Skip to main content

Current Sheets in the Earth Magnetotail: Plasma and Magnetic Field Structure with Cluster Project Observations

  • Chapter
  • First Online:
Multi-scale Structure Formation and Dynamics in Cosmic Plasmas

Part of the book series: Space Sciences Series of ISSI ((SSSI,volume 51))

  • 529 Accesses

Abstract

Thin current sheets having kinetic scales are an important plasma structure, where the magnetic energy dissipation and charged particle acceleration are the most effective. It is believed that such current sheets are self-consistently formed by the specific nonadiabatic dynamics of charged particles and play a critical role in many space plasma and astrophysical objects. Current sheets in the near-Earth plasma environment, e.g., the magnetotail current sheet, are readily available for in-situ investigations. The dedicated multi-spacecraft Cluster mission have revealed basic properties of this current sheet, which are presented in this review: typical spatial profiles of magnetic field and current density, distributions of plasma temperature and density, role of heavy ions and electron currents, etc. Being important for the Earth magnetosphere physics, the new knowledge also could provide the basis for advancement in general plasma physics as well as in plasma astrophysics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • V. Angelopoulos, C.F. Kennel, F.V. Coroniti, R. Pellat, H.E. Spence, M.G. Kivelson, R.J. Walker, W. Baumjohann, W.C. Feldman, J.T. Gosling, Characteristics of ion flow in the quiet state of the inner plasma sheet. Geophys. Res. Lett. 20, 1711–1714 (1993). doi:10.1029/93GL00847

    Article  ADS  Google Scholar 

  • J. Arons, Pulsar wind nebulae as cosmic pevatrons: a current sheet’s tale. Space Sci. Rev. 173, 341–367 (2012). doi:10.1007/s11214-012-9885-1

    Article  ADS  Google Scholar 

  • A.V. Artemyev, A model of one-dimensional current sheet with parallel currents and normal component of magnetic field. Phys. Plasmas 18(2), 022104 (2011). doi:10.1063/1.3552141

    Article  ADS  Google Scholar 

  • A.V. Artemyev, L.M. Zelenyi, Kinetic structure of current sheets in the Earth magnetotail. Space Sci. Rev. 178, 419–440 (2013). doi:10.1007/s11214-012-9954-5

    Article  ADS  Google Scholar 

  • A.V. Artemyev, A.I. Neishtadt, L.M. Zelenyi, Ion motion in the current sheet with sheared magnetic field—Part 1: Quasi-adiabatic theory. Nonlinear Process. Geophys. 20(1), 163–178 (2013a). doi:10.5194/npg-20-163-2013. http://www.nonlin-processes-geophys.net/20/163/2013/

    Article  ADS  Google Scholar 

  • A.V. Artemyev, A.I. Neishtadt, L.M. Zelenyi, Ion motion in the current sheet with sheared magnetic field—Part 2: Non-adiabatic effects. Nonlinear Process. Geophys. 20, 899–919 (2013b). doi:10.5194/npg-20-899-2013

    Article  ADS  Google Scholar 

  • A.V. Artemyev, A.I. Neishtadt, L.M. Zelenyi, Rapid geometrical chaotization in slow-fast Hamiltonian systems. Phys. Rev. E 89(6), 060902 (2014a). doi:10.1103/PhysRevE.89.060902

    Article  ADS  Google Scholar 

  • A.V. Artemyev, I.Y. Vasko, S. Kasahara, Thin current sheets in the Jovian magnetotail. Planet. Space Sci. 96, 133–145 (2014b). doi:10.1016/j.pss.2014.03.012

    Article  ADS  Google Scholar 

  • A.V. Artemyev, A.A. Petrukovich, L.M. Zelenyi, H.V. Malova, V.Y. Popov, R. Nakamura, A. Runov, S. Apatenkov, Comparison of multi-point measurements of current sheet structure and analytical models. Ann. Geophys. 26, 2749–2758 (2008)

    Article  ADS  Google Scholar 

  • A.V. Artemyev, A.A. Petrukovich, L.M. Zelenyi, R. Nakamura, H.V. Malova, V.Y. Popov, Thin embedded current sheets: cluster observations of ion kinetic structure and analytical models. Ann. Geophys. 27, 4075–4087 (2009)

    Article  ADS  Google Scholar 

  • A.V. Artemyev, A.A. Petrukovich, R. Nakamura, L.M. Zelenyi, Proton velocity distribution in thin current sheets: cluster observations and theory of transient trajectories. J. Geophys. Res. 115, 12255 (2010). doi:10.1029/2010JA015702

    Article  Google Scholar 

  • A.V. Artemyev, A.A. Petrukovich, R. Nakamura, L.M. Zelenyi, Cluster statistics of thin current sheets in the Earth magnetotail: specifics of the dawn flank, proton temperature profiles and electrostatic effects. J. Geophys. Res. 116, 0923 (2011a). doi:10.1029/2011JA016801

    Article  Google Scholar 

  • A.V. Artemyev, W. Baumjohann, A.A. Petrukovich, R. Nakamura, I. Dandouras, A. Fazakerley, Proton/electron temperature ratio in the magnetotail. Ann. Geophys. 29, 2253–2257 (2011b). doi:10.5194/angeo-29-2253-2011

    Article  ADS  Google Scholar 

  • A.V. Artemyev, A.A. Petrukovich, R. Nakamura, L.M. Zelenyi, Adiabatic electron heating in the magnetotail current sheet: cluster observations and analytical models. J. Geophys. Res. 117, 06219 (2012). doi:10.1029/2012JA017513

    Google Scholar 

  • A.V. Artemyev, A.A. Petrukovich, A.G. Frank, R. Nakamura, L.M. Zelenyi, Intense current sheets in the magnetotail: peculiarities of electron physics. J. Geophys. Res. 118, 2789–2799 (2013a). doi:10.1002/jgra.50297

    Article  Google Scholar 

  • A.V. Artemyev, A.A. Petrukovich, R. Nakamura, L.M. Zelenyi, Profiles of electron temperature and \(\mathrm{B}_{z}\) along Earth’s magnetotail. Ann. Geophys. 31, 1109–1114 (2013b). doi:10.5194/angeo-31-1109-2013

    Article  ADS  Google Scholar 

  • Y. Asano, T. Mukai, M. Hoshino, Y. Saito, H. Hayakawa, T. Nagai, Evolution of the thin current sheet in a substorm observed by Geotail. J. Geophys. Res. 108, 1189 (2003). doi:10.1029/2002JA009785

    Article  Google Scholar 

  • Y. Asano, T. Mukai, M. Hoshino, Y. Saito, H. Hayakawa, T. Nagai, Current sheet structure around the near-Earth neutral line observed by Geotail. J. Geophys. Res. 109, 2212 (2004a). doi:10.1029/2003JA010114

    Article  Google Scholar 

  • Y. Asano, T. Mukai, M. Hoshino, Y. Saito, H. Hayakawa, T. Nagai, Statistical study of thin current sheet evolution around substorm onset. J. Geophys. Res. 109, 5213 (2004b). doi:10.1029/2004JA010413

    Article  Google Scholar 

  • M.J. Aschwanden, Particle acceleration and kinematics in solar flares—A synthesis of recent observations and theoretical concepts. Space Sci. Rev. 101, 1–227 (2002). doi:10.1023/A:1019712124366

    Article  ADS  Google Scholar 

  • M. Ashour-Abdalla, J. Buechner, L.M. Zelenyi, The quasi-adiabatic ion distribution in the central plasma sheet and its boundary layer. J. Geophys. Res. 96, 1601–1609 (1991). doi:10.1029/90JA01921

    Article  ADS  Google Scholar 

  • M. Ashour-Abdalla, J.P. Berchem, J. Buechner, L.M. Zelenyi, Shaping of the magnetotail from the mantle—Global and local structuring. J. Geophys. Res. 98, 5651–5676 (1993). doi:10.1029/92JA01662

    Article  ADS  Google Scholar 

  • D.N. Baker, T.I. Pulkkinen, V. Angelopoulos, W. Baumjohann, R.L. McPherron, Neutral line model of substorms: past results and present view. J. Geophys. Res. 101, 12975–13010 (1996). doi:10.1029/95JA03753

    Article  ADS  Google Scholar 

  • A. Balogh, C.M. Carr, M.H. Acuña, M.W. Dunlop, T.J. Beek, P. Brown, K. Fornaçon, E. Georgescu, K. Glassmeier, J. Harris, G. Musmann, T. Oddy, K. Schwingenschuh, The cluster magnetic field investigation: overview of in-flight performance and initial results. Ann. Geophys. 19, 1207–1217 (2001). doi:10.5194/angeo-19-1207-2001

    Article  ADS  Google Scholar 

  • W. Baumjohann, G. Paschmann, C.A. Cattell, Average plasma properties in the central plasma sheet. J. Geophys. Res. 94, 6597–6606 (1989). doi:10.1029/JA094iA06p06597

    Article  ADS  Google Scholar 

  • K.W. Behannon, L.F. Burlaga, N.F. Ness, The Jovian magnetotail and its current sheet. J. Geophys. Res. 86, 8385–8401 (1981). doi:10.1029/JA086iA10p08385

    Article  ADS  Google Scholar 

  • M.K. Bird, D.B. Beard, The self-consistent geomagnetic tail under static conditions. Planet. Space Sci. 20, 2057–2072 (1972). doi:10.1016/0032-0633(72)90062-1

    Article  ADS  Google Scholar 

  • J. Birn, Self-consistent magnetotail theory—General solution for the quiet tail with vanishing field-aligned currents. J. Geophys. Res. 84, 5143–5152 (1979). doi:10.1029/JA084iA09p05143

    Article  ADS  Google Scholar 

  • J. Birn, E.R. Priest, Reconnection of Magnetic Fields: Magnetohydrodynamics and Collisionless Theory and Observations 2007

    Book  Google Scholar 

  • J. Birn, K. Schindler, M. Hesse, Thin electron current sheets and their relation to auroral potentials. J. Geophys. Res. 109, 2217 (2004). doi:10.1029/2003JA010303

    Google Scholar 

  • J. Birn, R. Sommer, K. Schindler, Open and closed magnetospheric tail configurations and their stability. Astrophys. Space Sci. 35, 389–402 (1975). doi:10.1007/BF00637005

    Article  ADS  Google Scholar 

  • J. Büchner, J. Kuska, Sausage mode instability of thin current sheets as a cause of magnetospheric substorms. Ann. Geophys. 17, 604–612 (1999). doi:10.1007/s005850050788

    Article  ADS  Google Scholar 

  • J. Büchner, L.M. Zelenyi, Regular and chaotic charged particle motion in magnetotaillike field reversals. I—Basic theory of trapped motion. J. Geophys. Res. 94, 11821–11842 (1989). doi:10.1029/JA094iA09p11821

    Article  ADS  Google Scholar 

  • J.L. Burch, T.E. Moore, R.B. Torbert, B. Giles, MMS Overview and Science Objectives. Space Sci. Rev. (2014)

    Google Scholar 

  • G.R. Burkhart, J. Chen, Particle motion in x-dependent Harris-like magnetotail models. J. Geophys. Res. 98, 89–97 (1993). doi:10.1029/92JA01528

    Article  ADS  Google Scholar 

  • G.R. Burkhart, J.F. Drake, P.B. Dusenbery, T.W. Speiser, A particle model for magnetotail neutral sheet equilibria. J. Geophys. Res. 97, 13799–13815 (1992a). doi:10.1029/92JA00495

    Article  ADS  Google Scholar 

  • G.R. Burkhart, J.F. Drake, P.B. Dusenbery, T.W. Speiser, Ion tearing in a magnetotail configuration with an embedded thin current sheet. J. Geophys. Res. 97, 16749–16756 (1992b). doi:10.1029/92JA01523

    Article  ADS  Google Scholar 

  • S.W.H. Cowley, R. Pellat, A note on adiabatic solutions of the one-dimensional current sheet problem. Planet. Space Sci. 27, 265–271 (1979). doi:10.1016/0032-0633(79)90069-2

    Article  ADS  Google Scholar 

  • J. Credland, G. Mecke, J. Ellwood, The cluster mission: ESA‘S spacefleet to the magnetosphere. Space Sci. Rev. 79, 33–64 (1997). doi:10.1023/A:1004914822769

    Article  ADS  Google Scholar 

  • W. Daughton, The unstable eigenmodes of a neutral sheet. Phys. Plasmas 6, 1329–1343 (1999a). doi:10.1063/1.873374

    Article  ADS  Google Scholar 

  • W. Daughton, Two-fluid theory of the drift kink instability. J. Geophys. Res. 104, 28701–28708 (1999b). doi:10.1029/1999JA900388

    Article  ADS  Google Scholar 

  • W. Daughton, Electromagnetic properties of the lower-hybrid drift instability in a thin current sheet. Phys. Plasmas 10, 3103–3119 (2003). doi:10.1063/1.1594724

    Article  ADS  Google Scholar 

  • E.A. Davey, M. Lester, S.E. Milan, R.C. Fear, C. Forsyth, The orientation and current density of the magnetotail current sheet: a statistical study of the effect of geomagnetic conditions. J. Geophys. Res. 117, 7217 (2012). doi:10.1029/2012JA017715

    Google Scholar 

  • M.K. Dougherty, L.W. Esposito, S.M. Krimigis, Saturn from Cassini-Huygens 2009. doi:10.1007/978-1-4020-9217-6

    Book  Google Scholar 

  • M.W. Dunlop, A. Balogh, K.-H. Glassmeier, P. Robert, Four-point cluster application of magnetic field analysis tools: the curlometer. J. Geophys. Res. 107, 1384 (2002). doi:10.1029/2001JA005088

    Article  Google Scholar 

  • J.W. Eastwood, Consistency of fields and particle motion in the ‘Speiser’ model of the current sheet. Planet. Space Sci. 20, 1555–1568 (1972). doi:10.1016/0032-0633(72)90182-1

    Article  ADS  Google Scholar 

  • J.W. Eastwood, The warm current sheet model, and its implications on the temporal behaviour of the geomagnetic tail. Planet. Space Sci. 22, 1641–1668 (1974). doi:10.1016/0032-0633(74)90108-1

    Article  ADS  Google Scholar 

  • N.V. Erkaev, V.S. Semenov, I.V. Kubyshkin, M.V. Kubyshkina, H.K. Biernat, MHD model of the flapping motions in the magnetotail current sheet. J. Geophys. Res. 114, 3206 (2009). doi:10.1029/2008JA013728

    Article  Google Scholar 

  • C.P. Escoubet, M. Fehringer, M. Goldstein, Introduction: the cluster mission. Ann. Geophys. 19, 1197–1200 (2001). doi:10.5194/angeo-19-1197-2001

    Article  ADS  Google Scholar 

  • P. Francfort, R. Pellat, Magnetic merging in collisionless plasmas. Geophys. Res. Lett. 3, 433–436 (1976). doi:10.1029/GL003i008p00433

    Article  ADS  Google Scholar 

  • J.T. Gosling, Magnetic reconnection in the solar wind. Space Sci. Rev. 172, 187–200 (2012). doi:10.1007/s11214-011-9747-2

    Article  ADS  Google Scholar 

  • E.E. Grigorenko, H.V. Malova, A.V. Artemyev, O.V. Mingalev, E.A. Kronberg, R. Koleva, P.W. Daly, J.B. Cao, J.-A. Sauvaud, C.J. Owen, L.M. Zelenyi, Current sheet structure and kinetic properties of plasma flows during a near-Earth magnetic reconnection under the presence of a guide field. J. Geophys. Res. 118, 3265–3287 (2013). doi:10.1002/jgra.50310

    Article  Google Scholar 

  • G. Gustafsson, M. André, T. Carozzi, A.I. Eriksson, C.-G. Fälthammar, R. Grard, G. Holmgren, J.A. Holtet, N. Ivchenko, T. Karlsson, Y. Khotyaintsev, S. Klimov, H. Laakso, P.-A. Lindqvist, B. Lybekk, G. Marklund, F. Mozer, K. Mursula, A. Pedersen, B. Popielawska, S. Savin, K. Stasiewicz, P. Tanskanen, A. Vaivads, J.-E. Wahlund, First results of electric field and density observations by cluster EFW based on initial months of operation. Ann. Geophys. 19, 1219–1240 (2001). doi:10.5194/angeo-19-1219-2001

    Article  ADS  Google Scholar 

  • E.G. Harris, On a plasma sheet separating regions of oppositely directed magnetic field. Nuovo Cimento 23, 115–123 (1962)

    Article  MATH  Google Scholar 

  • M. Hoshino, A. Nishida, T. Mukai, Y. Saito, T. Yamamoto, S. Kokubun, Structure of plasma sheet in magnetotail: double-peaked electric current sheet. J. Geophys. Res. 101, 24775–24786 (1996). doi:10.1029/96JA02313

    Article  ADS  Google Scholar 

  • P.L. Israelevich, A.I. Ershkovich, R. Oran, Current carriers in the bifurcated tail current sheet: ions or electrons? J. Geophys. Res. 113, 4215 (2008). doi:10.1029/2007JA012541

    Article  Google Scholar 

  • C.M. Jackman, C.S. Arridge, N. André, F. Bagenal, J. Birn, M.P. Freeman, X. Jia, A. Kidder, S.E. Milan, A. Radioti, J.A. Slavin, M.F. Vogt, M. Volwerk, A.P. Walsh, Large-scale structure and dynamics of the magnetotails of Mercury, Earth, Jupiter and Saturn. Space Sci. Rev. 182, 85–154 (2014). doi:10.1007/s11214-014-0060-8

    Article  ADS  Google Scholar 

  • A.D. Johnstone, C. Alsop, S. Burge, P.J. Carter, A.J. Coates, A.J. Coker, A.N. Fazakerley, M. Grande, R.A. Gowen, C. Gurgiolo, B.K. Hancock, B. Narheim, A. Preece, P.H. Sheather, J.D. Winningham, R.D. Woodliffe, Peace: a plasma electron and current experiment. Space Sci. Rev. 79, 351–398 (1997). doi:10.1023/A:1004938001388

    Article  ADS  Google Scholar 

  • J.R. Kan, On the structure of the magnetotail current sheet. J. Geophys. Res. 78, 3773–3781 (1973). doi:10.1029/JA078i019p03773

    Article  ADS  Google Scholar 

  • J.R. Kan, W. Baumjohann, Isotropized magnetic-moment equation of state for the central plasma sheet. Geophys. Res. Lett. 17, 271–274 (1990). doi:10.1029/GL017i003p00271

    Article  ADS  Google Scholar 

  • H. Karimabadi, W. Daughton, P.L. Pritchett, D. Krauss-Varban, Ion-ion kink instability in the magnetotail: 1. Linear theory. J. Geophys. Res. 108, 1400 (2003a). doi:10.1029/2003JA010026

    Article  Google Scholar 

  • H. Karimabadi, P.L. Pritchett, W. Daughton, D. Krauss-Varban, Ion-ion kink instability in the magnetotail: 2. Three-dimensional full particle and hybrid simulations and comparison with observations. J. Geophys. Res. 108, 1401 (2003b). doi:10.1029/2003JA010109

    Article  Google Scholar 

  • H. Karimabadi, V. Roytershteyn, C.G. Mouikis, L.M. Kistler, W. Daughton, Flushing effect in reconnection: effects of minority species of oxygen ions. Planet. Space Sci. 59, 526–536 (2011). doi:10.1016/j.pss.2010.07.014

    Article  ADS  Google Scholar 

  • C.F. Kennel, Magnetospheres of the planets. Space Sci. Rev. 14, 511–533 (1973). doi:10.1007/BF00214759

    Article  ADS  Google Scholar 

  • J. Kissinger, R.L. McPherron, T.-S. Hsu, V. Angelopoulos, Diversion of plasma due to high pressure in the inner magnetosphere during steady magnetospheric convection. J. Geophys. Res. 117, 5206 (2012). doi:10.1029/2012JA017579

    Article  Google Scholar 

  • D.B. Korovinskiy, A. Divin, N.V. Erkaev, V.V. Ivanova, I.B. Ivanov, V.S. Semenov, G. Lapenta, S. Markidis, H.K. Biernat, M. Zellinger, MHD modeling of the double-gradient (kink) magnetic instability. J. Geophys. Res. 118, 1146–1158 (2013). doi:10.1002/jgra.50206

    Article  Google Scholar 

  • T. Krallmann, J. Dreher, K. Schindler, On the stability of the ion-tearing mode in equilibria with embedded thin current sheets, in Int. Conf. Substorms, 1994, pp. 499–503

    Google Scholar 

  • A.P. Kropotkin, H.V. Malova, M.I. Sitnov, Self-consistent structure of a thin anisotropic current sheet. J. Geophys. Res. 102, 22099–22106 (1997). doi:10.1029/97JA01316

    Article  ADS  Google Scholar 

  • Y.H. Liu, L.M. Kistler, C.G. Mouikis, V. Roytershteyn, H. Karimabadi, The scale of the magnetotail reconnecting current sheet in the presence of \(\mathrm{O}^{+}\). Geophys. Res. Lett. 41, 4819–4827 (2014). doi:10.1002/2014GL060440

    Article  ADS  Google Scholar 

  • A.T.Y. Lui, Potential plasma instabilities for substorm expansion onsets. Space Sci. Rev. 113, 127–206 (2004). doi:10.1023/B:SPAC.0000042942.00362.4e

    Article  ADS  Google Scholar 

  • S. Markidis, G. Lapenta, L. Bettarini, M. Goldman, D. Newman, L. Andersson, Kinetic simulations of magnetic reconnection in presence of a background \(\mathrm{O}^{+}\) population. J. Geophys. Res. (2011). doi:10.1029/2011JA016429

    Google Scholar 

  • D.J. McComas, H.E. Spence, C.T. Russell, M.A. Saunders, The average magnetic field draping and consistent plasma properties of the Venus magnetotail. J. Geophys. Res. 91, 7939–7953 (1986a). doi:10.1029/JA091iA07p07939

    Article  ADS  Google Scholar 

  • D.J. McComas, S.J. Bame, C.T. Russell, R.C. Elphic, The near-Earth cross-tail current sheet—detailed ISEE 1 and 2 case studies. J. Geophys. Res. 91, 4287–4301 (1986b). doi:10.1029/JA091iA04p04287

    Article  ADS  Google Scholar 

  • D.J. McComas, J.T. Gosling, C.T. Russell, J.A. Slavin, Magnetotails at unmagnetized bodies—comparison of comet Giacobini–Zinner and Venus. J. Geophys. Res. 92, 10111–10117 (1987). doi:10.1029/JA092iA09p10111

    Article  ADS  Google Scholar 

  • S. Minami, A.I. Podgornyi, I.M. Podgornyi, Laboratory evidence of earthward electric field in the magnetotail current sheet. Geophys. Res. Lett. 20, 9–12 (1993). doi:10.1029/92GL02492

    Article  ADS  Google Scholar 

  • O.V. Mingalev, I.V. Mingalev, M.N. Mel’nik, A.V. Artemyev, H.V. Malova, V.Y. Popov, S. Chao, L.M. Zelenyi, Kinetic models of current sheets with a sheared magnetic field. Plasma Phys. Rep. 38, 300–314 (2012). doi:10.1134/S1063780X12030063

    Article  ADS  Google Scholar 

  • D.G. Mitchell, D.J. Williams, C.Y. Huang, L.A. Frank, C.T. Russell, Current carriers in the near-Earth cross-tail current sheet during substorm growth phase. Geophys. Res. Lett. 17, 583–586 (1990). doi:10.1029/GL017i005p00583

    Article  ADS  Google Scholar 

  • R. Nakamura, W. Baumjohann, A. Runov, Y. Asano, Thin current sheets in the magnetotail observed by cluster. Space Sci. Rev. 122, 29–38 (2006). doi:10.1007/s11214-006-6219-1

    Article  ADS  Google Scholar 

  • R. Nakamura, W. Baumjohann, M. Fujimoto, Y. Asano, A. Runov, C.J. Owen, A.N. Fazakerley, B. Klecker, H. Rème, E.A. Lucek, M. Andre, Y. Khotyaintsev, Cluster observations of an ion-scale current sheet in the magnetotail under the presence of a guide field. J. Geophys. Res. 113, 7 (2008). doi:10.1029/2007JA012760

    Google Scholar 

  • N.F. Ness, The Earth’s magnetic tail. J. Geophys. Res. 70, 2989–3005 (1965). doi:10.1029/JZ070i013p02989

    Article  ADS  Google Scholar 

  • N.F. Ness, M.H. Acuna, L.F. Burlaga, J.E.P. Connerney, R.P. Lepping, Magnetic fields at Neptune. Science 246, 1473–1478 (1989). doi:10.1126/science.246.4936.1473

    Article  ADS  Google Scholar 

  • E.N. Parker, Spontaneous current sheets in magnetic fields: with applications to stellar x-rays, in Spontaneous Current Sheets in Magnetic Fields: with Applications to Stellar x-Rays. International Series in Astronomy and Astrophysics, vol. 1 (Oxford University Press, New York, 1994)

    Google Scholar 

  • G. Paschmann, S.J. Schwartz, Issi Book on Analysis Methods for Multi-Spacecraft Data. ESA Special Publication, vol. 449 2000

    Google Scholar 

  • A.A. Petrukovich, Dipole tilt effects in plasma sheet by: statistical model and extreme values. Ann. Geophys. 27, 1343–1352 (2009). doi:10.5194/angeo-27-1343-2009

    Article  ADS  Google Scholar 

  • A.A. Petrukovich, Origins of plasma sheet \(B_{y}\). J. Geophys. Res. 116, 7217 (2011). doi:10.1029/2010JA016386

    Google Scholar 

  • A.A. Petrukovich, T. Mukai, S. Kokubun, S.A. Romanov, Y. Saito, T. Yamamoto, L.M. Zelenyi, Substorm-associated pressure variations in the magnetotail plasma sheet and lobe. J. Geophys. Res. 104, 4501–4514 (1999). doi:10.1029/98JA02418

    Article  ADS  Google Scholar 

  • A.A. Petrukovich, W. Baumjohann, R. Nakamura, A. Balogh, T. Mukai, K.-H. Glassmeier, H. Reme, B. Klecker, Plasma sheet structure during strongly northward IMF. J. Geophys. Res. 108, 1258 (2003). doi:10.1029/2002JA009738

    Article  Google Scholar 

  • A.A. Petrukovich, T.L. Zhang, W. Baumjohann, R. Nakamura, A. Runov, A. Balogh, C. Carr, Oscillatory magnetic flux tube slippage in the plasma sheet. Ann. Geophys. 24, 1695–1704 (2006)

    Article  ADS  Google Scholar 

  • A.A. Petrukovich, W. Baumjohann, R. Nakamura, A. Runov, A. Balogh, H. Rème, Thinning and stretching of the plasma sheet. J. Geophys. Res. 112, 10213 (2007). doi:10.1029/2007JA012349

    Article  Google Scholar 

  • A.A. Petrukovich, W. Baumjohann, R. Nakamura, A. Runov, Formation of current density profile in tilted current sheets. Ann. Geophys. 26, 3669–3676 (2008)

    Article  ADS  Google Scholar 

  • A.A. Petrukovich, W. Baumjohann, R. Nakamura, H. Rème, Tailward and earthward flow onsets observed by cluster in a thin current sheet. J. Geophys. Res. 114, 9203 (2009). doi:10.1029/2009JA014064

    Article  Google Scholar 

  • A.A. Petrukovich, A.V. Artemyev, H.V. Malova, V.Y. Popov, R. Nakamura, L.M. Zelenyi, Embedded current sheets in the Earth magnetotail. J. Geophys. Res. 116, 1–25 (2011). doi:10.1029/2010JA015749

    Google Scholar 

  • A.A. Petrukovich, A.V. Artemyev, R. Nakamura, E.V. Panov, W. Baumjohann, Cluster observations of dBz/dx during growth phase magnetotail stretching intervals. J. Geophys. Res. 118, 5720–5730 (2013). doi:10.1002/jgra.50550

    Article  Google Scholar 

  • E. Priest, T. Forbes, Magnetic Reconnection 2000

    Book  MATH  Google Scholar 

  • P.L. Pritchett, F.V. Coroniti, A kinetic ballooning/interchange instability in the magnetotail. J. Geophys. Res. 115, 06301 (2010). doi:10.1029/2009JA014752

    Google Scholar 

  • P.L. Pritchett, F.V. Coroniti, Plasma sheet disruption by interchange-generated flow intrusions. Geophys. Res. Lett. 381, 10102 (2011). doi:10.1029/2011GL047527

    Google Scholar 

  • P.L. Pritchett, F.V. Coroniti, Structure and consequences of the kinetic ballooning/interchange instability in the magnetotail. J. Geophys. Res. 118, 146–159 (2013). doi:10.1029/2012JA018143

    Article  Google Scholar 

  • H. Rème, C. Aoustin, J.M. Bosqued, I. Dandouras, B. Lavraud, J.A. Sauvaud, A. Barthe, J. Bouyssou, T. Camus, O. Coeur-Joly, A. Cros, J. Cuvilo, F. Ducay, Y. Garbarowitz, J.L. Medale, E. Penou, H. Perrier, D. Romefort, J. Rouzaud, C. Vallat, D. Alcaydé, C. Jacquey, C. Mazelle, C. D’Uston, E. Möbius, L.M. Kistler, K. Crocker, M. Granoff, C. Mouikis, M. Popecki, M. Vosbury, B. Klecker, D. Hovestadt, H. Kucharek, E. Kuenneth, G. Paschmann, M. Scholer, N. Sckopke, E. Seidenschwang, C.W. Carlson, D.W. Curtis, C. Ingraham, R.P. Lin, J.P. McFadden, G.K. Parks, T. Phan, V. Formisano, E. Amata, M.B. Bavassano-Cattaneo, P. Baldetti, R. Bruno, G. Chionchio, A. di Lellis, M.F. Marcucci, G. Pallocchia, A. Korth, P.W. Daly, B. Graeve, H. Rosenbauer, V. Vasyliunas, M. McCarthy, M. Wilber, L. Eliasson, R. Lundin, S. Olsen, E.G. Shelley, S. Fuselier, A.G. Ghielmetti, W. Lennartsson, C.P. Escoubet, H. Balsiger, R. Friedel, J. Cao, R.A. Kovrazhkin, I. Papamastorakis, R. Pellat, J. Scudder, B. Sonnerup, First multispacecraft ion measurements in and near the Earth’s magnetosphere with the identical cluster ion spectrometry (CIS) experiment. Ann. Geophys. 19, 1303–1354 (2001). doi:10.5194/angeo-19-1303-2001

    Article  ADS  Google Scholar 

  • F.J. Rich, V.M. Vasyliunas, R.A. Wolf, On the balance of stresses in the plasma sheet. J. Geophys. Res. 77, 4670–4676 (1972). doi:10.1029/JA077i025p04670

    Article  ADS  Google Scholar 

  • Z.J. Rong, C. Shen, A.A. Petrukovich, W.X. Wan, Z.X. Liu, The analytic properties of the flapping current sheets in the Earth magnetotail. Planet. Space Sci. 58, 1215–1229 (2010). doi:10.1016/j.pss.2010.04.016

    Article  ADS  Google Scholar 

  • Z.J. Rong, W.X. Wan, C. Shen, X. Li, M.W. Dunlop, A.A. Petrukovich, L.-N. Hau, T.L. Zhang, H. Rème, A.M. Du, E. Lucek, Profile of strong magnetic field \(\mathrm{B}_{y}\) component in magnetotail current sheets. J. Geophys. Res. 117, 6216 (2012). doi:10.1029/2011JA017402

    Google Scholar 

  • Z.J. Rong, W.X. Wan, C. Shen, A.A. Petrukovich, W. Baumjohann, M.W. Dunlop, Y.C. Zhang, Radial distribution of magnetic field in Earth magnetotail current sheet. Planet. Space Sci. (2014). doi:10.1016/j.pss.2014.07.014

    Google Scholar 

  • A. Runov, V.A. Sergeev, W. Baumjohann, R. Nakamura, S. Apatenkov, Y. Asano, M. Volwerk, Z. Vörös, T.L. Zhang, A. Petrukovich, A. Balogh, J. Sauvaud, B. Klecker, H. Rème, Electric current and magnetic field geometry in flapping magnetotail current sheets. Ann. Geophys. 23, 1391–1403 (2005a)

    Article  ADS  Google Scholar 

  • A. Runov, V.A. Sergeev, R. Nakamura, W. Baumjohann, T.L. Zhang, Y. Asano, M. Volwerk, Z. Vörös, A. Balogh, H. Rème, Reconstruction of the magnetotail current sheet structure using multi-point cluster measurements. Planet. Space Sci. 53, 237–243 (2005b). doi:10.1016/j.pss.2004.09.049

    Article  ADS  Google Scholar 

  • A. Runov, V.A. Sergeev, R. Nakamura, W. Baumjohann, S. Apatenkov, Y. Asano, T. Takada, M. Volwerk, Z. Vörös, T.L. Zhang, J. Sauvaud, H. Rème, A. Balogh, Local structure of the magnetotail current sheet: 2001 cluster observations. Ann. Geophys. 24, 247–262 (2006)

    Article  ADS  Google Scholar 

  • K. Schindler, A self-consistent theory of the tail of the magnetosphere, in Earth’s Magnetospheric Processes, ed. by B.M. McCormac Astrophysics and Space Science Library, vol. 32, 1972, p. 200

    Chapter  Google Scholar 

  • K. Schindler, A theory of the substorm mechanism. J. Geophys. Res. 79, 2803–2810 (1974). doi:10.1029/JA079i019p02803

    Article  ADS  Google Scholar 

  • K. Schindler, Theories of tail structures. Space Sci. Rev. 23, 365–374 (1979). doi:10.1007/BF00172245

    Article  ADS  Google Scholar 

  • K. Schindler, Physics of Space Plasma Activity (Cambridge University Press, Cambridge, 2006). doi:10.2277/0521858976

    Book  Google Scholar 

  • K. Schindler, J. Birn, Magnetotail theory. Space Sci. Rev. 44, 307–355 (1986). doi:10.1007/BF00200819

    Article  ADS  Google Scholar 

  • K. Schindler, J. Birn, Models of two-dimensional embedded thin current sheets from Vlasov theory. J. Geophys. Res. 107, 1193 (2002). doi:10.1029/2001JA000304

    Article  Google Scholar 

  • K. Schindler, J. Birn, M. Hesse, Kinetic model of electric potentials in localized collisionless plasma structures under steady quasi-gyrotropic conditions. Phys. Plasmas 19(8), 082904 (2012). doi:10.1063/1.4747162

    Article  ADS  Google Scholar 

  • V.A. Sergeev, D.G. Mitchell, C.T. Russell, D.J. Williams, Structure of the tail plasma/current sheet at \({\sim} 11 R_{E}\) and its changes in the course of a substorm. J. Geophys. Res. 98, 17345–17366 (1993). doi:10.1029/93JA01151

    Article  ADS  Google Scholar 

  • V.A. Sergeev, D.A. Sormakov, S.V. Apatenkov, W. Baumjohann, R. Nakamura, A.V. Runov, T. Mukai, T. Nagai, Survey of large-amplitude flapping motions in the midtail current sheet. Ann. Geophys. 24, 2015–2024 (2006)

    Article  ADS  Google Scholar 

  • A.S. Sharma, R. Nakamura, A. Runov, E.E. Grigorenko, H. Hasegawa, M. Hoshino, P. Louarn, C.J. Owen, A. Petrukovich, J. Sauvaud, V.S. Semenov, V.A. Sergeev, J.A. Slavin, B.U.Ö Sonnerup, L.M. Zelenyi, G. Fruit, S. Haaland, H. Malova, K. Snekvik, Transient and localized processes in the magnetotail: a review. Ann. Geophys. 26, 955–1006 (2008)

    Article  ADS  Google Scholar 

  • M.A. Shay, M. Swisdak, Three-species collisionless reconnection: effect of \(\mathrm{O}^{+}\) on magnetotail reconnection. Phys. Rev. Lett. 93(17), 175001 (2004). doi:10.1103/PhysRevLett.93.175001

    Article  ADS  Google Scholar 

  • C. Shen, Z.X. Liu, X. Li, M. Dunlop, E. Lucek, Z.J. Rong, Z.Q. Chen, C.P. Escoubet, H.V. Malova, A.T.Y. Lui, A. Fazakerley, A.P. Walsh, C. Mouikis, Flattened current sheet and its evolution in substorms. J. Geophys. Res. 113, 7 (2008). doi:10.1029/2007JA012812

    Google Scholar 

  • M.I. Sitnov, K. Schindler, Tearing stability of a multiscale magnetotail current sheet. Geophys. Res. Lett. 37, 8102 (2010). doi:10.1029/2010GL042961

    Article  ADS  Google Scholar 

  • M.I. Sitnov, L.M. Zelenyi, H.V. Malova, A.S. Sharma, Thin current sheet embedded within a thicker plasma sheet: self-consistent kinetic theory. J. Geophys. Res. 105, 13029–13044 (2000). doi:10.1029/1999JA000431

    Article  ADS  Google Scholar 

  • M.I. Sitnov, A.S. Sharma, P.N. Guzdar, P.H. Yoon, Reconnection onset in the tail of Earth’s magnetosphere. J. Geophys. Res. 107, 1256 (2002). doi:10.1029/2001JA009148

    Article  Google Scholar 

  • M.I. Sitnov, M. Swisdak, P.N. Guzdar, A. Runov, Structure and dynamics of a new class of thin current sheets. J. Geophys. Res. 111, 8204 (2006). doi:10.1029/2005JA011517

    Article  Google Scholar 

  • M.I. Sitnov, N. Buzulukova, M. Swisdak, V.G. Merkin, T.E. Moore, Spontaneous formation of dipolarization fronts and reconnection onset in the magnetotail. Geophys. Res. Lett. 40, 22–27 (2013). doi:10.1029/2012GL054701

    Article  ADS  Google Scholar 

  • J.A. Slavin, B.J. Anderson, D.N. Baker, M. Benna, S.A. Boardsen, R.E. Gold, G.C. Ho, S.M. Imber, H. Korth, S.M. Krimigis, R.L. McNutt Jr., J.M. Raines, M. Sarantos, D. Schriver, S.C. Solomon, P. Trávníček, T.H. Zurbuchen, MESSENGER and Mariner 10 flyby observations of magnetotail structure and dynamics at Mercury. J. Geophys. Res. 117, 1215 (2012). doi:10.1029/2011JA016900

    Google Scholar 

  • E.J. Smith, L. Davis Jr., D.E. Jones, P.J. Coleman Jr., D.S. Colburn, P. Dyal, C.P. Sonett, A.M.A. Frandsen, The planetary magnetic field and magnetosphere of Jupiter: pioneer 10. J. Geophys. Res. 79, 3501 (1974). doi:10.1029/JA079i025p03501

    Article  ADS  Google Scholar 

  • K. Snekvik, E. Tanskanen, N. Østgaard, L. Juusola, K. Laundal, E.I. Gordeev, A.L. Borg, Changes in the magnetotail configuration before near-Earth reconnection. J. Geophys. Res. 117, 2219 (2012). doi:10.1029/2011JA017040

    Article  Google Scholar 

  • T.W. Speiser, Particle trajectories in model current sheets, 1, analytical solutions. J. Geophys. Res. 70, 4219–4226 (1965). doi:10.1029/JZ070i017p04219

    Article  ADS  Google Scholar 

  • T.W. Speiser, Particle trajectories in model current sheets, 2, applications to auroras using a geomagnetic tail model. J. Geophys. Res. 72, 3919–3932 (1967). doi:10.1029/JZ072i015p03919

    Article  ADS  Google Scholar 

  • L.C. Steinhauer, M.P. McCarthy, E.C. Whipple, Multifluid model of a one-dimensional steady state magnetotail current sheet. J. Geophys. Res. 113, 4207 (2008). doi:10.1029/2007JA012578

    Article  Google Scholar 

  • K. Tummel, L. Chen, Z. Wang, X.Y. Wang, Y. Lin, Gyrokinetic theory of electrostatic lower-hybrid drift instabilities in a current sheet with guide field. Phys. Plasmas 21(5), 052104 (2014). doi:10.1063/1.4875720

    Article  ADS  Google Scholar 

  • O.L. Vaisberg, L.M. Zeleny, Formation of the plasma mantle in the Venusian magnetosphere. Icarus 58, 412–430 (1984). doi:10.1016/0019-1035(84)90087-3

    Article  ADS  Google Scholar 

  • I.Y. Vasko, A.V. Artemyev, V.Y. Popov, H.V. Malova, Kinetic models of two-dimensional plane and axially symmetric current sheets: group theory approach. Phys. Plasmas 20(2), 022110 (2013). doi:10.1063/1.4792263

    Article  ADS  Google Scholar 

  • I.Y. Vasko, A.V. Artemyev, A.A. Petrukovich, R. Nakamura, L.M. Zelenyi, The structure of strongly tilted current sheets in the Earth magnetotail. Ann. Geophys. 32, 133–146 (2014a). doi:10.5194/angeo-32-133-2014

    Article  ADS  Google Scholar 

  • I.Y. Vasko, L.M. Zelenyi, A.V. Artemyev, A.A. Petrukovich, H.V. Malova, T.L. Zhang, A.O. Fedorov, V.Y. Popov, S. Barabash, R. Nakamura, The structure of the Venusian current sheet. Planet. Space Sci. 96, 81–89 (2014b). doi:10.1016/j.pss.2014.03.013

    Article  ADS  Google Scholar 

  • I.Y. Vasko, A.V. Artemyev, A.A. Petrukovich, H.V. Malova, Thin current sheets with strong bell-shape guide field: cluster observations and models with beams. Ann. Geophys. 32(10), 1349–1360 (2014). doi:10.5194/angeo-32-1349-2014. http://www.ann-geophys.net/32/1349/2014/

    Article  ADS  Google Scholar 

  • C. Wang, L.R. Lyons, R.A. Wolf, T. Nagai, J.M. Weygand, A.T.Y. Lui, Plasma sheet \(PV^{5/3}\) and \(nV\) and associated plasma and energy transport for different convection strengths and AE levels. J. Geophys. Res. 114, 1–2 (2009). doi:10.1029/2008JA013849

    Google Scholar 

  • E. Whipple, R. Puetter, M. Rosenberg, A two-dimensional, time-dependent, near-Earth magnetotail. Adv. Space Res. 11, 133–142 (1991). doi:10.1016/0273-1177(91)90024-E

    Article  ADS  Google Scholar 

  • B. Wilken, P.W. Daly, U. Mall, K. Aarsnes, D.N. Baker, R.D. Belian, J.B. Blake, H. Borg, J. Büchner, M. Carter, J.F. Fennell, R. Friedel, T.A. Fritz, F. Gliem, M. Grande, K. Kecskemety, G. Kettmann, A. Korth, S. Livi, S. McKenna-Lawlor, K. Mursula, B. Nikutowski, C.H. Perry, Z.Y. Pu, J. Roeder, G.D. Reeves, E.T. Sarris, I. Sandahl, F. Søraas, J. Woch, Q.-G. Zong, First results from the RAPID imaging energetic particle spectrometer on board cluster. Ann. Geophys. 19, 1355–1366 (2001). doi:10.5194/angeo-19-1355-2001

    Article  ADS  Google Scholar 

  • P.H. Yoon, A.T.Y. Lui, On the drift-sausage mode in one-dimensional current sheet. J. Geophys. Res. 106, 1939–1948 (2001). doi:10.1029/2000JA000130

    Article  ADS  Google Scholar 

  • P.H. Yoon, A.T.Y. Lui, Model of ion- or electron-dominated current sheet. J. Geophys. Res. 109, 11213 (2004). doi:10.1029/2004JA010555

    Article  Google Scholar 

  • P.H. Yoon, A.T.Y. Lui, A class of exact two-dimensional kinetic current sheet equilibria. J. Geophys. Res. 110, 1202 (2005). doi:10.1029/2003JA010308

    Article  Google Scholar 

  • L.M. Zelenyi, A.V. Artemyev, A.A. Petrukovich, Earthward electric field in the magnetotail: cluster observations and theoretical estimates. Geophys. Res. Lett. 37, 6105 (2010). doi:10.1029/2009GL042099

    Article  ADS  Google Scholar 

  • L.M. Zelenyi, M.I. Sitnov, H.V. Malova, A.S. Sharma, Thin and superthin ion current sheets. quasi-adiabatic and nonadiabatic models. Nonlinear Process. Geophys. 7, 127–139 (2000)

    Article  ADS  Google Scholar 

  • L.M. Zelenyi, H.V. Malova, V.Y. Popov, D. Delcourt, A.S. Sharma, Nonlinear equilibrium structure of thin currents sheets: influence of electron pressure anisotropy. Nonlinear Process. Geophys. 11, 579–587 (2004)

    Article  ADS  Google Scholar 

  • L.M. Zelenyi, H.V. Malova, V.Y. Popov, D.C. Delcourt, N.Y. Ganushkina, A.S. Sharma, “Matreshka” model of multilayered current sheet. Geophys. Res. Lett. 33, 5105 (2006). doi:10.1029/2005GL025117

    Article  ADS  Google Scholar 

  • L.M. Zelenyi, A.V. Artemyev, H.V. Malova, V.Y. Popov, Marginal stability of thin current sheets in the Earth’s magnetotail. J. Atmos. Sol.-Terr. Phys. 70, 325–333 (2008). doi:10.1016/j.jastp.2007.08.019

    Article  ADS  Google Scholar 

  • L.M. Zelenyi, A.V. Artemyev, K.V. Malova, A.A. Petrukovich, R. Nakamura, Metastability of current sheets. Phys. Usp. 53, 933–941 (2010). doi:10.3367/UFNe.0180.201009g.0973

    Article  ADS  Google Scholar 

  • L.M. Zelenyi, H.V. Malova, A.V. Artemyev, V.Y. Popov, A.A. Petrukovich, Thin current sheets in collisionless plasma: equilibrium structure, plasma instabilities, and particle acceleration. Plasma Phys. Rep. 37, 118–160 (2011). doi:10.1134/S1063780X1102005X

    Article  ADS  Google Scholar 

  • L.M. Zelenyi, A.I. Neishtadt, A.V. Artemyev, D.L. Vainchtein, H.V. Malova, Quasiadiabatic dynamics of charged particles in a space plasma. Phys. Usp. 56, 347–394 (2013). doi:10.3367/UFNe.0183.201304b.0365

    Article  ADS  Google Scholar 

  • T.L. Zhang, W. Baumjohann, R. Nakamura, A. Balogh, K. Glassmeier, A wavy twisted neutral sheet observed by CLUSTER. Geophys. Res. Lett. 29(19), 190000 (2002). doi:10.1029/2002GL015544

    Article  Google Scholar 

  • X. Zhou, V. Angelopoulos, A. Runov, M.I. Sitnov, F. Coroniti, P. Pritchett, Z.Y. Pu, Q. Zong, J.P. McFadden, D. Larson, K. Glassmeier, Thin current sheet in the substorm late growth phase: modeling of THEMIS observations. J. Geophys. Res. 114, 3223 (2009). doi:10.1029/2008JA013777

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Artemyev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Petrukovich, A., Artemyev, A., Vasko, I., Nakamura, R., Zelenyi, L. (2016). Current Sheets in the Earth Magnetotail: Plasma and Magnetic Field Structure with Cluster Project Observations. In: Balogh, A., Bykov, A., Eastwood, J., Kaastra, J. (eds) Multi-scale Structure Formation and Dynamics in Cosmic Plasmas. Space Sciences Series of ISSI, vol 51. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3547-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3547-5_11

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3546-8

  • Online ISBN: 978-1-4939-3547-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics