Skip to main content

Using an Allometric Model for the Accumulation of Mineral Nutrients in Crops Under Saline and Water Stress: A Field Experience in Fertigation

  • Chapter
  • First Online:
Improvement of Crops in the Era of Climatic Changes

Abstract

Simulating accumulation of mineral nutrients in crops is useful for scheduling fertigation under ideal conditions, but doing so under saline and water stress would be a double beneficial tool. First, fertilization can be scheduled to fit mineral requirements while crops grow, and, second, fertilizers can be limited to the level determined by the stress condition, thus avoiding additional salinization by fertilizer not used by crops. The model considers crop development in a thermal timescale, in which the total crop period is obtained by integration in time of the thermal response equation. This integral is a constant value for a specific crop and cultivar. Biological age is then defined as a fraction of the current thermal time accumulated at any time to the total thermal time required. Using this relative time, the accumulation of mineral nutrients can be calculated as an allometric equation dependent on thermal time. It also considers crop biomass at any biological age, the total biomass of a crop and other specific parameters of the crop and the mineral nutrient being quantified (Misle J Plant Nutr 36:1327–1343, 2013). Thermal time dependence allows this model to follow daily variations of temperature in order to adjust the forecast of the accumulation of mineral nutrients to thermal variations on growth. The model is then coupled with already published equations for water and saline stress. As these restrictions are added to growth, total biomass will not be the maximum attainable for certain agro-climatic conditions, so that restrictions can be transmitted to the nutrient accumulation forecast (Misle and Garrido Determination of crop nutrient accumulation under water or saline stress through an allometric model, El-Zaiem Press, Cairo, Egypt, 2008). In this chapter we contextualize the problem, describe the theoretical background and analyse field experience from 1998 on crops fertigation, following stages of the model development and discussing growth restrictions imposed by saline and water stress to the nonrestricted forecast.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abou El-Magd MM, Zaki MF, Abou-Hussein SD (2008) Effect of organic manure and different levels of saline irrigation water on growth, green yield and chemical content of sweet fennel. Austr J Bas Appl Sci 2:90–98

    CAS  Google Scholar 

  • Addiscott TM, Whitmore AP (1987) Computer simulation of changes in soil mineral nitrogen and crop nitrogen during autumn, winter, and spring. J Agric Sci Camb 109:141–157

    Article  Google Scholar 

  • Ajdary K, Singh DK, Singh AK, Khanna M (2007) Modelling of nitrogen leaching from experimental onion field under drip fertigation. Agric Water Manage 89:15–28

    Article  Google Scholar 

  • Alam SM (1999) Nutrient uptake by plants under stress conditions. In: Pessarakli M (ed) Handbook of plant and crop stress, 2nd edn. Marcel Deker, New York, NY, pp 285–314

    Chapter  Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration: guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, Rome, Italy

    Google Scholar 

  • Anwar MR, Liu DL, Macadam I, Kelly G (2012) Adapting agriculture to climate change: a review. Theor Appl Climatol. doi:10.1007/s00704-012-0780-1 (Published online)

  • Arqueros M (1996) Ritmo de crecimiento y absorción de nitrógeno, fósforo, potasio, calcio y magnesio en melón, sandía, pimentón y tomate y efectos de la fertilización en la producción y calidad de semilla. Thesis, Pontificia Universidad Católica de Chile, Santiago

    Google Scholar 

  • Badr MA, Abou El-Yazied AA (2007) Effect of fertigation frequency from subsurface drip irrigation on tomato yield grown on sandy soil. Austr J Bas Appl Sci 1:279–285

    Google Scholar 

  • Bertsch F (2003) Absorción de nutrimentos por los cultivos. Asociación Costarricense de la Ciencia del Suelo (ACCS), San José, Costa Rica

    Google Scholar 

  • Boote KJ, Jones JW, White JW, Asseng S, Lizaso JI (2013) Putting mechanisms into crop production models. Plant Cell Environ. doi:10.1111/pce.12119

    Google Scholar 

  • Cakmak I (2002) Plant nutrition research: priorities to meet human needs for food in sustainable ways. Plant Soil 247:3–24

    Article  CAS  Google Scholar 

  • Cakmak I (2005) The role of potassium in alleviating detrimental effects of abiotic stresses in plants. J Plant Nutr Soil Sci 168:521–530

    Article  CAS  Google Scholar 

  • Cassman KG (1999) Ecological intensification of cereal production systems: Yield potential, soil quality, and precision agriculture. Proc Natl Acad Sci USA 96:5952–5959

    Article  PubMed  CAS  Google Scholar 

  • Chaboussou F (1985) Healthy crops: a new agricultural revolution. John Carpenter, Charlbury, UK (2004 English trans)

    Google Scholar 

  • Colla G, Rouphael Y, Cardarelli M, Svecova E, Rea E, Lucini L (2013) Effects of saline stress on mineral composition, phenolic acids and flavonoids in leaves of artichoke and cardoon genotypes grown in floating system. J Sci Food Agric 93:1119–1127

    Article  PubMed  CAS  Google Scholar 

  • Connor JD, Schwabe K, King D, Knapp K (2012) Irrigated agriculture and climate change: the influence of water supply variability and salinity on adaptation. Ecol Econ 77:149–157

    Article  Google Scholar 

  • Cook WP, Sanders DC (1991) Nitrogen application frequency for drip irrigated tomatoes. HortSci 26:250–252

    CAS  Google Scholar 

  • Díaz-López L, Gimeno V, Lidón V, Simón I, Martínez V, García-Sánchez F (2012) The tolerance of Jatropha curcas seedlings to NaCl: an ecophysiological analysis. Plant Physiol Biochem 54:34–42

    Article  PubMed  Google Scholar 

  • Dobermann A, Cassman KG (2002) Plant nutrient management for enhanced productivity in intensive grain production systems of the United States and Asia. Plant Soil 247:153–175

    Article  CAS  Google Scholar 

  • Doorenbos J, Kassam AH (1986) Yield response to water. Irrigation and Drainage Paper 33. Food and Agriculture Organization of the United Nations, Rome, Italy

    Google Scholar 

  • Dubois E (1897) Sur le rapport de l’ encéphale avec la grandeur du corps chez les Mammifères. Bull Soc anthropol Paris, 4e série 8:337–374

    Article  Google Scholar 

  • Duman F (2012) Uptake of mineral elements during abiotic stress. In: Ahmad P, Prasad MNV (eds) Abiotic stress responses in plants. Springer, New York, NY, pp 267–281

    Chapter  Google Scholar 

  • Enquist B (2002) Universal scaling in tree and vascular plant allometry: toward a general quantitative theory linking plant form and function from cells to ecosystems. Tree Physiol 22:1045–1064

    Article  PubMed  Google Scholar 

  • Fallas R, Bertsch F, Miranda E, Henríquez C (2010) Análisis de crecimiento y absorción de nutrimentos de frutos de mango, cultivares Tommy Atkins y Keith. Agron Costarricense 34:1–15

    Google Scholar 

  • Fallas R, Bertsch F, Echandi C, Henríquez C (2011) Caracterización del desarrollo y absorción de nutrimentos del híbrido de maíz hC-57. Agron Costarricense 35:33–47

    Google Scholar 

  • FAO (2000) Global network on integrated soil management for sustainable use of salt effected soils

    Google Scholar 

  • Fernandes Rodrigues CR, Nascimento Silva E, Ferreira-Silva SL, Voigt EL, Almeida Viégas R, Gomes Silveira JA (2013) High K+ supply avoids Na+ toxicity and improves photosynthesis by allowing favorable K+:Na+ ratios through the inhibition of Na+ uptake and transport to the shoots of Jatropha curcas plants. J Plant Nutr Soil Sci 176:157–164r

    Article  Google Scholar 

  • France J, Thornley JHM (1984) Mathematical models in agriculture. A quantitative approach to problems in agriculture and related sciences (1st ed). Butterworth & Co. Ltd, London, UK

    Google Scholar 

  • García-Mina JM (2012) Plant nutrition and defense mechanism: frontier knowledge. In: Kumar Srivastava A (ed) Advances in citrus nutrition. Springer, Dordrecht, pp 1–12

    Chapter  Google Scholar 

  • Gärdenäs AI, Hopmans JW, Hanson BR, Simunek J (2005) Two-dimensional modeling of nitrate leaching for various fertigation scenarios under micro-irrigation. Agric Water Man 74:219–242

    Article  Google Scholar 

  • Garrido E, Matus F (2012) Are organo-mineral complexes and allophane content determinant factors for the carbon level in Chilean volcanic soils? Catena 92:106–112

    Article  CAS  Google Scholar 

  • Gayon J (2000) History of the concept of allometry. Am Zool 40:748–758

    Article  Google Scholar 

  • Ghyka MC (1977) The geometry of art and life. Dover Publications, New York, First published by Sheed and Ward, NY (1946)

    Google Scholar 

  • Günther B, Morgado E (1996) Allometric algorithms. Biol Res 29:345–353

    PubMed  Google Scholar 

  • Gutiérrez JR, Hajek ER (1979) Curvas de distribución anual de temperaturas máximas y mínimas en Chile. Latinam J Agric Env Sci 6:177–183

    Google Scholar 

  • Hardwick RC (1987) The nitrogen content of plants and the self-thinning rule of plant ecology: a test of the core-skin hypothesis. Ann Bot 60:439–446

    Google Scholar 

  • Hebbar SS, Ramachandrappa BK, Nanjappa HV, Prabhakar M (2004) Studies on NPK drip fertigation in field grown tomato (Lycopersicon esculentum Mill.). Europ J Agron 21:117–127

    Article  Google Scholar 

  • Hellal FA (2007) Composting of rice straw and its influences on iron availability in calcareous soil. Res J Agric Biol Sci 3:105–114

    CAS  Google Scholar 

  • Herrera A, Suárez D, Veloz D, Misle E, Garrido E (2008) Utilización de cal agrícola y yeso para mejorar la infiltración de agua en suelos arcillosos de la provincia de Curicó. Abstract in Resúmenes 59° Congreso Agronómico de Chile, 7–10 October 2008

    Google Scholar 

  • Hillel D (1997) Small-scale irrigation for arid zones Principles and options. FAO Development Series 2, Rome, Italy

    Google Scholar 

  • Hu Y, Schmidhalter U (2005) Drought and salinity: a comparison of their effects on mineral nutrition of plants. J Plant Nutr Soil Sci 168:541–549

    Article  CAS  Google Scholar 

  • Huxley JS (1924) Constant differential growth-ratios and their significance. Nature 114:895–896

    Article  Google Scholar 

  • Huxley JS, Teissier G (1936) Terminology of relative growth. Nature 137:780–781

    Article  Google Scholar 

  • Idrisi ZS (2005) Decoding and demystifying Da Vinci. Foundation for foundation for science, technology and civilization. FSTC Ltd. http://www.fstc.co.uk, Manchester, UK Pub. ID: 4075

  • Islam MM, Karim AJMS, Jahiruddin M, Majid NM, Miah MG, Islam MS (2013) Integrated nutrient management for cabbage-brinjal-red amaranth cropping pattern in homestead area. J Plant Nutr. doi:10.1080/01904167.2013.810245

    Google Scholar 

  • Kahlaoui B, Hachicha M, Rejeb S, Misle E, Rouaissi M, Rejeb MN, Hanchi B (2011a) Effect of saline water on tomato under subsurface drip irrigation: yield and fruit quality. Austr J Bas Appl Sci 5:517–529

    CAS  Google Scholar 

  • Kahlaoui B, Hachicha M, Rejeb S, Rejeb MN, Hanchi B, Misle E (2011b) Effect of saline water on tomato under subsurface drip irrigation: nutritional and foliar aspects. J Soil Sci Plant Nutr 11:69–86

