Skip to main content

Assessment of Fatty Liver in Models of Disease Programming

  • Protocol
  • First Online:
Investigations of Early Nutrition Effects on Long-Term Health

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1735))

Abstract

Nonalcoholic fatty liver disease (NAFLD) is currently the most common cause of chronic liver disease worldwide and is present in a third of the general population and the majority of individuals with obesity and type 2 diabetes. Importantly, NAFLD can progress to severe nonalcoholic steatohepatitis (NASH), associated with liver failure and hepatocellular carcinoma. Recent research efforts have extensively focused on identifying factors contributing to the additional “hit” required to promote NALFD disease progression. The maternal diet, and in particular a high-fat diet (HFD), may be one such hit “priming” the development of severe fatty liver disease, a notion supported by the increasing incidence of NAFLD among children and adolescents in Westernized countries. In recent years, a plethora of key studies have used murine models of maternal obesity to identify fundamental mechanisms such as lipogenesis, mitochondrial function, inflammation, and fibrosis that may underlie the developmental priming of NAFLD. In this chapter, we will address key considerations for constructing experimental models and both conventional and advanced methods of quantifying NAFLD disease status.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marchesini G, Bugianesi E, Forlani G, Cerrelli F, Lenzi M, Manini R et al (2003) Nonalcoholic fatty liver, steatohepatitis, and the metabolic syndrome. Hepatology 37:917–923

    Article  PubMed  Google Scholar 

  2. Nelson R, Persky V, Davis F, Becker E (1997) Re: excess risk of primary liver cancer in patients with diabetes mellitus. J Natl Cancer Inst 89:327–328

    Article  CAS  PubMed  Google Scholar 

  3. Adami HO, Chow WH, Nyrén O, Berne C, Linet MS, Ekbom A et al (1996) Excess risk of primary liver cancer in patients with diabetes mellitus. J Natl Cancer Inst 88:1472–1477

    Article  CAS  PubMed  Google Scholar 

  4. Mencin AA, Lavine JE (2011) Advances in pediatric nonalcoholic fatty liver disease. Pediatr Clin N Am 58:1375–1392

    Article  Google Scholar 

  5. Loomba R, Sirlin CB, Schwimmer JB, Lavine JE (2009) Advances in pediatric nonalcoholic fatty liver disease. Hepatology 50:1282–1293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Alisi A, Manco M, Vania A, Nobili V (2009) Pediatric nonalcoholic fatty liver disease in 2009. J Pediatr 155:469–474

    Google Scholar 

  7. Doycheva I, Watt KD, Rifai G, Abou Mrad R, Lopez R, Zein NN et al (2017) Increasing burden of chronic liver disease among adolescents and young adults in the USA: a silent epidemic. Dig Dis Sci 62:1373–1380

    Article  CAS  PubMed  Google Scholar 

  8. Goyal NP, Schwimmer JB (2016) The progression and natural history of pediatric nonalcoholic fatty liver disease. Clin Liver Dis 20:325–338

    Article  PubMed  Google Scholar 

  9. Newton KP, Feldman HS, Chambers CD, Wilson L, Behling C, Clark JM et al (2017) Low and high birth weights are risk factors for nonalcoholic fatty liver disease in children. J Pediatr 187:141–146.e1. https://doi.org/10.1016/j.jpeds.2017.03.007. pii: S0022–3476(17)30356-6. [Epub ahead of print]

    Article  PubMed  Google Scholar 

  10. Zhang J, Zhang F, Didelot X, Bruce KD, Cagampang FR, Vatish M et al (2009) Maternal high fat diet during pregnancy and lactation alters hepatic expression of insulin like growth factor-2 and key microRNAs in the adult offspring. BMC Genomics 10:478. https://doi.org/10.1186/1471-2164-10-478

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wankhade UD, Zhong Y, Kang P, Alfaro M, Chintapalli SV, Thakali KM et al (2017) Enhanced offspring predisposition to steatohepatitis with maternal high-fat diet is associated with epigenetic and microbiome alterations. PLoS One e0175675:12. https://doi.org/10.1371/journal.pone.0175675

    Google Scholar 

  12. Lemmens KJ, van de Wier B, Koek GH, Köhler E, Drittij MJ, van der Vijgh WJ et al (2015) The flavonoid monoHER promotes the adaption to oxidative stress during the onset of NAFLD. Biochem Biophys Res Commun 456:179–182

    Article  CAS  PubMed  Google Scholar 

  13. Kendrick AA, Choudhury M, Rahman SM, McCurdy CE, Friederich M, Van Hove JL et al (2011) Fatty liver is associated with reduced SIRT3 activity and mitochondrial protein hyperacetylation. Biochem J 433:505–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fujii S, Nishiura T, Nishikawa A, Miura R, Taniguchi N (1990) Structural heterogeneity of sugar chains in immunoglobulin G. Conformation of immunoglobulin G molecule and substrate specificities of glycosyltransferases. J Biol Chem 265:6009–6018

    CAS  PubMed  Google Scholar 

  15. Bruce KD, Szczepankiewicz D, Sihota KK, Ravindraanandan M, Thomas H, Lillycrop KA et al (2016) Altered cellular redox status, sirtuin abundance and clock gene expression in a mouse model of developmentally primed NASH. Biochim Biophys Acta 1861:584–593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bruce KD, Cagampang FR, Argenton M, Zhang J, Ethirajan PL, Burdge GC et al (2009) Maternal high-fat feeding primes steatohepatitis in adult mice offspring, involving mitochondrial dysfunction and altered lipogenesis gene expression. Hepatology 50:1796–1808

    Article  CAS  PubMed  Google Scholar 

  17. Tarry-Adkins JL, Fernandez-Twinn DS, Hargreaves IP, Neergheen V, Aiken CE, Martin-Gronert MS et al (2016) Coenzyme Q10 prevents hepatic fibrosis, inflammation, and oxidative stress in a male rat model of poor maternal nutrition and accelerated postnatal growth. Am J Clin Nutr 103:579–588

    Article  CAS  PubMed  Google Scholar 

  18. Ramaiyan B, Bettadahalli S, Talahalli RR (2016) Dietary omega-3 but not omega-6 fatty acids down-regulate maternal dyslipidemia induced oxidative stress: a three generation study in rats. Biochem Biophys Res Commun 477:887–894

    Article  CAS  PubMed  Google Scholar 

  19. Jonscher KR, Stewart MS, Alfonso-Garcia A, DeFelice BC, Wang XX, Luo Y et al (2017) Early PQQ supplementation has persistent long-term protective effects on developmental programming of hepatic lipotoxicity and inflammation in obese mice. FASEB J 31:1434–1448

    Article  CAS  PubMed  Google Scholar 

  20. Chicco A, Creus A, Illesca P, Hein GJ, Rodriguez S, Fortino A (2016) Effects of post-suckling n-3 polyunsaturated fatty acids: prevention of dyslipidemia and liver steatosis induced in rats by a sucrose-rich diet during pre- and post-natal life. Food Funct 7:445–454

    Article  CAS  PubMed  Google Scholar 

  21. AlSharari SD, Al-Rejaie SS, Abuohashish HM, Ahmed MM, Hafez MM (2016) Rutin attenuates hepatotoxicity in high-cholesterol-diet-fed rats. Oxidative Med Cell Longev 2016:5436745. https://doi.org/10.1155/2016/5436745

    Article  Google Scholar 

  22. Zipfel WR, Williams RM, Webb WW (2003) Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotechnol 21:1369–1377

    Article  CAS  PubMed  Google Scholar 

  23. Helmchen F, Denk W (2005) Deep tissue two-photon microscopy. Nat Methods 2:932–940

    Article  CAS  PubMed  Google Scholar 

  24. YM W, Chen HC, Chang WT, Jhan JW, Lin HL, Liau I (2009) Quantitative assessment of hepatic fat of intact liver tissues with coherent anti-stokes Raman scattering microscopy. Anal Chem 81:1496–1504

    Article  Google Scholar 

  25. Brackmann C, Gabrielsson B, Svedberg F, Holmaang A, Sandberg AS, Enejder A (2010) Nonlinear microscopy of lipid storage and fibrosis in muscle and liver tissues of mice fed high-fat diets. J Biomed Opt 15:066008. https://doi.org/10.1117/1.3505024

    Article  PubMed  Google Scholar 

  26. Lin J, Lu F, Zheng W, Xu S, Tai D, Yu H et al (2011) Assessment of liver steatosis and fibrosis in rats using integrated coherent anti-stokes Raman scattering and multiphoton imaging technique. J Biomed Opt 16:116024. https://doi.org/10.1117/1.3655353

    Article  PubMed  Google Scholar 

  27. Le TT, Ziemba A, Urasaki Y, Brotman S, Pizzorno G (2012) Label-free evaluation of hepatic microvesicular steatosis with multimodal coherent anti-stokes Raman scattering microscopy. PLoS One 7:e51092. https://doi.org/10.1371/journal.pone.0051092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Urasaki Y, Fiscus RR, Le TT (2016) Molecular classification of fatty liver by high-throughput profiling of protein post-translational modifications. J Pathol 238:641–650

    Article  CAS  PubMed  Google Scholar 

  29. Pirhonen J, Arola J, Sädevirta S, Luukkonen P, Karppinen SM, Pihlajaniemi T et al (2016) Continuous grading of early fibrosis in NAFLD using label-free imaging: a proof-of-concept study. PLoS One 11:e0147804. https://doi.org/10.1371/journal.pone.0147804

    Article  PubMed  PubMed Central  Google Scholar 

  30. Gailhouste L, Le Grand Y, Odin C, Guyader D, Turlin B, Ezan F et al (2010) Fibrillar collagen scoring by second harmonic microscopy: a new tool in the assessment of liver fibrosis. J Hepatol 52:398–406

    Article  CAS  PubMed  Google Scholar 

  31. Guilbert T, Odin C, Le Grand Y, Gailhouste L, Turlin B, Ezan F et al (2010) A robust collagen scoring method for human liver fibrosis by second harmonic microscopy. Opt Express 18:25794–25807

    Article  CAS  PubMed  Google Scholar 

  32. He Y, Kang CH, Xu S, Tuo X, Trasti S, Tai DC et al (2010) Toward surface quantification of liver fibrosis progression. J Biomed Opt 15:056007. https://doi.org/10.1117/1.3490414

    Article  PubMed  Google Scholar 

  33. Lee JH, Kim JC, Tae G, MK O, Ko DK (2013) Rapid diagnosis of liver fibrosis using multimodal multiphoton nonlinear optical microspectroscopy imaging. J Biomed Opt 18:076009. https://doi.org/10.1117/1.JBO.18.7.076009

    Article  PubMed  Google Scholar 

  34. Liu F, Chen L, Rao HY, Teng X, Ren YY, YQ L et al (2017) Automated evaluation of liver fibrosis in thioacetamide, carbon tetrachloride, and bile duct ligation rodent models using second-harmonic generation/two-photon excited fluorescence microscopy. Lab Investig 97:84–92

    Article  CAS  PubMed  Google Scholar 

  35. Stanciu SG, Xu S, Peng Q, Yan J, Stanciu GA, Welsch RE et al (2014) Experimenting liver fibrosis diagnostic by two photon excitation microscopy and bag-of-features image classification. Sci Rep 4:4636. https://doi.org/10.1038/srep04636

    Article  PubMed  PubMed Central  Google Scholar 

  36. Sun TL, Liu Y, Sung MC, Chen HC, Yang CH, Hovhannisyan V et al (2010) Ex vivo imaging and quantification of liver fibrosis using second-harmonic generation microscopy. J Biomed Opt 15:036002. https://doi.org/10.1117/1.3427146

    Article  PubMed  Google Scholar 

  37. Sun W, Chang S, Tai DC, Tan N, Xiao G, Tang H et al (2008) Nonlinear optical microscopy: use of second harmonic generation and two-photon microscopy for automated quantitative liver fibrosis studies. J Biomed Opt 13:064010. https://doi.org/10.1117/1.3041159

    Article  PubMed  Google Scholar 

  38. Tai DC, Tan N, Xu S, Kang CH, Chia SM, Cheng C et al (2009) Fibro-C-index: comprehensive, morphology-based quantification of liver fibrosis using second harmonic generation and two-photon microscopy. J Biomed Opt 14:044013. https://doi.org/10.1117/1.3183811

    Article  PubMed  Google Scholar 

  39. Wu Q, Zhao X, You H (2017) Characteristics of liver fibrosis with different etiologies using a fully quantitative fibrosis assessment tool. Braz J Med Biol Res 50:e5234. https://doi.org/10.1590/1414-431X20175234

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Xu S, Kang CH, Gou X, Q P, Yan J, Zhuo S et al (2016) Quantification of liver fibrosis via second harmonic imaging of the Glisson's capsule from liver surface. J Biophotonics 9:3513–3563

    Article  Google Scholar 

  41. Wang H, Liang X, Gravot G, Thorling CA, Crawford DH, ZP X et al (2017) Visualizing liver anatomy, physiology and pharmacology using multiphoton microscopy. J Biophotonics 10:46–60

    Article  PubMed  Google Scholar 

  42. Chen X, Nadiarynkh O, Plotnikov S, Campagnola PJ (2012) Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure. Nat Protoc 7:654–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ranjit S, Dobrinskikh E, Montford J, Dvornikov A, Lehman A, Orlicky DJ et al (2016) Label-free fluorescence lifetime and second harmonic generation imaging microscopy improves quantification of experimental renal fibrosis. Kidney Int 90:1123–1128

    Article  PubMed  PubMed Central  Google Scholar 

  44. Debarre D, Supatto W, Pena AM, Fabre A, Tordjmann T, Combettes L et al (2006) Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy. Nat Methods 3:47–53

    Article  CAS  PubMed  Google Scholar 

  45. Jonscher KR, Alfonso-Garcia A, Suhalim JL, Orlicky DJ, Potma EO, Ferguson VL et al (2016) Correction: spaceflight activates Lipotoxic pathways in mouse liver. PLoS One 11:e0155282. https://doi.org/10.1371/journal.pone.0155282

    Article  PubMed  PubMed Central  Google Scholar 

  46. Jonscher KR, Alfonso-Garcia A, Suhalim JL, Orlicky DJ, Potma EO, Ferguson VL et al (2016) Spaceflight activates Lipotoxic pathways in mouse liver. PLoS One 11:e0152877

    Article  PubMed  PubMed Central  Google Scholar 

  47. Caligioni CS (2009) Assessing reproductive status/stages in mice. Curr Protoc Neurosci Appendix 4:Appendix 4I. https://doi.org/10.1002/0471142301.nsa04is48

    PubMed  Google Scholar 

  48. Patton HM, Lavine JE, Van Natta ML, Schwimmer JB, Kleiner D, Molleston J, Nonalcoholic steatohepatitis clinical research network (2008) Clinical correlates of histopathology in pediatric nonalcoholic steatohepatitis. Gastroenterology 135:1961–1971.e2. https://doi.org/10.1053/j.gastro.2008.08.050

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW et al (2005) Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41:1313–1321

    Article  PubMed  Google Scholar 

  50. Mehlem A, Hagberg CE, Muhl L, Eriksson U, Falkevall A (2013) Imaging of neutral lipids by oil red O for analyzing the metabolic status in health and disease. Nat Protoc 8:1149–1154

    Article  PubMed  Google Scholar 

  51. Gordillo M, Evans T, Gouon-Evans V (2015) Orchestrating liver development. Development 142:2094–2108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors appreciate the help of Dr. Evgenia Dobrinskikh with the preparation of the manuscript and acquisition of SHG data. K.R.J. is grateful for funding from the NIH K25DK098615. The Zeiss LSM780 was funded by the NIH 1S10OD016257, and the Advanced Light Microscopy Core Facility is supported in part by the NIH/NCATS Colorado CTSI Grant Number UL1 TR001082, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kimberley D. Bruce .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bruce, K.D., Jonscher, K.R. (2018). Assessment of Fatty Liver in Models of Disease Programming. In: Guest, P. (eds) Investigations of Early Nutrition Effects on Long-Term Health. Methods in Molecular Biology, vol 1735. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7614-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7614-0_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7613-3

  • Online ISBN: 978-1-4939-7614-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics