Skip to main content

Drug Interactions in Solid Organ Transplant Recipients

  • Chapter
  • First Online:
Kidney Transplantation

Abstract

Recipients of solid organ transplants not only are exposed to a large number of medications with potential interactions but also often have reduced renal function. These two factors markedly increase the risk for patient safety events.

Transplant recipients often receive ten or more medications, often including calcineurin inhibitors, antimetabolites, anti-infectives, statins, and antihypertensive drugs. Many of these medications have a narrow therapeutic index and significant variability of metabolism due to genetic polymorphisms of the P-glycoprotein and cytochrome P450 enzyme systems. Consequently, there is a substantial risk for drug–drug interaction, and a need for close therapeutic drug level monitoring, if indicated, and medication dose adjustment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hume DM, Magee JH, Kauffman HM, et al. Renal homotransplantation in man in modified recipients. Ann Surg. 1963;158:608–44.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  2. Murray JE, Merrill JP, Harrison JH, et al. Prolonged survival of human kidney homografts by immunosuppressive drug therapy. N Engl J Med. 1963;268:1315–23.

    Article  PubMed  CAS  Google Scholar 

  3. Woodruff MF, Robson JS, Nolan B, et al. Homotransplantation of kidney in patients treated by preoperative local radiation and postoperative administration of an antimetabolite (Imuran). Lancet. 1963;2:675–82.

    Article  PubMed  CAS  Google Scholar 

  4. Pirsch JD, Miller J, Dierhoi MH, et al. A comparison of tacrolimus (FK506) and cyclosporine for immunosuppression after cadaveric renal transplantation. FK506 Kidney Transplant Study Group. Transplantation. 1997;63:977–83.

    Article  PubMed  CAS  Google Scholar 

  5. Mayer AD, Dmitrewski J, Squifflet JP, et al. Multicenter randomized trial comparing tacrolimus (FK506) and cyclosporine in the prevention in the prevention of renal allograft rejection: a report of the European Tacrolimus Multicenter Renal Study Group. Transplantation. 1997;64:436–43.

    Article  PubMed  CAS  Google Scholar 

  6. Jensik SC; and the FK 506 Kidney Transplant Study Group. Tacrolimus (FK 506) in kidney transplantation: three-year survival results of the US multicenter, randomized, comparative trial. Transplant Proc. 1998;30:1216–8.

    Google Scholar 

  7. Neylan JF; for the FK 506 Kidney Transplant Study Group. Racial differences in renal transplantation after immunosuppression with tacrolimus versus cyclosporine. Transplantation. 1998;65:515–23.

    Google Scholar 

  8. European Mycophenolate Mofetil Cooperative Study Group. Placebo-controlled study of mycophenolate mofetil combined with cyclosporin and corticosteroids for prevention of acute rejection. Lancet. 1995;345:1321–5.

    Article  Google Scholar 

  9. Sollinger HW; for the U.S. Renal Transplant Mycophenolate Mofetil Study Group. Mycophenolate mofetil for the prevention of acute rejection in primary cadaveric renal allograft recipients. Transplantation. 1995;60:225–32.

    Google Scholar 

  10. The Tricontinental Mycophenolate Mofetil Renal Transplantation Study Group. A blinded, randomized clinical trial of mycophenolate mofetil for the prevention of acute rejection in cadaveric renal transplantation. Transplantation. 1996;61:1029–37.

    Article  Google Scholar 

  11. Pond SM. Pharmacokinetic drug interactions. In: Benet LZ, Massoud N, Gambertoglio JG, editors. Pharmacokinetic basis for drug treatment. New York: Raven; 1984. p. 1995–220.

    Google Scholar 

  12. Wacher VJ, Salphati L, Benet LZ. Active secretion and enterocytic drug metabolism barriers to drug absorption. Adv Drug Deliv Rev. 1996;20:99–112.

    Article  CAS  Google Scholar 

  13. Kelly PA, Burckar GJ, Venkataramanan R. Tacrolimus: a new immunosuppressive agent. Am J Health Syst Pharm. 1995;50:1521–35.

    Google Scholar 

  14. CellCept [package insert]. Nutley, NJ: Roche Laboratories; 2008.

    Google Scholar 

  15. Prograf [package insert]. Deerfield, IL: Astellas Pharma US, Inc; 2009.

    Google Scholar 

  16. Campana C, Regazzi MB, Buggia I, Molinaro M. Clinically significant drug interaction with cyclosporin. An update. Clin Pharmacokinet. 1996;30:141–79.

    Article  PubMed  CAS  Google Scholar 

  17. Wacher VJ, Silverman JA, Zhang Y, et al. Role of p-glycoprotein and cytochrome P450 3A in limiting oral absorption of peptides and peptidomimetics. J Pharm Sci. 1998;87:1322–30.

    Article  PubMed  CAS  Google Scholar 

  18. Whitelock JP, Denison MS. Induction of cytochrome P450 enzymes that metabolize xenobiotics. In: Ortiz de Montellano PR, editor. Cytochrome P450: structure, mechanism and biochemistry. 2nd ed. New York: Plenum Press; 1995. p. 367–90.

    Chapter  Google Scholar 

  19. Venkatakrishnan K, Von Moltke LL, Greenblatt DJ. Human drug metabolism and the cytochromes P450: application and relevance of in vitro models. J Clin Pharmacol. 2001;41:1149–79.

    Article  PubMed  CAS  Google Scholar 

  20. Zhang Y, Benet LZ. The gut as a barrier to drug absorption: combine role of cytochrome P450 3A and P-glycoprotein. Clin Pharmacokinet. 2001;40:159–68.

    Article  PubMed  CAS  Google Scholar 

  21. Davidson MH. Dose differing metabolism by cytochrome P450 have clinical importance? Curr Atheroscler Rep. 2002;2:14–9.

    Article  Google Scholar 

  22. Lin JH, Lu AYH. Inhibition and induction of cytochrome P450 and the clinical applications. Clin Pharmacokinet. 1998;35:361–90.

    Article  PubMed  CAS  Google Scholar 

  23. Wacher J, Wu CY, Benet LZ. Overlapping substrate specificities and tissue distribution of cytochrome P4503A and P-glycoprotein: implications for drug delivery and cancer chemotherapy. Mol Carcinog. 1995;13:129–34.

    Article  PubMed  CAS  Google Scholar 

  24. Hall SD, Thummel KE, Watkins PB, et al. Molecular and physical mechanisms of first-pass extraction. Drug Metab Dispos. 1999;27:161–6.

    PubMed  CAS  Google Scholar 

  25. Fischer SA. Infections in the transplant recipient. Med Health R I. 2002;85:125–7.

    PubMed  Google Scholar 

  26. Patel R. Infections in recipients of kidney transplant. Infect Dis Clin North Am. 2001;15:901–52.

    Article  PubMed  CAS  Google Scholar 

  27. Cavallo R, Merlino C, Re D, et al. B19 virus infection in renal transplant recipients. J Clin Virol. 2003;26:361–8.

    Article  PubMed  CAS  Google Scholar 

  28. Lin SJ, Schranz J, Teutsch SM. Aspergillosis case-fatality rate: systematic review of literature. Clin Infect Dis. 2001;32(3):358–66.

    Article  PubMed  CAS  Google Scholar 

  29. Nucci M. Emerging moulds: Fusarium, Scedosporium and Zygomycetes in transplant recipients. Curr Opin Infect Dis. 2003;16(6):607–12.

    Article  PubMed  Google Scholar 

  30. Singh N. Fungal infections in recipients of solid organ transplantation. Infect Dis Clin North Am. 2003;17:113–34.

    Article  PubMed  Google Scholar 

  31. Hagerty JA, Ortiz J, Reich D, et al. Fungal infections in solid organ transplant patients. Surg Infect. 2003;4:263–71.

    Article  Google Scholar 

  32. Abraham MA, Thomas PP, John GT, Job V, Shankar V, Jacob CK. Efficacy and safety of low-dose ketoconazole (50mg) to reduce the cost of cyclosporine in renal allograft recipients. Transplant Proc. 2003;35:215–6.

    Article  PubMed  CAS  Google Scholar 

  33. Butman SM, Wild JC, Nolan PE, et al. Prospective study of safety and financial benefit of ketoconazole as adjunctive therapy to cyclosporine after heart transplantation. J Heart Lung Transplant. 1991;10:351–8.

    PubMed  CAS  Google Scholar 

  34. First MR, Schroeder TJ, Alexander JW, et al. Cyclosporine dose reduction by ketoconazole administration in real transplant recipients. Transplantation. 1991;51(2):365–70.

    Article  PubMed  CAS  Google Scholar 

  35. Sobh MA, Hamdy AF, El-Agroudy AE, et al. Coadministration of ketoconazole and cyclosporine for kidney transplant recipients: long-term evaluation and study of metabolic consequences. Am J Kidney Dis. 2001;37(3):510–7.

    Article  PubMed  CAS  Google Scholar 

  36. El-Agroudy A, Sobh M, Hamdy A, ghoneim M. A prospective, randomized study of coadministration of ketoconazole and cyclosporine A in kidney transplant recipients: ten-year follow-up. Transplantation. 2004;77:1371–6.

    Article  PubMed  CAS  Google Scholar 

  37. Romero M, Latorre A, Manzanares C, et al. Effect of fluconazole on the pharmacokinetics of cyclosporine in renal transplant patients. Clin Pharmacol Ther. 2002;71:226–34.

    Article  PubMed  CAS  Google Scholar 

  38. Vfend [package insert]. New York, NY: Pfizer; 2008.

    Google Scholar 

  39. Kowazoe H, Takiguchi Y, Tanaka H, et al. Change of the blood concentration of tacrolimus after the switch from fluconazole to voriconazole in patients receiving allogenic hematopoietic stem cell transplantation. Biol Pharm Bull. 2006;29(12):2528–31.

    Article  Google Scholar 

  40. Sansone-Parsons A, Krishna G, Martinho M, et al. Effect of oral posaconazole on the pharmacokinetics of cyclosporine and tacrolimus. Pharmacotherapy. 2007;27(6):825–34.

    Article  PubMed  CAS  Google Scholar 

  41. Noxafil [package insert]. Kenilworth, NJ: Schering-Plough Corp; 2006.

    Google Scholar 

  42. Cancidas [package insert]. Whitehouse Station, NJ: Merck & Co.; 2008.

    Google Scholar 

  43. Saner F, Gensicke J, Rath P, et al. Safety profile of concomitant use of caspofungin and cyclosporine or tacrolimus in liver transplant patients. Infection. 2006;34(6):328–32.

    Article  PubMed  CAS  Google Scholar 

  44. Marr KA, Hachem R, Papanicolaou G, et al. Retrospective study of hepatic safety profile of patients concomitantly treated with caspofungin and cyclosporine A. Transpl Infect Dis. 2004;6:110–6.

    Article  PubMed  CAS  Google Scholar 

  45. Sanz-Rodriguez C, Lopez-Duarte M, Jurado M, et al. Safety of the concomitant use of caspofungin and cyclosporin A in patients with invasive fungal infections. Bone Marrow Transplant. 2004;34:13–20.

    Article  PubMed  CAS  Google Scholar 

  46. Christopeit M, Eikam M, Bhre G. Comedication of caspofungin acetate and cyclosporine A after allogeneic haematopoietic stem cell transplantation leads to negligible hepatotoxicity. Mycoses. 2008;51 Suppl 1:19–24.

    Article  PubMed  CAS  Google Scholar 

  47. Morrissey CO, Slavin MA, O’Reilly MA, et al. Caspofungin as salvage monotherapy for invasive aspergillosis in patients with haematological malignancies or following allogeneic stem cell transplantation: efficacy and concomitant cyclosporin A. Mycoses. 2007;50 Suppl 1:24–7.

    Article  PubMed  CAS  Google Scholar 

  48. Mycamine [package insert]. Deerfield, IL: Astellas Pharma US, Inc; 2008.

    Google Scholar 

  49. Dowell JA, Stogniew M, Krause D, Henkel T, Weston IE. Assessment of safety and pharmacokinetics of anidulafungin when administered with cyclosporine. J Clin Pharmacol. 2005;45:227–33.

    Article  PubMed  CAS  Google Scholar 

  50. Dowell JA, Stogniew M, Krause D, et al. Lack of pharmacokinetic interaction between anidulafungin and tacrolimus. J Clin Pharmacol. 2007;47:305–14.

    Article  PubMed  CAS  Google Scholar 

  51. Perfect JR. New antifungal agents. Transpl Infect Dis. 2002;4 Suppl 3:52–61.

    Article  PubMed  Google Scholar 

  52. Cagnoni PJ. Liposomal amphotericin B versus conventional amphotericin B in the empirical treatment of persistently febrile neutropenic patients. J Antimicrob Chemother. 2002;49 Suppl 1:81–6.

    Article  PubMed  CAS  Google Scholar 

  53. Paterson DL, Singh N. Interactions between tacrolimus and antimicrobial agents. Clin Infect Dis. 1997;25:1430–40.

    Article  PubMed  CAS  Google Scholar 

  54. Wandel C, Bohrer H, Bocker R. Rifampicin and cyclosporine dosing in heart transplant recipients. J Cardiothorac Vasc Anesth. 1995;9(5):621–2.

    Article  PubMed  CAS  Google Scholar 

  55. Kim YH, Yoon YR, Kim YW, et al. Effects of rifampin on cyclosporine disposition in kidney recipients with tuberculosis. Transplant Proc. 1998;30:3570–2.

    Article  PubMed  CAS  Google Scholar 

  56. Al-Sulaiman MG, Dhar JM, al-Khader AA. Successful use of rifampicin in the treatment of tuberculosis in renal transplant patients immunosuppressed with cyclosporine. Transplantation. 1990;50(4):597–8.

    Article  PubMed  CAS  Google Scholar 

  57. Hebert MF, Roberts JP, Prueksaritanont T, et al. Bioavailability of cyclosporine with concomitant rifampin administration is markedly less than predicted by hepatic enzyme induction. Clin Pharmacol Ther. 1992;52(5):453–7.

    Article  PubMed  CAS  Google Scholar 

  58. Freitag V, Skiftono RD, Lake KD. Effect of short-term rifampin on stable cyclosporine concentrations. Ann Pharmacother. 1999;33:871–2.

    Article  PubMed  CAS  Google Scholar 

  59. Moreno M, Latorre A, Manzanares C, et al. Clinical management of tacrolimus drug interactions in renal transplant patients. Transplant Proc. 1999;31:2252–3.

    Article  PubMed  CAS  Google Scholar 

  60. Chenhsu R, Loong C, Chou M, et al. Renal allograft dysfunction associated with rifampin-tacrolimus interaction. Ann Pharmacother. 2000;34:27–31.

    Article  PubMed  CAS  Google Scholar 

  61. Teichner E, Vincent I, Bonhomme-Faivre L, et al. Effect of highly active antiretroviral therapy on tacrolimus pharmacokinetics in hepatitis C virus and HIV co-infected liver transplant recipients in the ANRS HC-08 study. Clin Pharmacokinet. 2007;46(11): 941–52.

    Article  Google Scholar 

  62. Jain AB, Venkataramanan R, Eghtesad B, et al. Effect of coadministered lopinavir and ritonavir (Kaletra) on tacrolimus blood concentration transplantation patients. Liver Transpl. 2003;9: 954–60.

    Article  PubMed  Google Scholar 

  63. Schonder KS, Shullo MA, Okusanya O. Tacrolimus and lopinavir/ritonavir interaction in liver transplantation. Ann Pharmacother. 2003;37:1793–6.

    Article  PubMed  Google Scholar 

  64. Mertz D, Battegay M, Marzolini C, et al. Drug-drug interaction in a kidney transplant recipient receiving HIV salvage therapy and tacrolimus. Am J Kidney Dis. 2009;54:e1–4.

    Article  PubMed  Google Scholar 

  65. Hardy G, Stanke-Labesque F, Contamin C, et al. Protease inhibitors and diltiazem increase tacrolimus blood concentration in a patient with renal transplantation: a case report. Eur J Clin Pharmacol. 2004;60:603–5.

    Article  PubMed  Google Scholar 

  66. Schvarcz R, Rudbeck G, Soderdahl G, et al. Interaction between nelfinavir and tacrolimus after orthoptic liver transplantation in a patient coinfected with HIV and hepatitis C virus (HCV). Transplantation. 2000;69(10):2194–5.

    Article  PubMed  CAS  Google Scholar 

  67. Jain A, Venkataramanan R, Shapiro R, et al. The interaction between antiretroviral agents and tacrolimus in liver and kidney transplant patients. Liver Transpl. 2002;8:841–5.

    Article  PubMed  Google Scholar 

  68. Franssetto L, Baluom M, Jacobsen W, et al. Cyclosporine pharmacokinetics and dosing modifications in human immunodeficiency virus-infected liver and kidney transplant recipients. Transplantation. 2005;80:13–7.

    Article  Google Scholar 

  69. Vogel M, Voigt E, Michaelis H, et al. Management of drug-to-drug interactions between cyclosporine a and the protease-inhibitor lopinavir/ritonavir in liver-transplanted HIV-infected patients. Liver Transpl. 2004;10:939–44.

    Article  PubMed  Google Scholar 

  70. Wang PW, Ketter TA. Pharmacokinetics of mood stabilizers and new anticonvulsants. Psychopharmacol Bull. 2002;36:44–66.

    PubMed  Google Scholar 

  71. Willmore LJ. Clinical pharmacology of new antiepileptic drugs. Neurology. 2000;55:S17–24.

    Article  PubMed  CAS  Google Scholar 

  72. Thompson PA, Mosley CA. Tacrolimus-phenytoin interaction. Ann Pharmacother. 1996;30:544.

    PubMed  CAS  Google Scholar 

  73. Fridell JA, Jain K, Patel K, et al. Phenytoin decreases the blood concentrations of sirolimus in a liver transplant recipient: case report. Ther Drug Monit. 2004;25:117–9.

    Article  Google Scholar 

  74. Koomans HA, Ligtenberg G. Mechanisms and consequences of arterial hypertension after renal transplantation. Transplantation. 2001;27:S9–12.

    Article  Google Scholar 

  75. Olyaei AJ, deMattos AM, Bennett WM. A practical guide to the management of hypertension in renal transplant recipients. Drugs. 1999;58:1011–27.

    Article  PubMed  CAS  Google Scholar 

  76. Bunnag S, Vareesangthip K, Ong-ajyooth L. Effect of diltiazem on the pharmacokinetics of microemulsion cyclosporine A in renal transplantation. J Med Assoc Thai. 2006;89 Suppl 2:S228–34.

    PubMed  Google Scholar 

  77. Jones TE, Morris RG. Pharmacokinetic interaction between tacrolimus and diltiazem: dose-response relationship in kidney and liver transplant recipients. Clin Pharmacokinet. 2002;41:381–8.

    Article  PubMed  CAS  Google Scholar 

  78. Bottiger Y, Sawe J, Brattstrom C, et al. Pharmacokinetic interaction between single oral doses of diltiazem and sirolimus in healthy volunteers. Clin Pharmacol Ther. 2001;69:32–40.

    Article  PubMed  CAS  Google Scholar 

  79. Seifeldin RA, Marcos-Alvarez A, Gordon FD, et al. Nifedipine interaction with tacrolimus in liver transplant recipient. Ann Pharmacother. 1997;31:571–5.

    PubMed  CAS  Google Scholar 

  80. Lewis JB, Heldermann JH. Is it time for ACE inhibitors in chronic allograft nephropathy? Am J Kidney Dis. 2000;35:154–6.

    Article  PubMed  CAS  Google Scholar 

  81. Bader FM, Hagan ME, Crompton JA, et al. The effect of beta-blocker use on cyclosporine level in cardiac transplant recipients. J Heart Lung Transplant. 2005;24:2144–7.

    Article  PubMed  Google Scholar 

  82. Amioka K, Kuzuya T, Kushihara H, et al. Carvedilol increases ciclosporin bioavailability by inhibiting P-glycoprotein-mediated transplant. J Pharm Pharmacol. 2007;59:1383–7.

    Article  PubMed  CAS  Google Scholar 

  83. Kidney Disease: Improving Global Outcomes (KDIGO) Transplant Work Group. KDIGO clinical practice guideline for the care of kidney transplant recipients. Am J Transplant. 2009;9 Suppl 3:S1–155.

    Google Scholar 

  84. Colcrys [package insert]. Deerfield, IL: Takeda Pharmaceuticals America, Inc.; 2012.

    Google Scholar 

  85. Olbricht C, Wanner C, Eisenhauer T, et al. Accumulation of lovastatin, but not pravastatin, in the blood of cyclosporine treated kidney graft patients after multiple doses. Clin Pharmacol Ther. 1997;65:311–21.

    Article  Google Scholar 

  86. Christians U, Jacobsen W, Floren LC. Metabolism and drug interactions of 3-hydroxy-3methylglutaryl coenzyme A reductase inhibitors in transplant patients: are the statins mechanistically similar? Pharmacol Ther. 1998;80:1–34.

    Article  PubMed  CAS  Google Scholar 

  87. Gruer PJ, Vega JM, Mercuri MF, et al. Concomitant use of cytochrome P4503A inhibitors and simvastatin. Am J Cardiol. 1999;84:811–5.

    Article  PubMed  CAS  Google Scholar 

  88. Dunn CJ, Wagstaff AJ, Perry CM, Plosker GL, Goa KL. Cyclosporin: an updated review of the pharmacokinetic properties, clinical efficacy and tolerability of microemulsion-based formulation (neural) in organ transplantation. Drugs. 2001;61: 1957–2016.

    Article  PubMed  CAS  Google Scholar 

  89. Gullestad L, Nordal KP, Berg KJ, et al. Interaction between lovastatin and cyclosporine A after heart and kidney transplantation. Transplant Proc. 1999;31(5):2163–5.

    Article  PubMed  CAS  Google Scholar 

  90. Arnadottir M, Eriksson LO, Thysell H, et al. Plasma concentration profiles of simvastatin 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase inhibitory activity in kidney transplant recipients with and without cyclosporine. Nephron. 1993;62(3):410–3.

    Article  Google Scholar 

  91. Regazzi MB, Iacona I, Campana C, et al. Clinical efficacy and pharmacokinetics of HMG-CoA reductase inhibitors in heart transplant patients treated with cyclosporin A. Transplant Proc. 1994;26(5):2644–5.

    PubMed  CAS  Google Scholar 

  92. Park JW, siekmeier R, Merz M, et al. Pharmacokinetics of pravastatin in heart-transplant patients taking cyclosporine A. Int J Clin Pharmacol Ther. 2002;10(10):439–50.

    Article  Google Scholar 

  93. Åsberg A. Interaction between cyclosporine and lipid-lowering drugs: implications for organ transplant recipients. Drugs. 2003;63:367–78.

    Article  PubMed  Google Scholar 

  94. Lemahieu WPD, Hermann M, Asberg A, et al. Combined therapy with atorvastatin and calcineurin inhibitors: no interaction with tacrolimus. Am J Transplant. 2005;5:2236–43.

    Article  PubMed  CAS  Google Scholar 

  95. Rocha G, Figueiredo CE, d’Avila D, et al. Depressive symptoms and kidney transplant outcome. Transplant Proc. 2001;33:3424.

    Article  PubMed  CAS  Google Scholar 

  96. Wright DH, Lake KD, Bruhn PS, et al. Nefazodone and cyclosporine drug-drug interaction. J Heart Lung Transplant. 1999;18: 913–5.

    Article  PubMed  CAS  Google Scholar 

  97. Helms-Smith KM, Curtis SL, Hatton RC. Apparent interaction between nefazodone and cyclosporine. Ann Intern Med. 1996;125:424.

    Article  PubMed  CAS  Google Scholar 

  98. Garton T. Nefazodone and CYP 3A4 interactions with cyclosporine and tacrolimus. Transplantation. 2002;74:745.

    Article  PubMed  Google Scholar 

  99. Olyaei AJ, DeMattos A, Norman DJ, et al. Interaction between tacrolimus and nefazodone in a stable renal transplant recipient. Pharmacotherapy. 1998;18:1356–9.

    PubMed  CAS  Google Scholar 

  100. Campo JV. Tacrolimus toxic reaction associated with the use of nefazodone: paroxetine as an alternative agent. Arch Gen Psychiatry. 1998;55:1050–2.

    Article  PubMed  CAS  Google Scholar 

  101. Richelson E. Pharmacokinetic interactions of new antidepressants: a review of the effects on the metabolism of other drugs. Mayo Clin Proc. 1997;72:835–47.

    Article  PubMed  CAS  Google Scholar 

  102. Lill J, Bauer L, Horn J, et al. Cyclosporine-drug interactions and the influence of patient age. Am J Health Syst Pharm. 2000;57:1579–84.

    PubMed  CAS  Google Scholar 

  103. Markowitz JS, Gill HS, Hunt NM, et al. Lack of antidepressant-cyclosporine pharmacokinetics interactions. J Clin Psychopharmacol. 1998;18:91–3.

    Article  PubMed  CAS  Google Scholar 

  104. Liston HL, Markowitz JS, Hunt N, et al. Lack of citalopram effect on the pharmacokinetics of cyclosporine. Psychosomatics. 2001;42:370–2.

    Article  PubMed  CAS  Google Scholar 

  105. Strouse TB, Fairbanks LA, Skotzko CE, et al. Fluoxetine and cyclosporine in organ transplantation. Psychosomatics. 1996;37:23–30.

    Article  PubMed  CAS  Google Scholar 

  106. Ereshefsky K, Dugan D. Review of the pharmacokinetics, pharmacogenetics, and drug interaction potential of antidepressants: focus on venlafaxine. Depress Anxiety. 2000;12:30–44.

    Article  PubMed  Google Scholar 

  107. Cellcept [package insert]. South San Francisco, CA: Genentech USA, Inc.; 2012.

    Google Scholar 

  108. Myfortic [package insert]. East Hanover, NJ: Novartis Pharmaceutical Corporation; 2012.

    Google Scholar 

  109. Bullingham R, Monroe S, Nichols A, et al. Pharmacokinetics and bioavailability of mycophenolate mofetil in healthy subjects after single-dose oral and intravenous administration. J Clin Pharmacol. 1996;36:315–24.

    Article  PubMed  CAS  Google Scholar 

  110. Picard N, Ratanasavanh D, Premaud A, et al. Identification of the UDP-glucuronosyltransferase isoforms involved in mycophenolic acid phase II metabolism. Drug Metab Dispos. 2005;33: 139–46.

    Article  PubMed  CAS  Google Scholar 

  111. Bowalgaha K, Miners JO. The glucuronidation of mycophenolic acid by human liver, kidney, and jejunum microsomes. Br J Clin Pharmacol. 2001;52:605–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  112. Hesselink DA, van Hest RM, Mathot RAA, et al. Cyclosporine interacts with mycophenolic acid by inhibiting the multidrug resistance-associated protein 2. Am J Transplant. 2005;5:987–95.

    Article  PubMed  CAS  Google Scholar 

  113. Van Gelder T, Klupp J, Barten MJ, et al. Comparison of the effects of tacrolimus and cyclosporine on the pharmacokinetics of mycophenolic acid. Ther Drug Monit. 2001;23:119–28.

    Article  PubMed  Google Scholar 

  114. Naesens M, Kuypers DR, Verbeke K, Vanrenterghem Y. Multidrug resistance protein 2 genetic polymorphisms influence mycophenolic acid exposure in renal allograft recipients. Transplantation. 2006;82:1074–84.

    Article  PubMed  CAS  Google Scholar 

  115. Zucker K, Rosen A, Tsaroucha A, et al. Unexpected augmentation of mycophenolic acid pharmacokinetics in renal transplant patients receiving tacrolimus and mycophenolate mofetil in combination therapy, and analogous in vitro findings. Transpl Immunol. 1997;5:225–32.

    Article  PubMed  CAS  Google Scholar 

  116. Kobayashi M, Saitoh H, Tadano K, et al. Cyclosporin A, but not tacrolimus, inhibits the biliary excretion of mycophenolic acid glucuronide possibly mediated by multidrug resistance associated protein 2 in rats. J Pharmacol Exp Ther. 2004;309:1029–35.

    Article  PubMed  CAS  Google Scholar 

  117. Westley IS, Brogan LR, Morris RC, et al. Role of MRP2 in the hepatic disposition of mycophenolic acid: effect of cyclosporine. Drug Metab Dispos. 2006;34:261–6.

    Article  PubMed  CAS  Google Scholar 

  118. Naderer OJ, Dupuis RE, Heinzen EL, et al. The influence of norfloxacin and metronidazole on the disposition of mycophenolate mofetil. J Clin Pharmacol. 2005;45:219–26.

    Article  PubMed  CAS  Google Scholar 

  119. Zucker K, Tsaroucha A, Olson L, et al. Evidence that tacrolimus augments the bioavailability of mycophenolate mofetil through the inhibition of mycophenolic acid glucuronidation. Ther Drug Monit. 1999;21:35–43.

    Article  PubMed  CAS  Google Scholar 

  120. Kagaya H, Miura M, Satoh S, et al. No pharmacokinetic interaction between mycophenolic acid and tacrolimus in renal transplant recipients. J Clin Pharmacol Ther. 2008;33:193–201.

    Article  CAS  Google Scholar 

  121. Shah J, Juan D, Bullingham R. A single dose drug interaction study of mycophenolate mofetil and acyclovir in normal subjects [abstract]. J Clin Pharmacol. 1994;34:1029.

    Google Scholar 

  122. Gimenez F, Foeillet E, Bourdon O, Weller S, Garret C, Roselyne B, et al. Evaluation of pharmacokinetic interactions after oral administration of mycophenolate mofetil and valaciclovir or acyclovir to healthy subjects. Clin Pharmacokinet. 2004;43(10):685–92.

    Article  PubMed  CAS  Google Scholar 

  123. Wolfe EJ, Mathur V, Tomlanovich S, Jung D, Wong R, Griffy K, et al. Pharmacokinetics of mycophenolate mofetil and intravenous ganciclovir alone and in combination in renal transplant recipients. Pharmacotherapy. 1997;17(3):591–8.

    PubMed  CAS  Google Scholar 

  124. Bullingham R, Shah J, Goldblum R, Schiff M. Effects of food and antacid on the pharmacokinetics of single doses of mycophenolate mofetil in rheumatoid arthritis patients. Br J Clin Pharmacol. 1996;41:513–6.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  125. Van Gelder T, Pescovitz MD, Elzein H, Hamzeh F. The effect of gastric pH modulators on the pharmacokinetics of mycophenolate mofetil (MMF) in de novo renal transplant recipients (abstract 230). Presented at international congress on transplantation, Vienna, Austria; 2004.

    Google Scholar 

  126. Miura M, Satoh S, Inoue K, et al. Influence of lansoprazole and rabeprazole on mycophenolic acid pharmacokinetics one year after renal transplantation. Ther Drug Monit. 2008;30:46–51.

    Article  PubMed  CAS  Google Scholar 

  127. Kofler S, Deutsch MA, Bigdeli AK, et al. Proton pump inhibitor co-medication reduces mycophenolate acid drug exposure in heart transplant recipients. J Heart Lung Transplant. 2009;28:605–11.

    Article  PubMed  Google Scholar 

  128. Rupprecht K, Schmidt C, Raspe A, et al. Bioavailability of mycophenolate mofetil and enteric-coated mycophenolate sodium is differentially affected by pantoprazole in healthy volunteers. J Clin Pharmacol. 2009;49:1196–201.

    Article  PubMed  CAS  Google Scholar 

  129. Kees MG, Steinke T, Moritz S, et al. Omeprazole impairs the absorption of mycophenolate mofetil but not of enteric-coated mycophenolate sodium in healthy volunteers. J Clin Pharmacol. 2012;52:1265–72.

    Article  PubMed  CAS  Google Scholar 

  130. Pieper A, Buhle F, Bauer S, Mai I, Budde K, Haffner D, et al. The effect of sevelamer on the pharmacokinetics of cyclosporine A and mycophenolate mofetil after renal transplantation. Nephrol Dial Transplant. 2004;19:2630–3.

    Article  PubMed  CAS  Google Scholar 

  131. Borrows R, Chusney G, Loucaido M, James A, Van Tromp J, Cairns T, et al. The magnitude and time course of changes in mycophenolic acid 12-hour predose levels during antibiotic therapy in mycophenolate mofetil-based renal transplantation. Ther Drug Monit. 2007;29:126.

    Article  CAS  Google Scholar 

  132. Kuypers D, Verleden G, Naesens M, et al. Drug interaction between mycophenolate mofetil and rifampin: possible induction of uridine diphosphate-glucuronosyltransferase. Clin Pharmacol Ther. 2008;78(1):81–8.

    Article  CAS  Google Scholar 

  133. Imuran [package insert]. Greenville, NC: Prometheus Lab Inc; 2008.

    Google Scholar 

  134. Rapamune [package insert]. Philadelphia, PA: Wyeth Pharmaceuticals Inc.; 1999.

    Google Scholar 

  135. Zortress [package insert]. East Hanover, NJ: Novartis Pharma Stein AG; 2013.

    Google Scholar 

  136. Marty FM, Lowry CM, Cutler CS, et al. Voriconazole and sirolimus coadministration after allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2006;12(5):552–9.

    Article  PubMed  CAS  Google Scholar 

  137. Saad A, Depestel D, Carver P. Factors influencing the magnitude and clinical significance of drug interactions between azole antifungals and select immunosuppressants. Pharmacotherapy. 2006;26(12):1730–44.

    Article  PubMed  CAS  Google Scholar 

  138. Jain A, Venkataramanan R, Fridell JA, et al. Nelfinavir, a protease inhibitor, increases sirolimus levels in liver transplantation patient: a case report. Liver Transpl. 2002;8:838–40.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew R. Weir M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Manitpisitkul, W., Wilson, N.S., Lee, S., Weir, M.R. (2014). Drug Interactions in Solid Organ Transplant Recipients. In: Weir, M., Lerma, E. (eds) Kidney Transplantation. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0342-9_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0342-9_34

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-0341-2

  • Online ISBN: 978-1-4939-0342-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics