Skip to main content

Part of the book series: Basic Life Sciences ((BLSC,volume 58))

  • 220 Accesses

Abstract

Major new insights into carcinogenesis have come from recent advances in cellular and molecular biology. The concept of oncogenes provides a simple explanation for how agents as diverse as radiation, chemicals or retroviruses can induce tumors that are indistinguishable one from another. Oncogenes may be activated by a point mutation, by a chromosome translocation, or by amplification. Ionizing radiations are efficient at the first two mechanisms. While oncogenes are frequently associated with leukemias and lymphomas, they are associated with only 10 to 15% of human solid cancers. The importance of the loss of suppressor genes was suggested first from studies with human-hamster hybrid cells, but has since been shown to be of importance in an increasing number of human solid tumors, from rare tumors such as retinoblastoma to more common tumors such as small cell lung cancer and colorectal cancer. The mechanism of somatic homozygosity clearly involves several steps, some of which, such as a deletion, could be readily produced by ionizing radiation.

The multi-step nature of carcinogenesis can be demonstrated in the petri dish, where the transfection of multiple oncogenes is required to transform normal cells from short-term expiants. It can be shown, too, in colorectal cancer in the human, where the activation of an oncogene and the loss of more than one suppressor gene may be involved in the progression from normal epithelium to a frank malignancy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. M. Bishop. Oncogenes. Sci. Am. 246: 80–92 (March 1982).

    Article  PubMed  CAS  Google Scholar 

  2. J. M. Bishop and H. E. Varmus. Functions and Origins of Retrovirial Transforming Genes. In RNA Timor Viruses. Molecular Biology of Tumor Viruses, 2nd ed. R. Weiss, N. Teich, H. Varmus, and J. Coffin, pp. 990–1108. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (1982).

    Google Scholar 

  3. J. M. Bishop. Cellular Oncogenes and Retroviruses. Ann. Rev. Biochem. 52: 301–354 (1983).

    Article  PubMed  CAS  Google Scholar 

  4. H. E. Varmus. The Molecular Genetics of Cellular Oncogenes. Ann. Rev. Genet. 18: 553–612 (1984).

    Article  PubMed  CAS  Google Scholar 

  5. D. Stehclin, H. E. Varmus, J. M. Bishop, and P. K. Vogt. DNA Related to the Transforming Gene(s) of Avian Sarcoma Viruses Is Present in Normal Avian DNA. Nature 260: 170–173 (1976).

    Article  Google Scholar 

  6. D. H. Spector, H. E. Varmus, and J. M. Bishop. Nucleotide Sequences Related to the Transforming Gene of Avian Sarcoma Virus Are Present in DNA of Uninfected Vertebrates. Proc. Natl. Acad. Sci. USA 78: 4102–6 (1978).

    Article  Google Scholar 

  7. D. DeFoe-Jones, E. E. Scolnick, R. Koller, and R. Dhar. Ras-Related Gene Sequences Identified and Isolated from Saccharomyces Cerevisiae. Nature 306: 707–709 (1983).

    Article  Google Scholar 

  8. B. Z. Shilo and R. A. Weinberg. DNA Sequences Homologous to Vertebrate Oncogenes Are Conserved in Drosophila Melanogaster. Proc. Natl. Acad. Sci. USA 78: 6789–6792 (1981).

    Article  PubMed  CAS  Google Scholar 

  9. T. Takeya and H. Hanafusa. Structure and Sequence of the Cellular Gene Homologous to the RSV src Gene and the Mechanism for Generating the Transforming Virus. Cell 32: 881–890 (1983).

    Article  PubMed  CAS  Google Scholar 

  10. R. Weiss, N. Teich, H. Varmus, and J. Coffin, eds. RNA Tumor Viruses, 2nd ed., pp. 579–765. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (1985).

    Google Scholar 

  11. Y. Sugimoto, M. Whitman, L. C. Cantley, and R. L. Erickson. Evidence That the Rous Sarcoma Virus Transforming Gene Product Phosphorylates Phosphatidylinositol and Diacylglycerol. Proc. Natl. Acad. Sci. USA 81: 2117–2122 (1984).

    Article  PubMed  CAS  Google Scholar 

  12. M. D. Waterfield, G. T. Scrace, N. Whittle, P. Stroobant, A. Johnsson, A. Wastesar, B. Westermark, C-H. Heldin, J. S. Huang, and T. F Deuel. Platelet Derived Growth Factor is Structurally Related to the Putative Transforming Protein. Simian Sarcoma Virus, p. 28. Nature 304: 35–39 (1983).

    Article  PubMed  CAS  Google Scholar 

  13. C. J. Sherr, G. W. Rettenmier, R. Sacca, M. E Roussel, A. T. Look, and E. R. Stanley. The c-fms Proto-Oncogene Product Is Related to the Receptor for the Mononuclear Phagocyte Growth Factor, CSF-1. Cell 41: 665–676 (1985).

    Article  PubMed  CAS  Google Scholar 

  14. G. M. Cooper. Cellular Transforming Genes. Science 217: 801–806 (1982).

    Article  PubMed  CAS  Google Scholar 

  15. E H. Graham and A. J. van der Eb. A New Technique for the Assay of Infectivity of Human Adenovirus 5 DNA. Virology 52: 456–467 (1973).

    Article  PubMed  CAS  Google Scholar 

  16. A. Pellicer, D. Robins, B. Wold, R. Sweet, J. Jackson, I. Lowy, J. M. Roberts, G. K. Sim, S. Silverstein, and R. Axel. Altering Genotype and Phenotype by DNA-Mediated Transfer. Science 209: 1414–1422.

    Google Scholar 

  17. C. Shih and R. A. Weinberg. Isolation of a Transforming Sequence from a Human Bladder Carcinoma Cell Line. Cell 29: 161–169 (1982).

    Article  PubMed  CAS  Google Scholar 

  18. E. Southern. Detection of Specific Sequence Among DNA Fragments Separated by Gel Electrophoresis. J. Mol. Biol. 98: 503–525 (1975).

    Article  PubMed  CAS  Google Scholar 

  19. B. Abberts, D. Broy, J. Lewis, M. Raff, K. Roberts, and J. D. Watson. The Molecular Biology of the Cell, 2nd ed., pp. 1187–1218. Garland Publishers Inc., New York (1989).

    Google Scholar 

  20. S. A. Aaronson and S. R. Tronick. The Role of Oncogenes in Human Neoplasin. In Important Advances in Oncology, ed. V. DeVita, S. Hellman, and S. Rosenberg. Philadelphia: Lippincott (1986).

    Google Scholar 

  21. R. S. Dalla-Favera, S. Martinotti, R. C. Gallo, J. Erikson, and C. M. Croce. Ttanslocation and Rearrangements of the c-myc Oncogene Locus in Human Undifferentiated B-cell Lymphomas. Science 219: 963–997.

    Google Scholar 

  22. E. Shtivelman, B. Lifshitz, R. P. Gale, and E. Canaani. Fused Transcript of abl and ber Genes in Chronic Myelogenous Leukemia. Nature 315: 550–554.

    Google Scholar 

  23. K. Shimizu, Y. Nakatsu, M. Sekiguchi, K. Hokamura, K. Tanaka, M. Tèrada, and T. Sugimura. Molecular Cloning of an Activated Human Oncogene, Homologous to v-raf from Primary Stomach Cancer. Proc. Natl. Acad. Sci. USA 82: 5641–5645 (1985).

    Article  PubMed  CAS  Google Scholar 

  24. J. D. Watson, N. H. Hopkins, J. W. Roberts, J. A. Steitz, and A. M. Weiner. Molecular Biology of the Gene,4th ed., pp. 1058–1096. Benjamin/Cummings, Menlo Park, California.

    Google Scholar 

  25. J. L. Bos. The ras Gene Family and Human Carcinogensis. Mutat. Res. 195: 255–271, 1988.

    PubMed  CAS  Google Scholar 

  26. G. M. Brodeur, R. C. Seeger, M. Schwab, H. E. Varmus, and J. M. Bishop. Amplification of N-myc in Untreated Human Neuroblastomas Correlates with Advanced Disease Stage. Science 224: 1121–1124.

    Google Scholar 

  27. A. De Klein, A. G. van Kessel, G. Grosveld, C. R. Bartram, A. Hagemeijer, D. Bootsma, N. K. Spurr, N. Heisterkamp, J. Groffen, and J. R. Stephenson. A Cellular Oncogene is Translocated to the Philadelphia Chromosome in Chronic Myelocytic Leukemia. Nature 300: 765–767.

    Google Scholar 

  28. E. Pimentel. Oncogenes and Human Cancer. Cancer Genet. Cytogenet. 14: 347–368 (1985).

    Article  PubMed  CAS  Google Scholar 

  29. J. D. Rowley. Identification of the Constant Chromosome Regions Involved in Human Hematologic Malignant Disease. Science 216: 749–751 (1982).

    Article  PubMed  CAS  Google Scholar 

  30. J. J. Yunis. Chromosomal Rearrangements, Genes, and Fragile Sites in Cancer: Clinical and Biological Implications. In Important Advances in Oncology, ed. V. DeVita, S. Hellman, and S. Rosenberg, pp. 93–128. Lippincott, Philadelphia, Pennsylvania (1986).

    Google Scholar 

  31. M. Schwab, K. H. Alitalo, K. Klempnauer, H. E. Varmus, J. M. Bishop, F. Gilbert, G. Brodeur, M. Goldstein, and J. Trent. Amplified DNA with Limited Homology to myc Cellular Oncogene Is Shared by Human Neuroblastoma Cell-lines and a Neuroblastoma Timor. Nature 305: 245–248.

    Google Scholar 

  32. G. M. Brodeur, R. C. Seeger, M. Schwab, H. E. Varmus, and J. M. Bishop. Amplification of N-myc in Untreated Human Neuroblastomas Correlates with Advanced Disease Stage. Science 224: 1121–1124.

    Google Scholar 

  33. W. M. Court-Brown and R. Doll. Expectation of Life and Mortality from Cancer Among British Radiologists. Br. Med. J. 2: 181–190 (1958).

    Article  PubMed  CAS  Google Scholar 

  34. H. S. Martland. Occurrence of Malignancy in Radioactive Persons. Am. J. Cancer 15: 2435–2516 (1931).

    Google Scholar 

  35. G. W. Beebe, M. Ishida, and S. Jablon. Studies of the Mortality of A-bomb Survivors. I. Plan of Study and Mortality in the Medical Subsample (Selection 1), 1950–1958. Radiat. Res. 16: 253–280 (1962).

    Article  PubMed  CAS  Google Scholar 

  36. C. Borek, A. Ong, and H. Mason. Distinctive Transforming Genes in X-ray–Transformed Mammalian Cells. Proc. Natl. Acad. Sci. USA 84: 794–798 (1987).

    Article  PubMed  CAS  Google Scholar 

  37. J. Shuin, P. C. Billings, J. R. Lillehaug, S. R. Patierno, P. Roy-Burman, and J. R. Landolph. Enhanced Expression of c-myc and Decreased Expression of c-fos Protooncogenes in Chemically and Radiation Transformed C3H/10T/2C18 Mouse Embryo Cell Line. Cancer Res. 46: 5302–5311 (1986).

    PubMed  CAS  Google Scholar 

  38. I. Guerrero, A. Villasante, V. Corces, and A. Pellicer. Activation of a c-K-ras Oncogene by Somatic Mutation in Mouse Lymphomas Induced by Gamma Radiation. Science 225: 1159–1162 (1984).

    Article  PubMed  CAS  Google Scholar 

  39. E. W. Newcomb, J. J. Steinberg, and A. Pellicer. Ras Oncogenes and Phenotypic Staging in N-methyl Nitrosourea and y-Irradiation-Induced Thymic Lymphomas in C57BL/6J Mice. Cancer Res. 48: 5514–5521 (1988).

    PubMed  CAS  Google Scholar 

  40. B. Krolewski and J. B. Little. Molecular Analysis of DNA Isolated from the Different Stages of X-ray-Induced Transformation In Vitro. Mol. Carcinog. 2: 27–33 (1989).

    Article  PubMed  CAS  Google Scholar 

  41. H. Land, L. F. Parada, and R. A. Weinberg. Timorigenic Conversion of Primary Embryo Fibroblasts Requires at Least TWo Cooperating Oncogenes. Nature 304: 596–602 (1983).

    Article  PubMed  CAS  Google Scholar 

  42. H. E. Ruley. Adenovirus Early Region lA Enables Virial and Cellular Transforming Genes to Transform Primary Cells in Culture. Nature 304: 602–606 (1983).

    Article  PubMed  CAS  Google Scholar 

  43. E. J. Stanbridge. Identifying Timor Suppressor Genes in Human Colorectal Cancer. Science 247: 12–13 (1990).

    Article  PubMed  CAS  Google Scholar 

  44. E. R. Fearon, K. R. Cho, J. M. Nigro, S. E. Kern, J. W. Simons, J. M. Ruppert, S. R. Hamilton, A. C. Preisinger, G. Thomas, K. W. Kinzler, and B. Vogelstein. Identification of a Chromosome 189 Gene That Is Altered in Colorectal Cancers. Science 247: 49–56 (1990).

    Article  PubMed  CAS  Google Scholar 

  45. H. Harris. Cell Fusion and the Analysis of Malignancy: The Croonian Lecture. Proc. R. Soc. B 179: 1–20 (1971).

    Article  CAS  Google Scholar 

  46. E. J. Stanbridge. Suppression of Malignancy in Human Cells. Nature 260: 17–20 (1976).

    Article  PubMed  CAS  Google Scholar 

  47. R.E.K. Fournier and F. H. Ruddle. Microcell-Mediated Transfer of Murine Chromosomes into Mouse, Chinese Hamster, and Human Somatic Cells. Proc. Natl. Acad. Sci. USA, 74: 319–323 (1977).

    Article  PubMed  CAS  Google Scholar 

  48. P. J. Saxon et al. Selective Transfer of Individual Human Chromosomes to Recipient Cells. Mol. Cell Biot 5: 140–146 (1985).

    CAS  Google Scholar 

  49. P. J. Saxon, E. S. Srivatsan, and E. J. Stanbridge. Introduction of Chromosome 11 Via Microcell Transfer Controls Timorigenic Expression of HeLa Cells. Embo J. 5: 3461–3466 (1986).

    Google Scholar 

  50. B. E. Weissman, P. J. Saxon, S. R. Pasquale, G. R. Jones, A. G. Geiser, E. J. Stanbridge. Introduction of a Normal Human Chromosome 11 into a Wilms’ Timor Cell Line Controls Its Thmorigenic Expression. Science 236: 175–180 (1987).

    Article  PubMed  CAS  Google Scholar 

  51. J. L. Redpath, C. Sun, M. Colman, and E. J. Stanbridge. Neoplastic Ttansformation of Human Hybrid Cells by y-Radiation: A Quantitative Assay. Radiat. Res. 110: 468–472 (1987).

    Article  PubMed  CAS  Google Scholar 

  52. W. H. Lee, R. Bookstein, E Hong, L. J. Young, J. Y. Shew, and EY-HP Lee. Human Retinablastoma Susceptibility Gene: Cloning, Identification, and Sequence. Science 235: 1394–1399 (1987).

    Article  PubMed  CAS  Google Scholar 

  53. H.J.S. Huang, J. K. Yee, J. Y. Shew, P. L. Chen, R. Bookstein, T. Friedmann, EY-HP Lee, and W. H. Lee. Suppression of the Neoplastic Phenotype by Replacement of the RB Gene in Human Cancer Cells. Science 242: 1563–1566 (1988).

    Article  PubMed  CAS  Google Scholar 

  54. D. Pinkel, T. Straume, and J. W. Gray. Cytogenetic Analysis Using Quantitative, High Sensitivity Fluorescence, Hybridization. Proc. Natl. Acad. Sci. USA 83: 2934–2938 (1986).

    Article  PubMed  CAS  Google Scholar 

  55. D. Pinkel, J. Landegent, C. Collins, J. Fuscoe, R. Segraves, J. Lucas, and J. Gray. Fluorescence In Situ Hybridization with Human Chromosome Specific Libraries: Detection of ‘I7isomy 21 and Tfanslocations of Chromosome 4. Proc. Natl. Acad. Sci. USA 85: 9138–9142 (1988).

    Article  PubMed  CAS  Google Scholar 

  56. J. S. Waye and H. E Willard. Chromosome Specificity of Satellite DNA’s: Short-and Long-Range Organization of a Diverged Dimeric Subset of Human Alpha Satellite from Chromosome 3. Chromosoma 97: 475–480 (1989).

    Article  PubMed  CAS  Google Scholar 

  57. A. Jauch, C. Daumer, P. Lichter, J. Murken, T. Schroeder-Kurth, and T. Cremer. Chromosomal In Situ Suppression Hybridization of Human Gonosomes and Autosomes and Its Use in Clinical Cytogenetics. Hum. Genet. 85: 145–150, 1990.

    Article  PubMed  CAS  Google Scholar 

  58. H. Van Dekkcn, J. G. Pizzolo, D. R Kelsen, and M. R. Melamed. Targeted Cytogenic Analysis of Gastric Tumors by In Situ Hybridization with a Set of Chromosome Specific DNA Probes. Cancer 66: 491–497 (1990).

    Article  Google Scholar 

  59. T. Cremer, P. Lichter, J. Borden, D. C. Ward, and L. Manuelidis. Detection of Chromosome Aberrations in Metaphase and Interphase Thmor Cells by In Situ Hybridization Using Chromosome-Specific Library Probes. Hum. Genet. 80: 235–246 (1988).

    Article  PubMed  CAS  Google Scholar 

  60. E Lichter, T. Cremer, C. C. Tang, P. C. Watkins, L. Manuelidis, and D. C. Ward. Rapid Detection of Human Chromosome 21 Aberrations by In Situ Hybridization. Proc. Natl. Acad. Sci. USA 85: 9664–9668 (1988).

    Article  PubMed  CAS  Google Scholar 

  61. J. C. Fuscoe, C. C. Collins, D. Pinkel, and J. W. Gray. An Efficient Method for Selecting Unique-Sequence Clones from DNA Libraries and Its Application to Fluorescent Staining of Human Chromosome 21 Using In Situ Hybridization. Genomics 5: 100–109 (1989).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Hall, E.J., Freyer, G.A. (1991). The Molecular Biology of Radiation Carcinogenesis. In: Glass, W.A., Varma, M.N. (eds) Physical and Chemical Mechanisms in Molecular Radiation Biology. Basic Life Sciences, vol 58. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7627-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7627-9_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7629-3

  • Online ISBN: 978-1-4684-7627-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics