Skip to main content

Chemical and Structural Features of Inherent and Process-Induced Defects in Oxidized Silicon

  • Chapter
The Physics and Chemistry of SiO2 and the Si-SiO2 Interface

Abstract

Major inherent and process-induced point defects in oxidized silicon wafers have been examined by electron spin resonance (ESR). The Pb center is found to occur in new variations in native-oxidized wafers. Furnace thermochemical treatments and, notably, the resultant oxide water disposition have a strong effect on the initial occurrence of Pb centers (main source of interface traps) and on Pb generation by electric fields or rapid thermal stress. Brief or gentle postoxidation anneals can have very significant effects on durable passivation. The radiochemical creation and annealing of implant-induced oxide point effects—the E′ (a charge trap), nonbridging oxygen hole center (NBOHC), and peroxy—are found to be generally similar, but not necessarily identical, to phenomena in well-studied bulk fused silica.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. H. Poindexter, Z. Phys. Chem., Neue Folge, 151, 165 (1987).

    Google Scholar 

  2. N. M.Johnson, in this proceedings.

    Google Scholar 

  3. E. H. Poindexter and P. J. Caplan, Prog. Surf. Sci., 14, 201 (1983).

    Google Scholar 

  4. E. F. da Silva, Y. Nishioka, and T.-P. Ma, Appl. Phys Lett., 51, 270 (1987).

    Article  Google Scholar 

  5. T. Takahashi, B. B. Triplett, K. Yokogawa, and T. Sugano, Appl. Phys. Lett., 50, 1663 (1987).

    Article  Google Scholar 

  6. E. H. Poindexter, P. J. Caplan, B. E. Deal, and R. R. Razouk, J. Appl. Phys., 52, 979 (1981).

    Article  Google Scholar 

  7. A. H. Edwards, in this proceedings.

    Google Scholar 

  8. K. L. Brower, Appl. Phys. Lett., 43, 1111 (1983).

    Article  Google Scholar 

  9. A. Stesmans, Appl. Phys. Lett., 48, 972 (1986).

    Article  CAS  Google Scholar 

  10. P. J. Caplan and E. H. Poindexter, Bull. Am. Phys. Soc., 32, 804 (1987).

    Google Scholar 

  11. R. L. Vranch, B. Henderson, and M. Pepper, Appl. Phys. Lett., 52, 1161 (1988).

    Article  CAS  Google Scholar 

  12. R. A. Weeks, J. Appl. Phys., 27, 1376 (1956).

    Article  Google Scholar 

  13. F. J. Feigl, W. B. Fowler, and K. L. Yip, Solid State Commun., 14, 225 (1974).

    Article  CAS  Google Scholar 

  14. M. Stapelbroek, D. L. Griscom, E. J. Freibele, and G. H. Sigel, Jr., J. Non-Cryst. Solids, 32, 313 (1979).

    Google Scholar 

  15. M. F. Chung and D. Haneman, Surf. Sci., 19, 45 (1970).

    Article  Google Scholar 

  16. S. T. Pantelides, Bull. Am. Phys. Soc., 32, 588 (1987).

    Google Scholar 

  17. W. E. Carlos, Appl. Phys Lett., 50, 1450 (1987).

    Google Scholar 

  18. T. Makino and J. Takahashi, Appl. Phys. Lett., 59, 267 (1987).

    Article  Google Scholar 

  19. E. H. Poindexter, P. J. Caplan, J. J. Finnegan, N. M. Johnson, D. K. Biegelsen, and M. D. Moyer, in “The Physics of MOS Insulators,” G. Lucovsky, S. T. Pantelides, and F. L. Galeener, eds. (Pergamon, New York, 1980 ), p. 326.

    Google Scholar 

  20. C. Brunstrom and C. Svensson, Solid State Commun., 37, 399 (1981).

    Article  Google Scholar 

  21. P. M. Lenahan and P. V. Dressendorfer, Appl. Phys. Lett., 41, 542 (1982).

    Article  CAS  Google Scholar 

  22. N. M. Johnson, D. K. Biegelsen, M. D. Moyer, S. T. Chang, E. H. Poindexter, and P. J. Caplan, Appl. Phys. Lett., 43, 563 (1983).

    Article  CAS  Google Scholar 

  23. P. M. Lenahan and P. V. Dressendorfer, J. Appl. Phys., 55, 3495 (1984).

    Article  CAS  Google Scholar 

  24. R. J. Davis, R. Singh, S. J. Fonash, P. J. Caplan, and E. H. Poindexter, in “Thin Films and Interfaces,” J. E. E. Baglin, D. R. Campbell, and W. K. Chu, eds. ( North-Holland, New York, 1984 ), p. 604.

    Google Scholar 

  25. G. J. Gerardi, E. H. Poindexter, P. J. Caplan, and N. M. Johnson, Appl. Phys. Lett., 49, 348 (1986).

    Article  CAS  Google Scholar 

  26. P. M. Lenahan, K. L. Brower, P. V. Dressendorfer, and W. C. Johnson, IEEE Trans. Nucl. Sci., NS-28, 4105 (1981).

    Google Scholar 

  27. B. Henderson, Appl. Phys. Lett., 44, 228 (1984).

    Article  CAS  Google Scholar 

  28. B. E. Deal, M. Sklar, A. S. Grove, and E. H. Snow, J. Electrochem. Soc., 114, 266 (1967).

    Article  CAS  Google Scholar 

  29. M. L. Reed and J. D. Plummer, Appl. Phys. Lett., 51, 514 (1987).

    Article  CAS  Google Scholar 

  30. G. J. Gerardi, P. J. Caplan, E. H. Poindexter, and M. Harmatz, Bull. Am. Phys. Soc., 32, 826 (1987).

    Google Scholar 

  31. W. L. Warren and P. M. Lenahan, Appl. Phys. Lett., 49, 1296 (1986).

    Article  CAS  Google Scholar 

  32. P. J. Caplan, E. H. Poindexter, P. K. Vasudev, and R. C. Henderson in “Science and Technology of Microfabrication,” R. E. Howard, E. L. Hu, S. Namba, and S. W. Pang, eds. ( Mater. Res. Soc., Pittsburgh, 1987 ), p. 241.

    Google Scholar 

  33. D. L. Griscom, Nucl. Instrum. Methods Phys. Res., B1, 481 (1984).

    Google Scholar 

  34. A. H. Edwards and W. B. Fowler, Phys. Rev. B, 26, 6649 (1982).

    Article  CAS  Google Scholar 

  35. T. R. Waite, Phys. Rev., 107, 463 (1957).

    Article  Google Scholar 

  36. D. L. Griscom, in “Structure and Bonding in Noncrystalline Solids,” G. I. Walrafen and A. G. Revesz, eds. ( Plenum, New York, 1986 ), p. 369.

    Google Scholar 

  37. A. J. Moulson and J. P. Roberts, Trans. Br. Ceram. Soc., 59, 388, (1960).

    CAS  Google Scholar 

  38. R. L. Pfeffer, in this proceedings.

    Google Scholar 

  39. D. L. Griscom, J. Non-Cryst. Solids, 68, 301 (1984).

    Google Scholar 

  40. B. J. Fishbein, J. T. Watt, and J. D. Plummer, J. Electrochem. Soc., 134, 674 (1987).

    Article  CAS  Google Scholar 

  41. J. E. Shelby, J. Appl. Phys., 48, 3387 (1977).

    Article  Google Scholar 

  42. E. H. Poindexter and P. J. Caplan, J. Vac. Sci . Technol., June 1988.

    Google Scholar 

  43. G. J. Gerardi, E. H. Poindexter, P. J. Caplan, and M. Harmatz, Bull. Am. Phys. Soc., 33, 444 (1988).

    Google Scholar 

  44. E. A. Moelwyn-Hughes, “Physical Chemistry,” (Macmillan, New York, 1964 ), pp. 564, 890.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Poindexter, E.H., Caplan, P.J., Gerardi, G.J. (1988). Chemical and Structural Features of Inherent and Process-Induced Defects in Oxidized Silicon. In: Helms, C.R., Deal, B.E. (eds) The Physics and Chemistry of SiO2 and the Si-SiO2 Interface. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0774-5_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0774-5_32

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0776-9

  • Online ISBN: 978-1-4899-0774-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics