Skip to main content

Loss of Lean Body Mass in Uremia

  • Chapter
Principles of Molecular Medicine
  • 156 Accesses

Abstract

The pathophysiological consequences of kidney failure and other catabolic conditions such as diabetes, burn injury, cancer, sepsis, muscle denervation and starvation, include loss of protein stores. This chapter will describe the impressive concordance between studies performed with cultured muscle cells and studies involving experimental animals and patients suggests that there is strong evolutionary pressure to maintain these “stress”-related responses. Understanding the mechanisms leading to activation of transcription could lead to improved methods of preventing the loss of muscle protein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Selected References

  • Alvestrand A. Carbohydrate and insulin metabolism in renal failure. Kidney Int Suppl 1997;62:S48–S52.

    PubMed  CAS  Google Scholar 

  • Bailey JL, England BK, Long RC Jr, Weissman J, Mitch WE. Experimental acidemia and muscle cell pH in chronic acidosis and renal failure. Am J Physiol 1995;269:C706–C712.

    PubMed  CAS  Google Scholar 

  • Bailey JL, Wang X, England BK, Price SR, Ding X, Mitch WE. The acidosis of chronic renal failure activates muscle proteolysis in rats by augmenting transcription of genes encoding proteins of the ATP-dependent, ubiquitin-proteasome pathway. J Clin Invest 1996;97:1447–1453.

    PubMed  CAS  Google Scholar 

  • Bodine SC, Latres E, Baumhueter S, et al. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 2001;294:1704–1708.

    Article  PubMed  CAS  Google Scholar 

  • Cecchin F, Ittoop O, Sinha MK, Caro JF. Insulin resistance in uremia: insulin receptor kinase activity in liver and muscle from chronic uremic rats. Am J Physiol 1988;254:E394–E401.

    PubMed  CAS  Google Scholar 

  • DeFronzo RA, Alvestrand A, Smith D, Hendler R. Insulin resistance in uremia. J Clin Invest 1981;67:563–568.

    PubMed  CAS  Google Scholar 

  • Du J, Mitch WE, Wang X, Price SR. Glucocorticoids induce proteasome C3 subunit expression in L6 muscle cells by opposing the suppression of its transcription by NF-κB. J Biol Chem 2000;275:19,661–19,666.

    Article  PubMed  CAS  Google Scholar 

  • Glickman MH, Ciechanover A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 2002;82(2): 373–428.

    PubMed  CAS  Google Scholar 

  • Gomes MD, Lecker SH, Jagoe RT, Navon A, Goldberg AL. Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proc Natl Acad Sci USA 2001;98(25): 14,440–14,445.

    Article  PubMed  CAS  Google Scholar 

  • Hasselgren PO. Glucocorticoids and muscle catabolism. Curr Opin Clin Nutr Metab Care 1999;2:201–205.

    Article  PubMed  CAS  Google Scholar 

  • Jagoe RT, Goldberg AL. What do we really know about the ubiquitinproteasome pathway in muscle atrophy? Curr Opin Clin Nutr Metab Care 2001;4(3):183–190.

    Article  PubMed  CAS  Google Scholar 

  • Jagoe RT, Lecker SH, Gomes M, Goldberg AL. Patterns of gene expression in atrophying skeletal muscles: response to food deprivation. Faseb J 2002;16(13):1697–1712.

    Article  PubMed  CAS  Google Scholar 

  • Karin M, Chang L. AP-1-glucocorticoid receptor crosstalk taken to a higher level. J Endocrinol 2001;169(3):447–451.

    Article  Google Scholar 

  • Marinovic AC, Zheng B, Mitch WE, Price SR. Ubiquitin (UbC) expression in muscle cells is increased by glucocorticoids through a mechanism involving Sp1 and MEK1. J Biol Chem 2002;277(19):16,673–16,681.

    Article  PubMed  CAS  Google Scholar 

  • May RC, Kelly RA, Mitch WE. Metabolic acidosis stimulates protein degradation in rat muscle by a glucocorticoid-dependent mechanism. J Clin Invest 1986;77:614–621.

    PubMed  CAS  Google Scholar 

  • McKay LI, Cidlowski JA. Cross-talk between nuclear factor-κB and steroid hormone receptors: mechanisms of mutual antagonism. Mol Endocrinol 1998;12(1):45–56.

    Article  PubMed  CAS  Google Scholar 

  • Mehrotra R, Kopple JD. Nutritional management of maintenance dialysis patients: why aren’t we doing better? Annu Rev Nutr 2001;21:343–379.

    Article  PubMed  CAS  Google Scholar 

  • Mitch WE, Bailey JL, Wang X, Jurkovitz C, Newby D, Price SR. Evaluation of signals activating ubiquitin-proteasome proteolysis in a model of muscle wasting. Am J Physiol 1999;276:C1132–C1138.

    PubMed  CAS  Google Scholar 

  • Mitch WE, Goldberg AL. Mechanisms of muscle wasting: The role of the ubiquitin-proteasome pathway. N Engl J Med 1996; 335(25): 1897–1905.

    Article  PubMed  CAS  Google Scholar 

  • Mitch WE, Price SR. Mechanisms activated by kidney disease and the loss of muscle mass. Am J Kidney Dis 2001;38(6): 1337–1342.

    PubMed  CAS  Google Scholar 

  • Nenoi M, Mita K, Ichimura S, et al. Hetergeneous structure of the polyubiquitin gene UbC of Hela S3 cells. Gene 1996;175:179–185.

    Article  PubMed  CAS  Google Scholar 

  • Penner CG, Gang G, Wray C, Fischer JE, Hasselgren PO. The transcription factors NF-kappaB and AP-1 are differentially regulated in skeletal muscle during sepsis. Biochem Biophys Res Commun 2001;281(5): 1331–1336.

    Article  PubMed  CAS  Google Scholar 

  • Pickering WP, Price SR, Bircher G, Marinovic AC, Mitch WE, Walls J. Nutrition in CAPD: serum bicarbonate and the ubiquitin-proteasome system in muscle. Kidney Int 2002;61(4):1286–1292.

    Article  Google Scholar 

  • Price SR, Bailey JL, Wang X, et al. Muscle wasting in insulinopenic rats results from activation of the ATP-dependent, ubiquitin proteasome proteolytic pathway by a mechanism including gene transcription. J Clin Invest 1996;98:1703–1708.

    Article  PubMed  CAS  Google Scholar 

  • Samson SL, Wong NC. Role of Sp1 in insulin regulation of gene expression. J Mol Endocrinol 2002;29(3):265–279.

    Article  PubMed  CAS  Google Scholar 

  • Solomon V, Goldberg AL. Importance of the ATP-ubiquitin-proteasome pathway in the degradation of soluble and myofibrillar proteins in rabbit muscle extracts. J Biol Chem 1996;271(43):26,690–26,697.

    Article  PubMed  CAS  Google Scholar 

  • Varshavsky A. The N-end rule and regulation of apoptosis. Nat Cell Biol 2003;5(5):373–376.

    Article  CAS  Google Scholar 

  • Wiborg O, Pedersen MS, Wind A, Berglund LE, Marcker KA, Vuust J. The human ubiquitin multigene family: some genes contain multiple directly repeated ubiquitin coding sequences. Embo J 1985;4: 755–759.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this chapter

Cite this chapter

Price, S.R., Mitch, W.E. (2006). Loss of Lean Body Mass in Uremia. In: Runge, M.S., Patterson, C. (eds) Principles of Molecular Medicine. Humana Press. https://doi.org/10.1007/978-1-59259-963-9_64

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-963-9_64

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-202-5

  • Online ISBN: 978-1-59259-963-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics