Skip to main content

Use of Teratocarcinoma Stem Cells as a Model System for the Study of X-Chromosome Inactivation In Vitro

  • Chapter
Genetic Mosaics and Chimeras in Mammals

Part of the book series: Basic Life Sciences ((BLSC,volume 12))

  • 74 Accesses

Abstract

One of the main obstacles to the study of the mechanism of X-chromosome differentiation or “X inactivation” is the difficulty of obtaining a population of embryonic cells in which both X chromosomes are functioning. The primary reason for this is that male embryos cannot be easily distinguished from female embryos, and therefore half of any random population of embryos will be males that contain only one X chromosome. Furthermore, since it is now apparent that X inactivation probably does not occur in all the cells of the embryo at the same time, there would be the additional difficulty of identifying and separating those cells in which both X chromosomes are active, even if a pure population of female embryos could be obtained. Since teratocarcinoma stem cells are closely similar to normal early embryonic cells and they are available in almost unlimited quantities, the goal of the research described here was to determine whether it might be possible to use clonal cultures of female teratocarcinoma stem cells, in place of embryonic cells, to study the phenomenon of X-chromosome inactivation. The results of this study have been described previously (Martin, Epstein, Travis, Tucker, Yatziv, Martin, Clift, and Cohen 1978).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baikie, A. G., P. B. Loder, G. C. De Grouchy and D. B. Pitt. 1965. Phosphohexokinase activity of erythrocytes in mongolism: another possible marker for chromosome 21. Lancet 1, 412–414.

    Article  PubMed  CAS  Google Scholar 

  • Bernstine, E. G., L. B. Russell and C. S. Cain. 1978. Effect of gene dosage on the expression of mitochondrial malic enzyme activity in the mouse. Nature 271: 748–750.

    Article  PubMed  CAS  Google Scholar 

  • Brinster, R. L. 1974. The effect of cells transferred into the mouse blastocyst on subsequent development. J. Exp. Med. 140: 1049–1056.

    Article  PubMed  CAS  Google Scholar 

  • Brinster, R. L. 1975. Can teratocarcinoma cells colonize the mouse embryo? In Roche Symposium on Teratomas and Differentiation, M. Sherman and D. Solter, Eds. Academic Press, New York, pp. 51–58.

    Google Scholar 

  • Chapman, V. M. and T. B. Shows. 1976. Somatic cell genetic evidence for X-chromosome linkage of three enzymes in the mouse. Nature 259: 665–667.

    Article  PubMed  CAS  Google Scholar 

  • Chapman, V. M., J. D. West and D. A. Adler. 1978. Bimodal distribution of α-galactosidase activities in mouse embryos. In Genetic Mosaics and Chimeras in Mammals, Liane B. Russell, Ed., Plenum Press, New York and London.

    Google Scholar 

  • Damjanov, I. and D. Solter. 1974. Host-related factors determine the outgrowth of teratocarcinomas from mouse egg-cylinders. Z. Krebsforsch. 81: 63–69.

    Article  CAS  Google Scholar 

  • Davidson, R. G., H. M. Nitowsky and B. Childs. 1963. Demonstrations of two populations of cells in the human female heterozygous for glucose-6-phosphate dehydrogenase variants. Proc. Nat. Acad. Sci. USA 50: 481–485.

    Article  PubMed  CAS  Google Scholar 

  • DeMars, R., S. L. LeVan, B. L. Trend and L. B. Russell. 1976. Abnormal ornithine carbamoyltransferase in mice having the sparse-fur mutation. Proc. Nat. Acad. Sci. USA 73: 1693–1697.

    Article  PubMed  CAS  Google Scholar 

  • Dewey, M. J., D. W. Martin Jr., G. R. Martin and B. Mintz. 1977. Mosaic mice with teratocarcinoma-derived mutant cells deficient in hypoxanthine phosphoribosyl transferase. Proc. Nat. Acad. Sci. USA 74: 5564–5568.

    Article  PubMed  CAS  Google Scholar 

  • Eicher, E. M. and D. L. Coleman. 1977. Influence of gene duplication and X-inactivation on mouse mitochondrial malic enzyme activity and electrophoretic patterns. Genetics 85: 647–658.

    PubMed  CAS  Google Scholar 

  • Eppig, J. J., L. P. Kozak, E. M. Eicher, and L. C. Stevens. 1977. Ovarian teratomas in mice are derived from oocytes that have completed the first meiotic division. Nature 269: 517–518.

    Article  PubMed  CAS  Google Scholar 

  • Epstein, C. J. 1969. Mammalian oocytes: X-chromosome activity. Science 163: 1078–1079.

    Article  PubMed  CAS  Google Scholar 

  • Epstein, C. J. 1972. Expression of the mammalian X-chromosome before and after fertilization. Science 175: 1467–1468.

    Article  PubMed  CAS  Google Scholar 

  • Epstein, C. J., G. Tucker, B. Travis and A. Gropp. 1977. Gene dosage for isocitrate dehydrogenase in mouse embryos trisomie for chromosome 1. Nature 247: 615–616.

    Article  Google Scholar 

  • Epstein, C. J., S. Smith, B. Travis and G. Tucker. 1978a. Both X-chromosomes function prior to X-chromosome inactivation in female mouse embryos. Nature, in press.

    Google Scholar 

  • Epstein, C. J., B. Travis, G. Tucker and S. Smith. 1978b. The direct demonstration of an X-chromosome dosage effect prior to inactivation. In Genetic Mosaics and Chimeras in Mammals, Liane B. Russell, Ed., Plenum Press, New York and London.

    Google Scholar 

  • Evans, M. J. and G. R. Martin. 1975. The differentiation of clonal teratocarcinoma cell cultures in vitro. In Roche Symposium on Teratomas and Differentiation, M. Sherman and D. Solter, Eds., Academic Press, New York, pp. 237–250.

    Google Scholar 

  • Feaster, W. W., L. Kwok and C. J. Epstein. 1977. Dosage effects for superoxide dismutase-1 in nucleated cells aneuploid for chromosome 21. Amer. J. Hum. Genet. 24: 563–570.

    Google Scholar 

  • Gartler, S. M. and R. J. Andina. 1976. Mammalian X-chromosome inactivation. Adv. in Hum. Genet. 7: 99–140.

    CAS  Google Scholar 

  • Gartler, S. M., R. M. Liskay, B. K. Campbell, R. Sparkes and N. Gant. 1972. Evidence for two functional X-chromosomes in human oocytes. Cell Differ. 1: 215–218.

    Article  PubMed  CAS  Google Scholar 

  • George, D. L. and U. Francke. 1976. Gene dosage effect: regional mapping of human nucleoside Phosphorylase on chromosome 14. Science 194: 851–852.

    Article  PubMed  CAS  Google Scholar 

  • Graham, C. F. 1977. Teratocarcinoma cells and normal mouse em-bryogenesis. In Concepts in Mammalian Embryogenesis, M. Sherman, Ed., MIT Press, Cambridge, Mass., pp. 315–394.

    Google Scholar 

  • Iles, S. A., M. W. McBurney, S. R. Bramwell, Z. A. Deussen and C. F. Graham. 1975. Development of parthenogenetic and fertilized mouse embryos in the uterus and in extrauterine sites. J. Embryol. exp. Morph. 34: 387–405.

    PubMed  CAS  Google Scholar 

  • Illmensee, Karl. 1978, Reversion of malignancy and normalized differentiation of teratocarcinoma cells in chimeric mice. In, Genetic Mosaics and Chimeras in Mammals, Liane B. Russell, Ed. Plenum Press, New York and London.

    Google Scholar 

  • Illmensee, K. and B. Mintz. 1976. Totipotency and normal differentiation of single teratocarcinoma cells cloned by injection into blastocysts. Proc. Nat. Acad. Sci. USA 73: 549–553.

    Article  PubMed  CAS  Google Scholar 

  • Kozak, L. P. and P. J. Quinn. 1975. Evidence for dosage compensation of an X-linked gene in the 6-day embryo of the mouse. Devel. Biol. 45: 65–73.

    Article  CAS  Google Scholar 

  • Kozak, L. P., G. K. McLean and E. M. Eicher. 1974. X-linkage of phosphoglycerate kinase in the mouse. Biochem. Genet. 11: 41–47.

    Article  PubMed  CAS  Google Scholar 

  • Kozak, C., E. Nichols and F. H. Ruddle. 1975. Gene linkage analysis in the mouse by somatic cell hybridization: assignment of adenine phosphoribosyltransferase to chromosome 8 and α-galactosi-dase to the X chromosome. Somatic Cell Genet. 1: 371–382.

    Article  PubMed  CAS  Google Scholar 

  • Kratzer, P. G. and S. M. Gartler. 1978. HGPRT expression in early mouse development. In, Genetic Mosaics and Chimeras in Mammals, Liane B. Russell, Ed., Plenum Press, New York and London.

    Google Scholar 

  • Lyon, M. F. 1972. X-chromosome inactivation and developmental patterns in mammals. Biol. Rev. 47: 1–35.

    Article  PubMed  CAS  Google Scholar 

  • Magenis, R. E., R. D. Koler, E. Lovrien, R. H. Bigley, M. C. DuVal and K. M. Overton. 1975. Gene dosage: evidence for assignment of erythrocyte acid phosphatase locus to chromosome 2. Proc. Nat. Acad. Sci. USA 72: 4526–4530.

    Article  PubMed  CAS  Google Scholar 

  • Mangia, F., G. Abbo-Halbasch and C. J. Epstein. 1975. X-chromosome expression during oogenesis in the mouse. Devel. Biol. 45: 366–368.

    Article  CAS  Google Scholar 

  • Marimo, B. and F. Giannelli. 1975. Gene dosage effect in human trisomy 16. Nature 256: 204–206.

    Article  PubMed  CAS  Google Scholar 

  • Martin, G. R. 1975. Teratocarcinomas as a model system for the study of embryogenesis and neoplasia: Review. Cell 5: 229–243.

    Article  PubMed  CAS  Google Scholar 

  • Martin, G. R. 1978. Advantages and limitation of teratocarcinoma stem cells as models of development. In, Development in Mammals, Vol. 3, M. Johnson ed, Elsevier/North-Holland Biomedical Press, in press.

    Google Scholar 

  • Martin, G. R., C. J. Epstein, B. Travis, G. Tucker, S. Yatziv, D. W. Martin Jr., S. Clift, and S. Cohen. 1978a. X-chromosome inactivation during differentiation of female teratocarcinoma stem cells in vitro. Nature 271: 329–333.

    Article  PubMed  CAS  Google Scholar 

  • Martin, G. R. and M. J. Evans. 1975a. The differentiation of clonal lines of teratocarcinoma cells: formation of embryoid bodies in vitro. Proc. Nat. Acad. Sci. USA 72,: 1441–1445.

    Article  PubMed  CAS  Google Scholar 

  • Martin, G. R. and M. J. Evans. 1975b. The formation of embryoid bodies in vitro by homogeneous embryonal carcinoma cell cultures derived from isolated single cells. In, Roche Symposium on Teratomas and Differentiation, M. Sherman and D. Solter, Eds. Academic Press, New York, pp. 169–187.

    Google Scholar 

  • Martin, G. R., S. Smith, and C. J. Epstein. 1978b. Protein synthetic patterns in teratocarcinoma stem cells and mouse embryos at early stages of development. Devel. Biol., in press.

    Google Scholar 

  • Martin, G. R., L. M. Wiley and I. Damjanov. 1977. The development of cystic embryoid bodies in vitro from clonal teratocarcinoma stem cells. Devel. Biol. 61: 230–244.

    Article  CAS  Google Scholar 

  • McBurney, M. W. and E. D. Adamson. 1976. Studies on the activity of the X chromosomes in female teratocarcinoma cells in culture. Cell 9: 57–70.

    Article  PubMed  CAS  Google Scholar 

  • Migeon, B. R. and K. Jelalian. 1977. Evidence for two active X chromosomes in germ cells of female before meiotic entry. Nature 269: 242–243.

    Article  PubMed  CAS  Google Scholar 

  • Mintz, B. and K. Illmensee. 1975. Normal genetically mosaic mice produced from malignant teratocarcinoma cells. Proc. Nat. Acad. Sci. USA 72: 3585–3589.

    Article  PubMed  CAS  Google Scholar 

  • Monk, Marilyn. 1978. Biochemical studies on X-chromosome activity in preimplantâtion mouse embryos. In Genetic Mosaics and Chimeras in Mammals, Liane B. Russell, Ed., Plenum Press, New York and London.

    Google Scholar 

  • Mouse News Letter 56: 4–28, 1977.

    Google Scholar 

  • Nielson, J. T. and V. M. Chapman. 1977. Electrophoretic variation for X-chromosome-linked phosphoglycerate kinase (PGK-1) in the mouse. Genetics 87: 319–325.

    Google Scholar 

  • Papaioannou, V. E., M. W. McBurney, R. L. Gardner and M. J. Evans. 1975. Fate of teratocarcinoma cells injected into early mouse embryos. Nature 258: 70–73.

    Article  PubMed  CAS  Google Scholar 

  • Papaioannou, V. E., R. L. Gardner, M. W. McBurney, C. Babinet and M. J. Evans. 1978. Participation of cultured teratocarcinoma cells in mouse embryogenesis. J. Embryol. Exp. Morph., in press.

    Google Scholar 

  • Pierce, G. B. and F. J. Dixon. 1959. Testicular teratomas. I. Demonstration of teratogenesis by metamorphosis of multipotential cells. Cancer 12: 573–583.

    Article  PubMed  CAS  Google Scholar 

  • Solter, D., N. Skreb and I. Damjanov. 1970. Extrauterine growth of mouse egg cylinders results in malignant teratoma. Nature 227: 503–504.

    Article  PubMed  CAS  Google Scholar 

  • Stevens, L. C. 1959. Embryology of testicular teratomas in strain 129 mice. J. Nat. Cancer Inst. 23: 1249–1295.

    PubMed  CAS  Google Scholar 

  • Stevens, L. C. 1968. The development of teratomas from intra-testicular grafts of tubal mouse eggs. J. Embryol. Exp. Morph. 20: 329–341.

    PubMed  CAS  Google Scholar 

  • Stevens, L. C. 1970. The development of transplantable terato-carcinomas from intratesticular grafts of pre- and postimplantation mouse embryos. Develop. Biol. 21: 364–382.

    Article  PubMed  CAS  Google Scholar 

  • Stevens, L. C. 1975. Comparative development of normal and parthenogenetic mouse embryos, early testicular and ovarian teratomas, and embryoid bodies. In Roche Symposium on Teratomas and Differentiation, M. Sherman and D. Solter, Eds., Academic Press, New York, pp. 17–32.

    Google Scholar 

  • Stevens, L. C. and D. S. Varnum. 1974. The development of teratomas from parthenogenetically activated ovarian mouse eggs. Devel. Biol. 37: 369–380.

    Article  CAS  Google Scholar 

  • Takagi, N. and M. Sasaki. 1975. Preferential inactivation of the paternally derived X chromosome in the extraembryonic membranes of the mouse. Nature 256: 640–642.

    Article  PubMed  CAS  Google Scholar 

  • West, J. D., W. I. Frels and V. M. Chapman. 1977. Preferential expression of the maternally derived X-chromosome in the mouse yolk sac. Cell 12: 873–882.

    Article  PubMed  CAS  Google Scholar 

  • Yen, R. C. K., W. B. Adams, C. Lazar and M. A. Becker. 1978. Evidence for X-linkage of human phosphoribosylpyrophosphate synthetase. Proc. Nat. Acad. Sci. USA 75: 482–485.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Plenum Press, New York

About this chapter

Cite this chapter

Martin, G.R., Epstein, C.J., Martin, D.W. (1978). Use of Teratocarcinoma Stem Cells as a Model System for the Study of X-Chromosome Inactivation In Vitro . In: Russell, L.B. (eds) Genetic Mosaics and Chimeras in Mammals. Basic Life Sciences, vol 12. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3390-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3390-6_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3392-0

  • Online ISBN: 978-1-4684-3390-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics