Skip to main content
Log in

Kinetic models of current sheets with a sheared magnetic field

  • Space Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Thin current sheets, whose existence in the Earth’s magnetotail is confirmed by numerous spacecraft measurements, are studied analytically and numerically. The thickness of such sheets is on the order of the ion Larmor radius, and the normal component of the magnetic field (B z ) in the sheet is almost constant, while the tangential (B x ) and shear (B y ) components depend on the transverse coordinate z. The current density in the sheet also has two self-consistent components (j x and j y , respectively), and the magnetic field lines are deformed and do not lie in a single plane. To study such quasi-one-dimensional current configurations, two kinetic models are used, in particular, a numerical model based on the particle-in-cell method and an analytical model. The calculated results show that two different modes of the self-consistent shear magnetic field B y and, accordingly, two thin current sheet configurations can exist for the same input parameters. For the mode with an antisymmetric z profile of the B y component, the magnetic field lines within the sheet are twisted, whereas the profiles of the plasma density, current density component j y , and magnetic field component B x differ slightly from those in the case of a shearless magnetic field (B y = 0). For the symmetric B y mode, the magnetic field lines lie in a curved surface. In this case, the plasma density in the sheet varies slightly and the current sheet is two times thicker. Analysis of the dependence of the current sheet structure on the flow anisotropy shows that the sheet thickness decreases significantly with decreasing ratio between the thermal and drift plasma velocities, which is caused by the dynamics of quasi-adiabatic ions. It is shown that the results of the analytical and numerical models are in good agreement. The problems of application of these models to describe current sheets at the magnetopause and near magnetic reconnection regions are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Sergeev, T. I. Pulkkinen, and R. J. Pellinen, J. Geophys. Res. 101, 13047 (1996).

    Article  ADS  Google Scholar 

  2. W. Baumjohann, A. Roux, O. Le Contel, et al., Ann. Geophys. 25, 1365 (2007).

    Article  ADS  Google Scholar 

  3. M. Yamada, R. Kulsrud, and H. Ji, Rev. Mod. Phys. 82, 603 (2010).

    Article  ADS  Google Scholar 

  4. A. G. Frank, S. G. Bugrov, and V. S. Markov, Phys. Plasmas 15, 092102 (2008).

    Article  ADS  Google Scholar 

  5. J. Arons, in High-Energy Emission from Pulsars and Their Systems (Astrophysics and Space Science Proceedings), Ed. by N. Rea and D. F. Torres (Springer-Verlag, Berlin, 2011), p. 165.

    Chapter  Google Scholar 

  6. L. M. Zelenyi, H. V. Malova, A. V. Artem’ev, et al., Plasma Phys. Rep. 37, 118 (2011).

    Article  ADS  Google Scholar 

  7. E. G. Harris, Nuovo Chimento 23, 115 (1962).

    Article  MATH  Google Scholar 

  8. J. R. Kan, J. Geophys. Res. 78, 3773 (1973).

    Article  ADS  Google Scholar 

  9. T. Yen, J. Plasma Phys. 10, 237 (1973).

    Article  ADS  Google Scholar 

  10. K. Schindler, in Earth’s Magnetospheric Processes (Astrophysics and Space Science Library, Vol. 32), Ed. by B. M. McCormac (Reidel, Dordrecht, 1972), p. 200.

    Google Scholar 

  11. K. Schindler, J. Geophys. Res. 79, 2803 (1974).

    Article  ADS  Google Scholar 

  12. J. Büchner and L. M. Zelenyi, J. Geophys. Res. 94, 11821 (1989).

    Article  ADS  Google Scholar 

  13. A. P. Kropotkin, H. V. Malova, and M. I. Sitnov, J. Geophys. Res. 102, 22099 (1997).

    Article  ADS  Google Scholar 

  14. M. I. Sitnov, L. M. Zelenyi, H. V. Malova, and A. S. Sharma, J. Geophys. Res. 105, 13029 (2000).

    Article  ADS  Google Scholar 

  15. L. M. Zelenyi, M. I. Sitnov, H. V. Malova, and A. S. Sharma, Nonlin. Processes Geophys. 7, 127 (2000).

    Article  ADS  Google Scholar 

  16. A. V. Artemyev, A. A. Petrukovich, L. M. Zelenyi, et al., Ann. Geophys. 26, 2749 (2008).

    Article  ADS  Google Scholar 

  17. W. Alpers, Astrophys. Space Sci. 11, 471 (1971).

    ADS  Google Scholar 

  18. J. Lemaire and L. F. Burlaga, Astrophys. Space Sci. 45, 303 (1976).

    Article  ADS  Google Scholar 

  19. L. C. Lee and J. R. Kan, J. Geophys. Res. 84, 6417 (1979).

    Article  ADS  Google Scholar 

  20. J. de Keyser, M. Roth, J. Lemaire, et al., Solar Phys. 166, 415 (1996).

    Article  ADS  Google Scholar 

  21. M. Roth, J. de Keyser, and M. M. Kuznetsova, Space Science Rev. 76, 251 (1996).

    Article  ADS  Google Scholar 

  22. A. A. Petrukovich, W. Baumjohann, R. Nakamura, et al., Adv. Space Res. 36, 1830 (2005).

    Article  ADS  Google Scholar 

  23. A. Runov, V. A. Sergeev, R. Nakamura, et al., Ann. Geophys. 24, 247 (2006).

    Article  ADS  Google Scholar 

  24. A. Runov, R. Nakamura, W. Baumjohann, et al., Geophys. Rev. Lett. 30, 33 (2003).

    Google Scholar 

  25. E. V. Panov, J. Buchner, M. Franz, et al., J. Geophys. Res. 113, A01220 (2008).

    Article  ADS  Google Scholar 

  26. L. M. Zelenyi, H. V. Malova, V. Y. Popov, et al., Nonlin. Processes Geophys. 11, 579 (2004).

    Article  ADS  Google Scholar 

  27. O. V. Mingalev, I. V. Mingalev, H. V. Malova, and L. M. Zelenyi, Plasma Phys. Rep. 33, 942 (2007).

    Article  ADS  Google Scholar 

  28. O. V. Mingalev, I. V. Mingalev, H. V. Malova, et al., Plasma Phys. Rep. 35, 76 (2009).

    Article  ADS  Google Scholar 

  29. Z. Rong, W. Wan, C. Shen, et al., J. Geophys. Res. 116, A09218 (2011).

    Article  ADS  Google Scholar 

  30. R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles (McGraw-Hill, New York, 1981; Mir, Moscow, 1987).

    Google Scholar 

  31. Yu. S. Sigov, Numerical Methods in Kinetic Plasma Theory (MFTI, Moscow, 1984) [in Russian].

    Google Scholar 

  32. H. V. Malova, L. M. Zelenyi, O. V. Mingalev, et al., Plasma Phys. Rep. 36, 841 (2010).

    Article  ADS  Google Scholar 

  33. A. V. Artemyev, Phys. Plasmas 18, 022104 (2011).

    Article  ADS  Google Scholar 

  34. P. L. Pritchett and F. V. Coroniti, J. Geophys. Res. 97, 16773 (1992).

    Article  ADS  Google Scholar 

  35. R. V. Hilmer and G.-H. Voigt, J. Geophys. Res. 92, 8660 (1987).

    Article  ADS  Google Scholar 

  36. E. C. Whiple, J. R. Hill, and J. D. Nichols, J. Geophys. Res. 89, 1508 (1984).

    Article  ADS  Google Scholar 

  37. G. van Hoven and M. A. Cross, Phys. Fluids 14, 1141 (1971).

    Article  ADS  Google Scholar 

  38. T. Neukirch, F. Wilson, and M. G. Harrison, Phys. Plasmas 16, 122102 (2009).

    Article  ADS  Google Scholar 

  39. I. Silin and J. Buchner, Adv. Space Res. 37, 1354 (2006).

    Article  ADS  Google Scholar 

  40. M. M. Kuznetsova, J. Buchner, and L. M. Zelenyi, J. Geophys. Res. 101, 161 (1996).

    Article  ADS  Google Scholar 

  41. I. Silin and J. Buchner, Phys. Plasmas 10, 3561 (2003).

    Article  MathSciNet  ADS  Google Scholar 

  42. W. Daughton and H. Karimabadi, J. Geophys. Res. 110, A03217 (2005).

    Article  ADS  Google Scholar 

  43. H. Karimabadi, W. Daughton, and K. B. Quest, J. Geophys. Res. 110 (2005).

  44. P. L. Pritchett, J. Geophys. Res. 106, 3783 (2001).

    Article  ADS  Google Scholar 

  45. T. D. Phan, J. F. Drake, M. A. Shay, et al., Phys. Rev. Lett. 99, 255002 (2007).

    Article  ADS  Google Scholar 

  46. D. B. Korovinskiy, V. S. Semenov, N. V. Erkaev, et al., J. Geophys. Res. 113, A04205 (2008).

    Article  ADS  Google Scholar 

  47. D. B. Korovinskiy, V. S. Semenov, N. V. Erkaev, et al., J. Geophys. Res. 116, A05219 (2011).

    Article  ADS  Google Scholar 

  48. W. Daughton, J. Scudder, and H. Karimabadi, Phys. Plasmas 13, 072101 (2006).

    Article  ADS  Google Scholar 

  49. L. Yin, W. Daughton, H. Karimabadi, et al., Phys. Rev. Lett. 101, 125001 (2008).

    Article  ADS  Google Scholar 

  50. A. A. Petrukovich, Ann. Geophys. 27, 1343 (2009).

    Article  ADS  Google Scholar 

  51. A. A. Petrukovich, J. Geophys. Res. 116, A07217 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © O.V. Mingalev, I.V. Mingalev, M.N. Mel’nik, A.V. Artemyev, H.V. Malova, V.Yu. Popov, Shen Chao, L.M. Zelenyi, 2012, published in Fizika Plazmy, 2012, Vol. 38, No. 4, pp. 329–344.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mingalev, O.V., Mingalev, I.V., Mel’nik, M.N. et al. Kinetic models of current sheets with a sheared magnetic field. Plasma Phys. Rep. 38, 300–314 (2012). https://doi.org/10.1134/S1063780X12030063

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X12030063

Keywords

Navigation