chickpea cultivation experiences huge losses due to several biotic and abiotic stresses. Deficiency of mineral nutrients such as phosphorus is a major limiting factor for chickpea production. In this chapter, we summarize our current understanding about phosphorus deficiency responses in chickpea and explore probable strategies to improve low P tolerance of chickpea. Phosphate being a key macronutrient provides the energy demand for cellular growth, patterning, differentiation and regulates the plant growth from germination to ultimate senescence. Therefore, slight variation of P status in plants switches different morphological, physiological and biochemical adaptations in chickpea to replenish the normal P status. In legumes like chickpea, seed phytate content correlates with seed size. Different approaches have targeted multifaceted roles of P nutrition in improving seed quality and size of phytate-rich chickpea seeds. Emerging evidences reveal a larger role of P levels in altering plants response to environmental stresses. We here discuss these recent advances in deciphering cross talks between phosphorus nutrition and various other stresses. We finally discuss how low P condition in plants affects other abiotic and biotic stresses to comply with the fine trade-off between plant growth and suppression of stress/defence response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad F, Gaur P, Croser J (2005) Chickpea (Cicer ariatinum L.). In: Singh R, Jauhar P (eds) Genetic resources, chromosome engineering and crop improvement, Grains legumes. CRC Press, Boca Raton, pp 185–214

    Google Scholar 

  • Al-Karaki GN, Al-Karaki RB, Al-Karaki CY (1996) Phosphorus nutrition and water stress effects on proline accumulation in Sorghum and bean. J Plant Physiol 148:745–751

    Article  CAS  Google Scholar 

  • Alloush G (2003) Responses of hydroponically-grown chickpea to low phosphorus: pH changes, nutrient uptake rates, and root morphological changes. Agronomie 23:123–133

    Article  Google Scholar 

  • Amijee F, Giller KE (1998) Environmental constraints to nodulation and nitrogen fixation of Phaseolus vulgaris L. in Tanzania I. A survey of soil fertility and root nodulation. Afr Crop Sci J 6:159–169

    Article  Google Scholar 

  • Anoop VM, Basu U, McCammon MT, McAlister-Henn L, Taylor GJ (2003) Modulation of citrate metabolism alters aluminum tolerance in yeast and transgenic canola overexpressing a mitochondrial citrate synthase. Plant Physiol 132:2205–2217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asiwe J (2009) The impact of phosphate fertilizer as a pest management tactic in four cowpea varieties. Afr J Biotechnol 8:7182–7188

    Google Scholar 

  • Baek D, Chun HJ, Yun DJ, Kim MC (2017) Cross-talk between phosphate starvation and other environmental stress signaling pathways in plants. Mol Cells 40:697–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balzergue C, Dartevelle T, Godon C, Laugier E, Meisrimler C, Teulon JM et al (2017) Low phosphate activates STOP1-ALMT1 to rapidly inhibit root cell elongation. Nat Commun 8:15300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bampidisa VA, Christodoulou V (2011) Chickpeas (Cicer arietinum L.) in animal nutrition: a review. Anim Feed Sci Technol 168:1–20

    Article  CAS  Google Scholar 

  • Barber SA (1986) Soil-plant interactions in the phosphorus nutrition of plants. In: Khasawneh FE, Sample EC, Kamprath EJ (eds) The role of phosphorus in agriculture. ASA, CSSA, and SSSA, Madison

    Google Scholar 

  • Barber SA (1995) Soil nutrient bioavailability: a mechanistic approach, 2nd edn. Wiley, New York

    Google Scholar 

  • Bates TR, Lynch JP (1996) Stimulation of root hair elongation in Arabidopsis thaiiana by low phosphorus availability. Plant Cell and Environment 19:529–538

    Article  CAS  Google Scholar 

  • Beebe SE, Rao IM, Cajiao C, Grajales M (2008) Selection for drought resistance in common bean also improves yield in phosphorus limited and favorable environments. Crop Sci 48:582–592

    Article  Google Scholar 

  • Bhadouria J, Singh AP, Mehra P, Verma L, Srivastawa R, Parida SK, Giri J (2017) Identification of purple acid phosphatases in chickpea and potential roles of CaPAP7 in seed Phytate accumulation. Sci Rep 7:11012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bouain N, Shahzad Z, Rouached A, Khan GA, Berthomieu P, Abdelly C et al (2014) Phosphate and zinc transport and signalling in plants: toward a better understanding of their homeostasis interaction. J Exp Bot 65:5725–5741

    Article  CAS  PubMed  Google Scholar 

  • Bozzo GG, Raghothama KG, Plaxton WC (2002) Purification and characterization of two secreted purple acid phosphatase isozymes from phosphate-starved tomato (Lycopersicon esculentum) cell cultures. FEBS J 269:6278–6286

    CAS  Google Scholar 

  • Bozzo GG, Raghothama KG, Plaxton WC (2004) Structural and kinetic properties of a novel purple acid phosphatase from phosphate-starved tomato (Lycopersicon esculentum) cell cultures. Biochem J 377:419–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bates TR, Lynch JP (2001) Root hairs confer a competitive advantage under low phosphorus availability. Plant Soil 236:243–250

    Article  CAS  Google Scholar 

  • Cashikar AG, Kumaresan R, Rao NM (1997) Biochemical characterization and subcellular localization of the red kidney bean purple acid phosphatase. Plant Physiol 114:907–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castrillo G, Teixeira PJPL, Paredes SH, Law TF, De Lorenzo L, Feltcher ME, Finkel OM, Breakfield NW, Mieczkowski P, Jones CD, Paz-Ares J (2017) Root microbiota drive direct integration of phosphate stress and immunity. Nature 543(7646):513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen YL, Dunbabin VM, Diggle AJ, Siddique KH, Rengel Z (2013) Phosphorus starvation boosts carboxylate secretion in P-deficient genotypes of Lupinus angustifolius with contrasting root structure. Crop Pasture Sci 64:588–599

    Article  CAS  Google Scholar 

  • Cheng Y, Zhou W, Peters C, Li M, Wang X, Huang J (2011) Characterization of the Arabidopsis glycerophosphodiester phosphodiesterase (GDPD) family reveals a role of the plastid-localized AtGDPD1 in maintaining cellular phosphate homeostasis under phosphate starvation. Plant J 66:781–795

    Article  CAS  PubMed  Google Scholar 

  • Clarkson TD (1991) Root structure and site of ion uptake. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half. Marcel Dekker, New York

    Google Scholar 

  • Cubero B, Nakagawa Y, Jiang XY, Miura KJ, Li F, Raghothama KG, Bressan RA, Hasegawa PM, Pardo JM (2009) The phosphate transporter PHT4;6 is a determinant of salt tolerance that is localized to the golgi apparatus of arabidopsis. Mol Plant 2:535–552

    Article  CAS  PubMed  Google Scholar 

  • Dai X, Wang Y, Zhang WH (2016) OsWRKY74, a WRKY transcription factor, modulates tolerance to phosphate starvation in rice. J Exp Bot 67:947–960

    Article  CAS  PubMed  Google Scholar 

  • De M (2005) Arsenic-India’s health crisis attracting global attention. Curr Sci 88:683–684

    Google Scholar 

  • Denton MD, Veneklaas EJ, Freimoser FM, Lambers H (2007) Banksia species (Proteaceae) from severely phosphorus-impoverished soils exhibit extreme efficiency in the use and re-mobilization of phosphorus. Plant Cell Environ 30:1557–1565

    Article  CAS  PubMed  Google Scholar 

  • Devasirvatham V, Tan DKY, Gaur PM, Raju TN, Trethowan RM (2012) High temperature tolerance in chickpea and its implications for plant improvement. Crop Pasture Sci 63:419–428

    Article  Google Scholar 

  • Dinkelaker B, Hengeler C, Marschner H (1995) Distribution and function of proteoid roots and other root clusters. Botanica Acta 108:183–200

    Article  Google Scholar 

  • Dionisio G, Madsen CK, Holm PB, Welinder KG, Jørgensen M, Stoger E, Arcalis E, Brinch-Pedersen H (2011) Cloning and characterization of purple acid phosphatase phytases from wheat, barley, maize, and rice. Plant Physiol 156:1087–1100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong B, Ryan PR, Rengel Z, Delhaize E (1999) Phosphate uptake in Arabidopsis thaliana: dependence of uptake on the expression of transporter genes and internal phosphate concentrations. Plant Cell Environ 22:1455–1461

    Article  CAS  Google Scholar 

  • Dordas C (2008) Role of nutrients in controlling plant diseases in sustainable agriculture: a review. In: Lichtfouse E, Navarrete M, Debaeke P, Véronique S, Alberola C (eds) Sustainable agriculture. Springer, Dordrecht

    Google Scholar 

  • Drew MC (1975) Comparison of the effects of a localized supply of phosphate, nitrate, ammonium and potassium on the growth of the seminal root system, and the shoot, in barley. New Phytol 75:479–490

    Article  CAS  Google Scholar 

  • Duhan A, Chauhan BM, Punia D, Kapoor AC (1989) Phytic acid content of chickpea (Cicer arietinum) and black gram (Vigna mungo): varietal differences and effect of domestic processing and cooking methods. J Sci Food Agric 49:449–455

    Article  CAS  Google Scholar 

  • Ercoli L, Mariotti M, Masoni A, Massantini F (1996) Effect of temperature and phosphorus fertilization on phosphorus and nitrogen uptake by sorghum. Crop Sci 36:348–354

    Article  Google Scholar 

  • Esfahani MN, Sulieman S, Schulze J, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS (2014) Mechanisms of physiological adjustment of N2 fixation in Cicer arietinum L. (chickpea) during early stages of water deficit: single or multi-factor controls. Plant J 79:964–980

    Article  CAS  Google Scholar 

  • Esfahani MN, Kusano M, Nguyen KH, Watanabe Y, Ha CV, Saito K, Sulieman S, Herrera-Estrella L, Phan TLS (2016) Adaptation of the symbiotic Mesorhizobium-chickpea relationship to phosphate deficiency relies on reprogramming of whole-plant metabolism. Proc Natl Acad Sci U S A 113:E4610–E4619

    Article  CAS  Google Scholar 

  • Fayiga AO, Ma LQ (2006) Using phosphate rock to immobilize metals in soil and increase arsenic uptake by hyperaccumulator Pteris vittata. Sci Total Environ 359:17–25

    Article  CAS  PubMed  Google Scholar 

  • Fink JR, Inda AV, Bavaresco J, Barrón V, Torrent J, Bayer C (2016) Adsorption and desorption of phosphorus in subtropical soils as affected by management system and mineralogy. Soil Tillage Res 155:62–68

    Article  Google Scholar 

  • Flowers TJ, Gaur PM, Gowda CL, Krishnamurthy L, Samineni S, Siddique KH, Turner NC, Vadez V, Varshney RK, Colmer TD (2010) Salt sensitivity in chickpea. Plant Cell Environ 33:490–509

    Article  CAS  PubMed  Google Scholar 

  • Gahoonia TS, Nielsen NE (1998) Direct evidence on participation of root hairs in phosphorus (P-32) uptake from soil. Plant Soil 198:147–152

    Article  CAS  Google Scholar 

  • Gahoonia TS, Ali R, Malhotra RS, Jahoor A, Rahman MM (2007) Variation in root morphological and physiological traits and nutrient uptake of chickpea genotypes. J Plant Nutr 30:829–841

    Article  CAS  Google Scholar 

  • Galav A, Bhowmick AK, Joshi N, Singh KK, Mehta V, Sharma S (2018) Impact of weather parameters on population fluctuation of Helicoverpa armigera (H) on chickpea. Int J Adv Sci Res Manage 1:121–123

    Google Scholar 

  • Garg R, Shankar R, Thakkar B, Kudapa H, Krishnamurthy L, Mantri N, Varshney RK, Bhatia S, Jain M (2016) Transcriptome analyses reveal genotype- and developmental stage-specific molecular responses to drought and salinity stresses in chickpea. Sci Rep 6:19228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaude N, Tippmann H, Flemetakis E, Katinakis P, Udvardi M, Dörmann P (2004) The galactolipid digalactosyldiacylglycerol accumulates in the peribacteroid membrane of nitrogen-fixing nodules of soybean and lotus. J Biol Chem 279:34624–34630

    Article  CAS  PubMed  Google Scholar 

  • Gaude N, Nakamura Y, Scheible WR, Ohta H, Dormann P (2008) Phospholipase C5 (NPC5) is involved in galactolipid accumulation during phosphate limitation in leaves of Arabidopsis. Plant J 56:28–39

    Article  CAS  PubMed  Google Scholar 

  • Gaxiola RA, Li J, Undurraga S, Dang LM, Allen GJ, Alper SL, Fink GR (2001) Drought- and salt-tolerant plants result from overexpression of the AVP1 H+-pump. Proc Natl Acad Sci U S A 98:11444–11449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilbert GA, Knight JD, Vance CP, Allan DL (1999) Acid phosphatase activity in phosphorus-deficient white lupin roots. Plant Cell Environ 22:801–810

    Article  CAS  Google Scholar 

  • Giri A, Heckathorn S, Mishra S, Krause C (2017) Heat stress decreases levels of nutrient-uptake and -assimilation proteins in tomato roots. Plants 6:6

    Article  PubMed Central  CAS  Google Scholar 

  • Giri J, Bhosale R, Huang G, Pandey BK, Parker H, Zappala S, Yang J, Dievart A, Bureau C, Ljung K, Price A, Rose T, Larrieu A, Mairhofer S, Sturrock CJ, White P, Dupuy L, Hawkesford M, Perin C, Liang W, Peret B, Hodgman CT, Lynch J, Wissuwa M, Zhang D, Pridmore T, Mooney SJ, Guiderdoni E, Swarup R, Bennett MJ (2018) Rice auxin influx carrier OsAUX1 facilitates root hair elongation in response to low external phosphate. Nat Commun 9:1408

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gruber BD, Giehl RF, Friedel S, von Wirén N (2013) Plasticity of the Arabidopsis root system under nutrient deficiencies. Plant Physiol 163:161–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grutters BMC, Gross EM, Bakker ES (2016) Insect herbivory on native and exotic aquatic plants: phosphorus and nitrogen drive insect growth and nutrient release. Hydrobiologia 778:209–220

    Article  CAS  Google Scholar 

  • Gunes A, Cicek N, Inal A, Alpaslan M, Eraslan F, Guneri E, Guzelordu T (2006) Genotypic response of chickpea (Cicer arietinum L.) cultivars to drought stress implemented at pre- and post-anthesis stages and its relations with nutrient uptake and efficiency. Plant Soil Environ 52:368–376

    Article  CAS  Google Scholar 

  • Gunes A, Pilbeam DJ, Inal A (2009) Effect of arsenic-phosphorous interaction on arsenic-induced oxidative stress in chickpea plants. Plant Soil 314:211–220

    Article  CAS  Google Scholar 

  • Gupta DK, Tripathi RD, Mishra S, Srivastava S, Dwivedi S, Rai UN, Yang XE, Huanji H, Inouhe M (2008) Arsenic accumulation in roots and shoot Vis-a-Vis its effects on growth and level of phytochelatins in seedlings of Cicer arietinum L. J Environ Biol 3:281–286

    Google Scholar 

  • Gupta RK, Gangoliya SS, Singh NK (2015) Reduction of phytic acid and enhancement of bioavailable micronutrients in food grains. J Food Sci Technol 52:676–684

    Article  CAS  PubMed  Google Scholar 

  • Halila M, Strange R (1996) Identification of the causal agent of wilt of chickpea in Tunisia as Fusarium oxysporum f. sp ciceri race 0. Phytopathologia mediterranea 35:67–74

    Google Scholar 

  • Hamilton MA, Westermann DT, James DW (1993) Factors affecting zinc uptake in cropping systems. Soil Sci Soc Am J 57:1310–1315

    Article  CAS  Google Scholar 

  • Hammond JP, Bennett MJ, Bowen HC, Broadley MR, Eastwood DC, May ST, Rahn C, Swarup R, Woolaway KE, White PJ (2003) Changes in gene expression in Arabidopsis shoots during phosphate starvation and the potential for developing smart plants. Plant Physiol 132:578–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansel FD, Diaz DAR, Amado TJC, Rosso LHM (2017) Deep banding increases phosphorus removal by soybean grown under no-tillage production systems. Agron J 109:1091–1098

    Article  CAS  Google Scholar 

  • He M, Dijkstra FA (2014) Drought effect on plant nitrogen and phosphorus: a meta-analysis. New Phytol 204:924–931

    Article  CAS  PubMed  Google Scholar 

  • He Y, Liao H, Yan X (2003) Localized supply of phosphorus induces root morphological and architectural changes of rice in split and stratified soil cultures. Plant Soil 248:247–256

    Article  CAS  Google Scholar 

  • Hegeman CE, Grabau EA (2001) A novel phytase with sequence similarity to purple acid phosphatases is expressed in cotyledons of germinating soybean seedlings. Plant Physiol 126:1598–1608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herrera-Estrella L, López-Arredondo D (2016) Phosphorus: the underrated element for feeding the world. Trends Plant Sci 21:461–463

    Article  CAS  PubMed  Google Scholar 

  • Hoch-Jensen H, Schjoerring JK, Soussana JF (2002) The influence of phosphorus deficiency on growth and nitrogen fixation of white clover plants. Ann Bot 90:745–753

    Article  CAS  Google Scholar 

  • Hocking P, Randall P, Delhaize E, Keerthisinghe G (2000) The role of organic acids exuded from roots in phosphorus nutrition and aluminium tolerance in acidic soils. Manage Conserv Trop Acid Soils Sustainable Crop Prod 33:61–73

    Google Scholar 

  • Holme IB, Dionisio G, Madsen CK, Brinch-Pedersen H (2017) Barley HvPAPhy_a as transgene provides high and stable phytase activities in mature barley straw and in grains. Plant Biotechnol J 15:415–422

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Schmidhalter U (2005) Drought and salinity: a comparison of their effects on the mineral nutrition of plants. J Plant Nutr Soil Sci 168:541–549

    Article  CAS  Google Scholar 

  • Huang C, Barker SJ, Langridge P, Smith FW, Graham RD (2000) Zinc deficiency up-regulates expression of high-affinity phosphate transporter genes in both phosphate-sufficient and -deficient barley roots. Plant Physiol 124:415–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huber DM (1980) The role of mineral nutrition in defense. In: Horsfall JG, Cowling EB (eds) Plant disease. An advanced treatise. Academic, London

    Google Scholar 

  • IIAM (2010) Relatório de Actividades do Centro Zonal Sul. Centro Zonal Sul, Instituto de Investigação Agrária de Moçambique, Ministério da Agricultura, Chokwe, Gaza

    Google Scholar 

  • Israel DW (1987) Investigations of the role of phosphorus in symbiotic dinitrogen fixation. Plant Physiol 84:835–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jakobson I (1985) The role of phosphorus in nitrogen fixation by young pea plants (Pisum sativum). Physiol Plant 88:190–196

    Article  Google Scholar 

  • Jendoubi W, Bouhadida M, Boukteb A, Béji M, Kharrat M (2017) Fusarium wilt affecting chickpea crop. Agriculture 7:23

    Article  CAS  Google Scholar 

  • Jha D, Shirley N, Tester M, Roy SJ (2010) Variation in salinity tolerance and shoot sodium accumulation in Arabidopsis ecotypes linked to differences in the natural expression levels of transporters involved in sodium transport. Plant Cell Environ 33:793–804

    CAS  PubMed  Google Scholar 

  • Jha UC, Chaturvedi SK, Bohra A, Basu PS, Khan MS, Barh D (2014) Abiotic stresses, constraints and improvement strategies in chickpea. Plant Breed 133:163–178

    Article  Google Scholar 

  • Jiménez-Díaz RM, Castillo P, del Mar Jiménez-Gasco M, Landa BB, Navas-Cortés JA (2015) Fusarium wilt of chickpeas: biology, ecology and management. Crop Prot 73:16–27

    Article  Google Scholar 

  • Jin J, Wang G, Liu X, Pan X, Herbert SJ (2005) Phosphorus application affects the soybean root response to water deficit at the initial flowering and full pod stages. Soil Sci Plant Nutr 51:953–960

    Article  Google Scholar 

  • Jin J, Wang G, Liu X, Pan X, Herbert SJ, Tang C (2006) Interaction between phosphorus nutrition and drought on grain yield, and assimilation of phosphorus and nitrogen in two soybean cultivars differing in protein concentration in grains. J Plant Nutr 29:1433–1449

    Article  CAS  Google Scholar 

  • Jin J, Lauricella D, Armstrong R, Sale P, Tang C (2015) Phosphorus application and elevated CO2 enhance drought tolerance in field pea grown in a phosphorus-deficient vertisol. Ann Bot 116:975–985

    Article  CAS  PubMed  Google Scholar 

  • Jones CA, Jacobsen JS, Wraith JM (2005) Response of malt barley to phosphorus fertilization under drought conditions. J Plant Nutr 28:1605–1617

    Article  CAS  Google Scholar 

  • Jukanti AK, Gaur PM, Gowda CL, Chibbar RN (2012) Nutritional quality and health benefits of chickpea (Cicer arietinum L.): a review. Br J Nutr 108:S11–S26

    Article  CAS  PubMed  Google Scholar 

  • Kahraman A, Harmankaya M, Ceyhan E (2015) Nutritional variation and drought tolerance in chickpeas (Cicer arietinum L.). J Elem 20:331–341

    Google Scholar 

  • Kaida R, Sage-Ono K, Kamada H, Okuyama H, Syono K, Kaneko TS (2003) Isolation and characterization of four cell wall purple acid phosphatase genes from tobacco cells. Biochim Biophys Acta (BBA) Gene Struct Expr 1625:134–140

    Article  CAS  Google Scholar 

  • Kaida R, Serada S, Norioka N, Norioka S, Neumetzler L, Pauly M, Sampedro J, Zarra I, Hayashi T, Kaneko TS (2010) Potential role for purple acid phosphatase in the dephosphorylation of wall proteins in tobacco cells. Plant Physiol 153:603–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kambhampati MS, Vu VT (2013) EDTA enhanced phytoremediation of copper contaminated soils using chickpea (Cicer aeritinum L.). Bull Environ Contemp Toxicol 91:310–313

    Article  CAS  Google Scholar 

  • Kamiya T, Islam R, Duan G, Uraguchi S, Fujiwara T (2013) Phosphate deficiency signaling pathway is a target of arsenate and phosphate transporter OsPT1 is involved in as accumulation in shoots of rice. Soil Sci Plant Nutr 59:580–590

    Article  CAS  Google Scholar 

  • Khan GA, Bouraine S, Wege S, Li Y, de Carbonnel M, Berthomieu P, Poirier Y, Rouached H (2014) Coordination between zinc and phosphate homeostasis involves the transcription factor PHR1, the phosphate exporter PHO1, and its homologue PHO1;H3 in Arabidopsis. J Exp Bot 65:871–884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan AG, Vogiatzaki E, Glauser G, Poirier Y (2016) Phosphate deficiency induces the jasmonate pathway and enhances resistance to insect herbivory. Plant Physiol 171:632–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khirbat SK, Jalali BL (1999) Biochemical basis of resistance to chickpea Ascochyta blight. Legum Res 22:46–50

    Google Scholar 

  • Krishna KSSR, George PJ (2017) Effect of levels of phosphorus and zinc on growth and yield of Kabuli chickpea (Cicer kabulium L.). J Pharmacognosy Phytochemistry 6:013–1016

    Google Scholar 

  • Kuang R, Chan KH, Yeung E, Lim BL (2009) Molecular and biochemical characterization of AtPAP15, a purple acid phosphatase with phytase activity, in Arabidopsis. Plant Physiol 151:199–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar P, Sharma MK (2013) Nutrient deficiencies in pulse crops: chickpea (Cicer arietinum Linn.). In: Kumar P, Sharma MK (eds) Nutrient deficiencies of field crops: guide to diagnosis and management. CABI, Boston, MA, USA

    Chapter  Google Scholar 

  • Kuwahara FA, Souza GM, Guidorizi KA, Costa C, Meirelles PRDL (2016) Phosphorus as a mitigator of the effects of water stress on the growth and photosynthetic capacity of tropical C4 grasses. Acta Sci Agron 38:363–370

    Article  Google Scholar 

  • Larson SR, Young KA, Cook A, Blake TK, Raboy V (1998) Linkage mapping of two mutations that reduce phytic acid content of barley grain. Theor Appl Genet 97:141–146

    Article  CAS  Google Scholar 

  • Larson SR, Rutger JN, Young KA, Raboy V (2000) Isolation and genetic mapping of a non-lethal rice (Oryza sativa L.) low phytic acid 1 mutation. Crop Sci 40:1397–1405

    Article  CAS  Google Scholar 

  • Lei L, Chen L, Shi X, Li Y, Wang J, Chen D, Xie F, Li Y (2014) A nodule-specific lipid transfer protein AsE246 participates in transport of plant-synthesized lipids to symbiosome membrane and is essential for nodule organogenesis in Chinese milk vetch. Plant Physiol 164:1045–1058

    Article  CAS  PubMed  Google Scholar 

  • Leidi EO, Rodríguez-Navarro DN (2000) Nitrogen and phosphorus availability limit N2-fixation in bean. New Phytol 147:337–346

    Article  CAS  Google Scholar 

  • Lemma W, Wassie H, Sheleme B (2013) Response of chickpea (Cicer Arietinum L.) to nitrogen and phosphorus fertilizer S in halaba and taba, Southern Ethiopia. Ethiopian. J Nat Resour 13:115–128

    Google Scholar 

  • Li D, Zhu H, Liu K, Liu X, Leggewie G, Udvardi M, Wang D (2002) Purple acid phosphatases of Arabidopsis thaliana comparative analysis and differential regulation by phosphate deprivation. J Biol Chem 277:27772–27781

    Article  CAS  PubMed  Google Scholar 

  • Li RJ, Lu WJ, Guo CJ, Li XJ, Gu JT, Kai XIAO (2012a) Molecular characterization and functional analysis of OsPHY1, a purple acid phosphatase (PAP)–type phytase gene in rice (Oryza sativa L.). J Integr Agric 11:1217–1226

    Article  CAS  Google Scholar 

  • Li C, Gui S, Yang T, Walk T, Wang X, Liao H (2012b) Identification of soybean purple acid phosphatase genes and their expression responses to phosphorus availability and symbiosis. Ann Bot 109:275–285

    Article  CAS  PubMed  Google Scholar 

  • Liang C, Tian J, Lam HM, Lim BL, Yan X, Liao H (2010) Biochemical and molecular characterization of PvPAP3, a novel purple acid phosphatase isolated from common bean enhancing extracellular ATP utilization. Plant Physiol 152:854–865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang C, Sun L, Yao Z, Liao H, Tian J (2012) Comparative analysis of PvPAP gene family and their functions in response to phosphorus deficiency in common bean. PLoS One 7:e38106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao H, Wong FL, Phang TH, Cheung MY, Li WYF, Shao G, Yan X, Lam HM (2003) GmPAP3, a novel purple acid phosphatase-like gene in soybean induced by NaCl stress but not phosphorus deficiency. Gene 318:103–111

    Article  CAS  PubMed  Google Scholar 

  • Liu CM, Muchhal US, Uthappa M, Kononowicz AK, Raghothama KG (1998) Tomato phosphate transporter genes are differentially regulated in plant tissue by phosphorus. Plant Physiol 116:91–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu PD, Xue YB, Chen ZJ, Liu GD, Tian J (2016) Characterization of purple acid phosphatases involved in extracellular dNTP utilization in Stylosanthes. J Exp Bot 67:4141–4154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • López-Bucio J, Cruz-Ramírez A, Herrera-Estrella L (2003) The role of nutrient availability in regulating root architecture. Curr Opin Plant Biol 6:280–287

    Article  PubMed  CAS  Google Scholar 

  • Lynch J (1995) Root architecture and plant productivity. Plant Physiol 109:7–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch JP (2011) Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops. Plant Physiol 156:1041–1049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch JP, Brown KM (2011) Topsoil foraging – an architectural adaptation of plants to low phosphorus availability. Plant Soil 237:225

    Article  Google Scholar 

  • Maheshwari SK, Gupta JS, Jhooty JS (1981) Effect on various cultural practices on the incidence of the wilt and root rot of peas. Ind J Agric Res 15:149–151

    Google Scholar 

  • Malik JA, Goel S, Sandhir R, Nayyar H (2011) Uptake and distribution of arsenic in chickpea: effects on seed yield and seed composition. Commun Soil Sci Plant Anal 42:1728–1738

    Article  CAS  Google Scholar 

  • Mantri NL, Ford R, Coram TE, Pang ECK (2007) Transcriptional profiling of chickpea genes differentially regulated in response to high-salinity, cold and drought. BMC Genomics 8:303

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marschner H, Cakmak I (1986) Mechanism of phosphorus induced zinc deficiency in cotton. II. Evidence for impaired shoot control of phosphorus uptake and translocation under zinc deficiency. Physiol Plant 68:491–496

    Article  CAS  Google Scholar 

  • Martins D, Macovei A, Leonetti P, Balestrazzi A, Araijo S (2017) The influence of phosphate deficiency on legume symbiotic N2 fixation. In: Sulieman S, Tran LSP (eds) Legume nitrogen fixation in soils with low phosphorus availability: adaptation and regulatory implication. Springer, Cham

    Google Scholar 

  • Meharg AA, Naylor J, Macnair MR (1994) Phosphorus nutrition of arsenate-tolerant and nontolerant phenotypes of velvet grass. J Environ Qual 23:234–238

    Article  CAS  Google Scholar 

  • Mehra P, Giri J (2016) Rice and chickpea GDPDs are preferentially influenced by low phosphate and CaGDPD1 encodes an active glycerophosphodiester phosphodiesterase enzyme. Plant Cell Rep 35:1699–1717

    Article  CAS  PubMed  Google Scholar 

  • Mehra P, Pandey BK, Giri J (2016) Comparative morphophysiological analyses and molecular profiling reveal Pi-efficient strategies of a traditional rice genotype. Front Plant Sci 6:1184

    Article  PubMed  PubMed Central  Google Scholar 

  • Mehra P, Pandey BK, Giri J (2017) Improvement in phosphate acquisition and utilization by a secretory purple acid phosphatase (OsPAP21b) in rice. Plant Biotechnol J 15:1054–1067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mengel K, Kirkby EA (1978) Principles of plant nutrition. International Potash Institute, Worblaufen-Bern

    Google Scholar 

  • Mora-Macías J, Ojeda-Rivera JO, Gutiérrez-Alanís D, Yong-Villalobos L, Oropeza-Aburto A, Raya-González J, Jiménez-Domínguez G, Chávez-Calvillo G, Rellán-Álvarez R, Herrera-Estrella L (2017) Malate-dependent Fe accumulation is a critical checkpoint in the root developmental response to low phosphate. Proc Natl Acad Sci USA 114:E3563–E3572

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Muchhal US, Raghothama KG (1999) Transcriptional regulation of plant phosphate transporters. Proc Natl Acad Sci U S A 96:5868–5872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muchhal US, Pardo JM, Raghothama KG (1996) Phosphate transporters from the higher plant Arabidopsis thaliana. Proc Natl Acad Sci U S A 93:10519–10523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murakami H, Nobusawa T, Hori K, Shimojima M, Ohta H (2018) Betaine lipid is crucial for adapting to low temperature and phosphate deficiency in nannochloropsis. Plant Physiol 177:181–193

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura Y (2013) Phosphate starvation and membrane lipid remodeling in seed plants. Prog Lipid Res 52:43–50

    Article  CAS  PubMed  Google Scholar 

  • Nakamura Y, Awai K, Masuda T, Yoshioka Y, Takamiya KI, Ohta H (2005) A novel phosphatidylcholine-hydrolyzing phospholipase C induced by phosphate starvation in Arabidopsis. J Biol Chem 280:7469–7476

    Article  CAS  PubMed  Google Scholar 

  • Naz H, Naz A, Ashraf S (2015) Impact of heavy metal toxicity to plant growth and nodulation in chickpea grown under heavy metal stress. Int J Res Emerg Sci Technol 2:248–260

    Google Scholar 

  • Neumann G, Römheld V (1999) Root excretion of carboxylic acids and protons in phosphorus-deficient plants. Plant Soil 211:121–130

    Article  CAS  Google Scholar 

  • Neumann G, Massonneau A, Langlade N, Dinkelaker B, Hengeler C, Römheld V, Martinoia E (2000) Physiological aspects of cluster root function and development in phosphorus-deficient white lupin (Lupinus albus L.). Ann Bot 6:909–919

    Article  CAS  Google Scholar 

  • Nielsen KL, Eshel A, Lynch JP (2001) The effect of phosphorus availability on carbon economy of contrasting common bean (Phaseolus vulgaris L.) genotypes. J Exp Bot 52:329–339

    CAS  PubMed  Google Scholar 

  • Ohwaki Y, Hirata H (1992) Differences in carboxylic acid exudation among P-starved leguminous crops in relation to carboxylic acid contents in plant tissues and phospholipid level in roots. Soil Sci Plant Nutr 38:235–243

    Article  CAS  Google Scholar 

  • Pacak A, Barciszewska-Pacak M, Swida-Barteczka A, Kruszka K, Sega P, Milanowska K, Jakobsen I, Jarmolowski A, Szweykowska-Kulinska Z (2016) Heat stress affects Pi-related genes expression and inorganic phosphate deposition/accumulation in barley. Front Plant Sci 7:926

    Article  PubMed  PubMed Central  Google Scholar 

  • Pande S, Siddique KHM, Kishore GK, Bayaa B, Gaur PM, Gowda CLL, Bretag TW, Crouch JH (2005) Ascochyta blight of chickpea (Cicer arietinum L.): a review of biology, pathogenicity, and disease management. Aust J Agric Res 56:317–332

    Article  Google Scholar 

  • Pandey BK, Mehra P, Verma L, Bhadouria J, Giri J (2017) OsHAD1, a haloacid dehalogenase-like APase enhances phosphate accumulation. Plant Physiol 174:2316–2332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pang J, Bansal R, Zhao H, Bohuon E, Lambers H, Ryan MH, Ranathunge K, Siddique KHM (2018) The carboxylate-releasing phosphorus-mobilizing strategy can be proxied by foliar manganese concentration in a large set of chickpea germplasm under low phosphorus supply. New Phytol 219:518. https://doi.org/10.1111/nph.15200

    Article  CAS  PubMed  Google Scholar 

  • Pant BD, Burgos A, Pant P, Cuadros-Inostroza A, Willmitzer L, Scheible WR (2015) The transcription factor PHR1 regulates lipid remodeling and triacylglycerol accumulation in Arabidopsis thaliana during phosphorus starvation. J Exp Bot 66:1907–1918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Péret B, Desnos T, Jost R, Kanno S, Berkowitz O, Nussaume L (2014) Root architecture responses: in search of phosphate. Plant Physiol 166:1713–1723

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pilu R, Landoni M, Cassani E, Doria E, Nielsen E (2005) The maize lpa241 mutation causes a remarkable variability of expression and some pleiotropic effects. Crop Sci 45:2096–2105

    Article  CAS  Google Scholar 

  • Plaxton WC, Tran HT (2011) Metabolic adaptations of phosphate starved plants. Plant Physiol 156:1006–1015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raboy V (2001) Seeds for a better future: ‘low phytate’ grains help to overcome malnutrition and reduce pollution. Trends Plant Sci 6:458–462

    Article  CAS  PubMed  Google Scholar 

  • Raboy V (2002) Progress in breeding low phytate crops. J Nutr 132:503S–505S

    Article  PubMed  Google Scholar 

  • Raboy V, Gerbasi PF, Young KA, Stoneberg SD, Pickett SG, Bauman AT, Murthy PP, Sheridan WF, Ertl DS (2000) Origin and seed phenotype of maize low phytic acid 1-1 and low phytic acid 2-1. Plant Physiol 124:355–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raghothama K (1999) Phosphate acquisition. Annu Rev Plant Physiol Plant Mol Biol 50:665–693

    Article  CAS  PubMed  Google Scholar 

  • Rai V, Sanagala R, Sinilal B, Yadav S, Sarkar AK, Dantu PK, Jain A (2015) Iron availability affects phosphate deficiency-mediated responses, and evidences of cross talk with auxin and zinc in arabidopsis. Plant Cell Physiol 56:1107–1123

    Article  CAS  PubMed  Google Scholar 

  • Ram S, Gupta MP (1988) Effect of nitrogen, phosphorus and potassium on the population of insect pests of fodder mustard (Brassica campestris L.) and its seed yield in India. Trop Pest Manage 34:435–437

    Article  Google Scholar 

  • Ramamoorthy P, Lakshmanan K, Upadhyaya HD, Vadez V, Varshney RK (2016) Shoot traits and their relevance in terminal drought tolerance of chickpea (Cicer arietinum L.). Field Crop Res 197:10–27

    Article  Google Scholar 

  • Rasool S, Abdel Latef AA, Ahmad P (2015) Chickpea. In: Azooz MM, Ahmad P (eds) Legumes under environmental stress. Wiley, Chichester

    Google Scholar 

  • Ravichandran S, Stone S, Benkel B, Zhang J, Berrue F, Prithiviraj B (2015) Optimal level of purple acid phosphatase5 is required for maintaining complete resistance to Pseudomonas syringae. Front Plant Sci 6:568

    Article  PubMed  PubMed Central  Google Scholar 

  • Reddy TY, Reddy GHS (2005) Principles of agronomy. Kalyani Publishers, New Delhi

    Google Scholar 

  • Reddy CS, Kim KM, James D, Varakumar P, Reddy MK (2017) PgPAP18, a heat-inducible novel purple acid phosphatase 18-like gene (PgPAP18-like) from Pennisetum glaucum, may play a crucial role in environmental stress adaptation. Acta Physiol Plant 39:54

    Article  CAS  Google Scholar 

  • Ribet J, Drevon JJ (1995) Increase in permeability to oxygen and in oxygen uptake of soybean nodules under limiting phosphorus nutrition. Physiol Plant 94:298–304

    Article  CAS  Google Scholar 

  • Rodriguez D, Goudriaan J, Oyarzabal M, Pomar MC (1996) Phosphorus nutrition and water stress tolerance in wheat plants. J Plant Nutr 19:29–39

    Article  CAS  Google Scholar 

  • Rose TJ, Impa SM, Rose MT, Pariasca-Tanaka J, Mori A, Heuer S, Johnson-Beebout SE, Wissuwa M (2013) Enhancing phosphorus and zinc acquisition efficiency in rice: a critical review of root traits and their potential utility in rice breeding. Ann Bot 112:331–345

    Article  CAS  PubMed  Google Scholar 

  • Rubio G, Hong L, Yan X, Lynch JP (2003) Topsoil foraging and its role in plant competitiveness for phosphorus in common bean. Crop Sci 43:598–607

    Article  Google Scholar 

  • Ryan J (1997) A global perspective on pigeonpea and chickpea sustainable production system: present status and future potential. In: Asthana A, Kanpur AM (eds) Recent advances in pulses research in India. Indian Society for Pulses Research and Development, Kanpur

    Google Scholar 

  • Rasmussen SK, Josefsen L, Burhenne K, Sorensen MB (2003) Phytase from wheat, barley and rice belongs to the purple acid phosphatase family. In: Courtin C, Veraberbeke WS, Delcour JA (eds) Recent advances in enzymes in grain processing. Universiteit Leuven, Katholieke, pp 147–151

    Google Scholar 

  • Sadji-Ait Kaci H, Chaker-Haddadj A, Aid F (2016) Interactive effects of salinity and two phosphorus fertilizers on growth and grain yield of Cicer arietinum L. Acta Agric Scand B Soil Plant Sci 67:208–216

    Google Scholar 

  • Sadji-Ait Kaci H, Chaker- Haddadj A, Aid F (2018) Enhancing of symbiotic efficiency and salinity tolerance of chickpea by phosphorus supply. Acta Agric Scand B Soil Plant Sci 68:534–540

    CAS  Google Scholar 

  • Sahi ST, Ghazanfar MU, Afzal M, Habib A, Ilyas MB (2007) Role of N, P and K contents in resistance against ascochyta blight of lentil (lens culinaris Medik). Pak J Bot 39:2175–2181

    Google Scholar 

  • Sánchez-Calderón L, López-Bucio J, Chacón-López A, Cruz-Ramírez A, Nieto-Jacobo F, Dubrovsky JG, Herrera-Estrella L (2005) Phosphate starvation induces a determinate developmental program in the roots of Arabidopsis thaliana. Plant Cell Physiol 46:174–184

    Article  PubMed  CAS  Google Scholar 

  • Sánchez-Rodriguez AR, Del Campillo MC, Torrent J, Jones DL (2014) Organic acids alleviate iron chlorosis in chickpea grown on two P-fertilized soils. J Soil Sci Plant Nutr 14:292–303

    Google Scholar 

  • Sarker BC, Karmoker JL (2011) Effects of phosphorus deficiency on accumulation of biochemical compounds in lentil (Lens culinaris medik.). Bangladesh J Bot 40:23–27

    Google Scholar 

  • Schulze J, Temple G, Temple SJ, Beschow H, Vance CP (2006) Nitrogen fixation by white lupin under phosphorus deficiency. Ann Bot 98:731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shane MW, Lambers H (2005) Cluster roots: a curiosity in context. Plant Soil 274:101–125

    Article  CAS  Google Scholar 

  • Sharma HC, Gowda CLL, Stevenson PC, Ridsdill-Smith TJ, Clement SL, Ranga Rao GV, Romeis J, Miles M, El-Boushssini M (2007) Host plant resistance and insect pest management in chickpea. In: Yadav SS, Redden RJ, Chen W, Sharma B (eds) Chickpea breeding and management. CABI Publishers, Cambridge

    Google Scholar 

  • Shi J, Wang H, Wu Y, Hazebroek J, Meeley RB, Ertl DS (2003) The maize low-phytic acid mutant lpa2 is caused by mutation in an inositol phosphate kinase gene. Plant Physiol 131:507–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi J, Wang H, Schellin K, Li B, Faller M, Stoop JM, Meeley RB, Ertl DS, Ranch JP, Glassman K (2007) Embryo-specific silencing of a transporter reduces phytic acid content of maize and soybean seeds. Nat Biotechnol 25:930

    Article  CAS  PubMed  Google Scholar 

  • Shukla UC, Yadav OP (1982) Effect of phosphorus and zinc on nodulation and nitrogen fixation in chickpea (Cicer arietinum L.). Plant Soil 65:239

    Article  CAS  Google Scholar 

  • Shukla T, Kumar S, Khare R, Tripathi RD, Trivedi PK (2015) Natural variations in expression of regulatory and detoxification related genes under limiting phosphate and arsenate stress in Arabidopsis thaliana. Front Plant Sci 6:898

    Article  PubMed  PubMed Central  Google Scholar 

  • Siddique KH, Johansen C, Turner NC, Jeuffroy MH, Hashem A, Sakar D, Gan Y, Alghamdi SS (2012) Innovations in agronomy for food legumes.A review. Agron Sustain Dev 32:45–64

    Article  Google Scholar 

  • Singh MV (2008) Micronutrient deficiencies in crops and soils in India. In: Alloway BJ (ed) Micronutrient deficiencies in global crop production. Springer, Dordrecht

    Google Scholar 

  • Singh DK, Sale PW, Pallaghy CK, McKenzie BM (2000) Phosphorus concentrations in the leaves of defoliated white clover affect abscisic acid formation and transpiration in drying soil. New Phytol 146:249–259

    Article  CAS  PubMed  Google Scholar 

  • Singh AP, Pandey BK, Deveshwar P, Narnoliya L, Parida SK, Giri J (2015) JAZ repressors: potential involvement in nutrients deficiency response in rice and chickpea. Front Plant Sci 6:975

    PubMed  PubMed Central  Google Scholar 

  • Singh R, Pratap T, Singh D, Singh G, Singh AK (2018) Effect of phosphorus, Sulphur and biofertilizers on growth attributes and yield of chickpea (Cicer arietinum L.). J Pharmacognosy Phytochemistry 7:3871–3875

    Google Scholar 

  • Srinivasarao C, Ganeshamurthy AN, Ali M, Venkateswarlu B (2006) Phosphorus and micronutrient nutrition of chickpea genotypes in a multi-nutrient-deficient typic ustochrept. J Plant Nutr 29:747–763

    Article  CAS  Google Scholar 

  • Stevenson-Paulik J, Bastidas RJ, Chiou ST, Frye RA, York JD (2005) Generation of phytate-free seeds in Arabidopsis through disruption of inositol polyphosphate kinases. Proc Natl Acad Sci U S A 102:12612–12617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sulieman S, Tran LSP (2015) Phosphorus homeostasis in legume nodules as an adaptive strategy to phosphorus deficiency. Plant Sci 239:36–43

    Article  CAS  PubMed  Google Scholar 

  • Sun F, Suen PK, Zhang Y, Liang C, Carrie C, Whelan J, Ward JL, Hawkins ND, Jiang L, Lim BL (2012) A dual-targeted purple acid phosphatase in Arabidopsis thaliana moderates carbon metabolism and its overexpression leads to faster plant growth and higher seed yield. New Phytol 194:206–219

    Article  CAS  PubMed  Google Scholar 

  • Svistoonoff S, Creff A, Reymond M, Sigoillot-Claude C, Ricaud L, Blanchet A, Nussaume L, Desnos T (2007) Root tip contact with low-phosphate media reprograms plant root architecture. Nat Genet 39:792–796

    Article  CAS  PubMed  Google Scholar 

  • Tan GZ, Das Bhowmik SS, Hoang TM, Karbaschi MR, Johnson AA, Williams B, Mundree SG (2017) Finger on the pulse: pumping iron into chickpea. Front Plant Sci 8:1755

    Article  PubMed  PubMed Central  Google Scholar 

  • Tanner EVJ, Sheldrake MWA, Turner BL (2016) Changes in soil carbon and nutrients following 6 years of litter removal and addition in a tropical semi-evergreen rain forest. Biogeosciences 13:6183–6190

    Article  CAS  Google Scholar 

  • Tariq A, Pan K, Olatunji OA, Graciano C, Li Z, Sun F, Zhang L, Wu X, Chen W, Song D, Huang D, Xue T, Zhang A (2018) Phosphorous fertilization alleviates drought effects on Alnus cremastogyne by regulating its antioxidant and osmotic potential. Sci Rep 8:5644

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Theodorou ME, Plaxton WC (1993) Metabolic adaptations of plant respiration to nutritional phosphate deprivation. Plant Physiol 101:339–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tripathi RD, Srivastava S, Mishra S, Singh N, Tuli R, Gupta DK, Maathuis FJM (2007) Arsenic hazards: strategies for tolerance and remediation by plants. Trends Biotechnol 25:158–165

    Article  CAS  PubMed  Google Scholar 

  • Tripathi LK, Thomas T, Kumar S (2013) Impact of nitrogen and phosphorus on growth and yield of chickpea (Cicer arietinum L.). Asian Journal of Soil Science 8:260–263

    Google Scholar 

  • Vadez V, Rashmi M, Sindhu K, Muralidharan M, Pushpavalli R, Turner NC, Krishnamurthy L, Gaur PM, Colmer TD (2012) Large number of flowers and tertiary branches, and higher reproductive success increase yields under salt stress in chickpea. Eur J Agron 41:42–51

    Article  Google Scholar 

  • Valentine AJ, Benedito VA, Kang Y (2011) Legume nitrogen fixation and soil abiotic stress: from physiology to genome and beyond. In: Foyer CH, Zhang H (eds) Annual plant reviews, vol 42. Wiley-Blackwell, Oxford, UK, pp 207–248

    Google Scholar 

  • Vance CP, Uhde-Stone C, Allan DL (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol 157:423–447

    Article  CAS  PubMed  Google Scholar 

  • Vats P, Banerjee UC (2004) Production studies and catalytic properties of phytases (myo-inositol hexakisphosphate phosphohydrolases): an overview. Enzym Microb Technol 35:3–14

    Article  CAS  Google Scholar 

  • Velez PA, Talano MA, Paisio CE, Agostini E, González PS (2016) Synergistic effect of chickpea plants and Mesorhizobium as a natural system for chromium phytoremediation. Environ Technol 38:2164–2172

    Article  PubMed  CAS  Google Scholar 

  • Veneklaas EJ, Stevens J, Cawthray GR, Turner S, Grigg AM, Lambers H (2003) Chickpea and white lupin rhizosphere carboxylates vary with soil properties and enhance phosphorus uptake. Plant Soil 248:187–197

    Article  CAS  Google Scholar 

  • Wang C, Wei Q, Zhang K, Wang L, Liu F, Zhao L, Tan Y, Di C, Yan H, Yu J, Sun C, Chen WJ, Xu W, Su Z (2013) Down-regulation of OsSPX1 causes high sensitivity to cold and oxidative stresses in rice seedlings. PLoS One 8:e81849

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang J, Si Z, Li F, Xiong X, Lei L, Xie F, Chen D, Li Y, Li Y (2015) A purple acid phosphatase plays a role in nodule formation and nitrogen fixation in Astragalus sinicus. Plant Mol Biol 88:515–529

    Article  CAS  PubMed  Google Scholar 

  • Wei F, Fanella B, Guo L, Wang X (2016) Membrane glycerolipidome of soybean root hairs and its response to nitrogen and phosphate availability. Sci Rep 6:36172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wongkaew A, Srinives P, Nakasathien S (2013) Isolation and characterization of purple acid phosphatase gene during seedling development in mungbean. Biol Plant 57:267–273

    Article  CAS  Google Scholar 

  • Wouterlood M, Cawthray GR, Turner S, Lambers H, Veneklaas EJ (2004) Rhizosphere carboxylate concentrations of chickpea are affected by genotype and soil type. Plant Soil 261:1–10

    Article  CAS  Google Scholar 

  • Wouterlood M, Lambers H, Veneklaas EJ (2005) Plant phosphorus status has a limited influence on the concentration of phosphorus-mobilising carboxylates in the rhizosphere of chickpea. Funct Plant Biol 32:153–159

    Article  CAS  PubMed  Google Scholar 

  • Xiao K, Harrison MJ, Wang ZY (2005) Transgenic expression of a novel M. truncatula phytase gene results in improved acquisition of organic phosphorus by Arabidopsis. Planta 222:27–36

    Article  CAS  PubMed  Google Scholar 

  • Xiao K, Harrison M, Wang ZY (2006) Cloning and characterization of a novel purple acid phosphatase gene (MtPAP1) from Medicago truncatula Barrel Medic. J Integr Plant Biol 48:204–211

    Article  CAS  Google Scholar 

  • Yahiya M, Samiullah, Fatma A (1995) Influence of phosphorus on nitrogen fixation in chickpea cultivars. J Plant Nutr 18:719–727

    Article  CAS  Google Scholar 

  • Yamaji N, Takemoto Y, Miyaji T, Mitani-Ueno N, Yoshida KT, Ma JF (2016) Reducing phosphorus accumulation in rice grains with an impaired transporter in the node. Nature 541:92–95

    Article  PubMed  CAS  Google Scholar 

  • Yang H, Knapp J, Koirala P, Rajagopal D, Peer WA, Silbart LK, Murphy A, Gaxiola RA (2007) Enhanced phosphorus nutrition in monocots and dicots over-expressing a phosphorus-responsive type I H+-pyrophosphatase. Plant Biotechnol J 5:735–745

    Article  CAS  PubMed  Google Scholar 

  • Yergeau E, Sommerville DW, Maheux E, Vujanovic V, Hamel C, Whalen JK, St-Arnaud M (2006) Relationships between fusarium population structure, soil nutrient status and disease incidence in field-grown asparagus. FEMS Microbiol Ecol 58:394–403

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Liu F, Xu W, Di C, Zhou S, Xue Y, Yu J, Su Z (2009) Increased expression of OsSPX1 enhances cold/subfreezing tolerance in tobacco and Arabidopsis thaliana. Plant Biotechnol J 7:550–561

    Article  CAS  PubMed  Google Scholar 

  • Zhao FJ, McGrath SP, Meharg AA (2010) Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Annu Rev Plant Biol 61:535–559

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Sun R, Albrecht U, Padmanabhan C, Wang A, Coffey MD, Girke T, Wang Z, Close TJ, Roose M, Yokomi RK, Folimonova S, Vidalakis G, Rouse R, Bowman KD, Jin H (2013) Small RNA profiling reveals phosphorus deficiency as a contributing factor in symptom expression for citrus huanglongbing disease. Mol Plant 6:301–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng G, Tian B, Li W (2014) Membrane lipid remodelling of Meconopsis racemosa after its introduction into lowlands from an alpine environment. PLoS One 9:e106614

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu H, Qian W, Lu X, Li D, Liu X, Liu K, Wang D (2005) Expression patterns of purple acid phosphatase genes in Arabidopsis organs and functional analysis of AtPAP23 predominantly transcribed in flower. Plant Mol Biol 59:581–594

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge research fellowships from DBT, UGC and CSIR, India. Our research is funded by core grant from NIPGR, DBT and DBT-IYBA grant to JG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jitender Giri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mehra, P., Singh, A.P., Bhadouria, J., Verma, L., Panchal, P., Giri, J. (2018). Phosphate Homeostasis: Links with Seed Quality and Stress Tolerance in Chickpea. In: Wani, S., Jain, M. (eds) Pulse Improvement. Springer, Cham. https://doi.org/10.1007/978-3-030-01743-9_9

Download citation

Publish with us

Policies and ethics