    Article  Google Scholar 

  • Lal R (2013) Food security in a changing climate. Ecohydrol Hydrobiol 13:8–21

    Article  Google Scholar 

  • Lao MT, Plaza BM, Jiménez S (2013) Impact of salt stress on micronutrients in Cordyline fruticosa var. “Red Edge”. J Plant Nutr 36:990–1000

    Article  CAS  Google Scholar 

  • Leopold AC, Kriedemann PE (1975) The dynamics of growth. In: Plant growth and development (2nd edition) McGraw-Hill, New York, NY, pp 77–105

    Google Scholar 

  • Locascio SJ, Smajstrla AG (1995) Fertilizer timing and pan evaporation scheduling for drip irrigated tomato. In: Lamm (ed) Microirrigation for a changing world: conserving resources /preserving the environment. ASAE Publications, Washington, DC, pp 4–95, 175–180

    Google Scholar 

  • Maas EV, Hoffman GJ (1977) Crop salt tolerance—current assessment. J Irrig Drain Div ASCE 103:114–134

    Google Scholar 

  • Maggio A, Raimondi G, Martino A, De Pascale S (2007) Salt stress response in tomato beyond the salinity tolerance threshold. Environ Exp Bot 59:276–282

    Article  CAS  Google Scholar 

  • Martín-García J (2003) Teoría y ejercicios prácticos de dinámica de sistemas. Universidad Politécnica de Cataluña. Cátedra UNESCO en Tecnología

    Google Scholar 

  • Misle E (2003) Caracterización termofisiológica del ritmo de absorción de nutrientes del melón (Cucumis melo L. var. reticulatus Naud.). Latinam J Agric Env Sci 30:39–50

    Google Scholar 

  • Misle E (2006) Allometric determination between mineral absorption and biomass in different cultivated species. Latinam J Agric Env Sci 33:67–71

    Google Scholar 

  • Misle E (2008) Modelo alométrico para la acumulación de nutrientes de los cultivos. Resúmenes XXI Congreso Argentino de la Ciencia del Suelo. Asociación Argentina de la Ciencia del suelo. ISBN 978-987-9260-61-6, p 185

    Google Scholar 

  • Misle E (2013) Simulating the accumulation of mineral nutrients by crops: an allometric proposal for fertigation. J Plant Nutr 36:1327–1343

    Article  CAS  Google Scholar 

  • Misle E, Garrido E (2008) Determination of crop nutrient accumulation under water or saline stress through an allometric model. In: Proceedings of 17th International Symposium of the International Scientific Centre for Fertilizers (CIEC). El-Fouly MM, Haneklaus S, Hera C, Rietz RM, Schung E, Abdel-Magid, AA (eds). Nov 24-27 2008. CIEC and National Research Center, El-Zaiem Press, Cairo, Egypt, pp 401–409

    Google Scholar 

  • Misle E, Moreno R, Pino C, Arriola M (2009) Producción y ritmo de acumulación de nutrientes del pimiento cultivado en forma orgánica y convencional. Resúmenes XVIII Congreso Latinoamericano de la Ciencia del Suelo, Nov. 16–20, San José, Costa Rica

    Google Scholar 

  • Misle E, Kahlaoui B, Hachicha M (2013) Allometric equation for crop response to soil salinity. In: Proceedings of the 2nd International Conference—Optimum Utilization of Salt Affected Ecosystems in Arid Regions, 9–12 September 2013, Cairo, Egypt

    Google Scholar 

  • Moreira Barradas JM, Matula S, Dolezal F (2012) A decision support system-fertigation simulator (DSS-FS) for design and optimization of sprinkler and drip irrigation systems. Comput Electron Agric 86:111–119

    Article  Google Scholar 

  • Nawaz F, Ahmad R, Waraich EA, Naeem MS, Shabbir RN (2012) Nutrient uptake, physiological responses and yield attributes of wheat (Triticum aestivum L.) exposed to early and late drought stress. J Plant Nutr 35:961–974

    Article  CAS  Google Scholar 

  • Nayak AK, Gangwar B, Shukla AK, Mazumdar SP, Kumar A, Raja R, Kumar A, Kumar V, Rai PK, Mohan U (2012) Long-term effect of different integrated nutrient management on soil organic carbon and its fractions and sustainability of rice–wheat system in Indo Gangetic Plains of India. Field Crops Res 127:129–139

    Article  Google Scholar 

  • Niklas K (1994) Plant allometry, 1st edn. The University of Chicago Press, Chicago, USA

    Google Scholar 

  • Norero A (1987a) Fórmula para describir la influencia de la temperatura en procesos biológicos controlados por enzimas. Latinam J Agric Environ Sci 14:107–125

    CAS  Google Scholar 

  • Norero A (1987b) El tautocrón: un concepto biomatemático para definir la longevidad de cultivos anuales. Latinam J Agric Environ Sci 14:195–215

    Google Scholar 

  • Paull J (2008) Trophobiosis theory: a pest starves on a healthy plant. J Biodyn Agric Australia 76:51–54

    Google Scholar 

  • Pearsall WH (1927) Growth studies. VI. On the relative size of plant organs. Ann Bot 41:449–556

    Google Scholar 

  • Pessarakli M (ed) (2002) Handbook of plant and crop physiology. Second edition. Revised and expanded. Marcel Dekker, New York

    Google Scholar 

  • Poorter H (2002) Plant growth and carbon economy. In: Encyclopedia of life sciences. Macmillan Publishers Ltd, Nature Publishing Group, London

    Google Scholar 

  • Priestley CHB, Taylor RJ (1972) On the assessment of surface heat flux and evaporation using large-scale parameters. Mon Weather Rev 100:81–92

    Article  Google Scholar 

  • Rashed R (1996) Algebra. In: Encyclopedia of the history of Arabic science volume 2. Rashed R. (ed), Routledge (Taylor & Francis), London

    Google Scholar 

  • Rejili M, Vadel AM, Guetet A, Neffatti M (2007) Effect of NaCl on the growth and the ionic balance K+/Na+ of two populations of Lotus creticus (L.) (Papilionaceae). S Afr J Bot 73:623–631

    Article  CAS  Google Scholar 

  • Rincón L, Sáez J, Balsalobre E, Pellicer C (1995) Crecimiento y absorción de nutrientes del pimiento grueso en cultivo bajo invernadero. Invest Agr Prod Prot Veg 10:47–59

    Google Scholar 

  • Rincón L, Sáez J, Pérez J, Pellicer C, Gómez M (1998) Crecimiento y absorción de nutrientes del melón bajo invernadero. Invest Agr Prod Prot Veg 13:111–120

    Google Scholar 

  • Rincón L, Sáez J, Pérez J, Gómez M, Pellicer C (1999) Crecimiento y absorción de nutrientes del brócoli. Invest Agr Prod Prot Veg 14:225–236

    Google Scholar 

  • Rincón L, Pellicer C, Sáez J, Abadía A, Pérez A, Marín C (2001) Crecimiento vegetativo y absorción de nutrientes de la coliflor. Invest Agr Prod Prot Veg 16:119–130

    Google Scholar 

  • Rincón L, Pellicer C, Sáez J, Pérez A, Sánchez A (2002) Crecimiento vegetativo y absorción de nutrientes del apio en fertirrigación. Invest Agr Prod Prot Veg 17:291–301

    Google Scholar 

  • Ritchie J, NeSmith D (1991) Temperature and crop development. In: Hanks J, Ritchie JT (eds) Modelling plant and soil systems. Agronomy series 31. American Society of Agronomy, Madison, WI, pp 5–29

    Google Scholar 

  • Riveros L (1988) Ritmo de crecimiento y absorción de nitrógeno, fósforo y potasio del melón reticulado (Cucumis melo L. var reticulatus Naud) y efecto de la nutrición en algunas características de calidad del fruto durante el almacenamiento en post-cosecha. Thesis, Pontificia Universidad Católica de Chile, Santiago

    Google Scholar 

  • Rodríguez J, Gil G, Callejas E, Urzúa H, Suárez D (1974) Absorción de nutrientes minerales por la vid cv. Cabernet Sauvignon durante una estación de desarrollo y su distribución en los órganos aéreos. Latinam J Agric Environ Sci 1:98–105

    Google Scholar 

  • Rouphael Y, Cardarelli M, Schwarz D, Franken P, Colla G (2012) Effects of drought on nutrient uptake and assimilation in vegetable crops. In: Aroca R (ed) Plant responses to drought stress. Springer, Berlin

    Google Scholar 

  • Roy RN, Finck A, Blair GJ, Tandon HLS (2006) Plant nutrition for food security. A guide for integrated nutrient management, vol 16. FAO Fertilizer and Plant Nutrition Bulletin, Rome

    Google Scholar 

  • Sen DN, Kasera PK, Mohammed S (2002) Biology and physiology of saline plants. In: Pessarakli M (ed) Handbook of plant and crop physiology. 2d edition. Revised and expanded. Marcel Dekker, NY, USA, pp 563–581

    Google Scholar 

  • Sethuraman G, Naidu S (2008) International encyclopaedia of agricultural science and technology. Mittal Publications, New Delhi, India

    Google Scholar 

  • Sharpe PJH, De Michele DW (1977) Reaction kinetics of poikilotherm development. J Theor Biol 64:649–670

    Article  PubMed  CAS  Google Scholar 

  • Shiyab SM, Shatnawi MA, Shibli RA, Al Smeirat NG, Ayad J, Akash MW (2013) Growth, nutrient acquisition and physiological responses of hydroponic grown tomato to sodium chloride salt induced stress. J Plant Nutr 36:665–676

    Article  CAS  Google Scholar 

  • Srinivasarao C, Venkateswarlu B, Mahabaleswara Hegde D, Rao KV, Kundu S (2013) Use of organic fertilizers alone or in combination with inorganic ones. In: Rengel Z (ed) Improving water and nutrient-use efficiency in food production systems. Wiley, Iowa, USA, pp 235–261

    Chapter  Google Scholar 

  • Tijskens L, Verdenius F (2000) Summing up dynamics: modelling biological processes in variable temperature scenarios. Agric Syst 66:1–15

    Article  Google Scholar 

  • Van Straalen NM (1983) Physiological time and time-invariance. J Theor Biol 104:349–357

    Article  PubMed  Google Scholar 

  • Wang M, Zheng Q, Shen Q, Guo S (2013) The critical role of potassium in plant stress response. Int J Mol Sci 14:7370–7390

    Article  PubMed  CAS  Google Scholar 

  • Welch RM, Graham RD (1999) A new paradigm for world agriculture: meeting human needs Productive, sustainable, nutritious. Field Crops Res 60:1–10

    Article  Google Scholar 

  • West G, Brown J, Enquist B (1997) A general model for the origin of allometric scaling laws in biology. Science 276:122–126

    Article  PubMed  CAS  Google Scholar 

  • Whitmore AP (1988) A function for describing nitrogen uptake and dry matter production by winter barley crops. Plant Soil 111:53–58

    Article  CAS  Google Scholar 

  • Whitmore AP, Addiscott TM (1987) A function for describing nitrogen uptake, dry matter production and rooting by wheat crops. Plant Soil 101:51–60

    Article  CAS  Google Scholar 

  • Wright AL, Provin TL, Hons FM, Zuberer DA, White RH (2007) Nutrient accumulation and availability in compost-amended turfgrass soil. Hortsci 42:1473–1477

    Google Scholar 

  • Xie W, Wang G, Zhang Q (2007) Potential production simulation and optimal nutrient management of two hybrid rice varieties in Jinhua, Zhejiang Province, China. J Zhejiang Univ 8:486–492

    Article  CAS  Google Scholar 

  • Zhang F, Cui Z, Chen X, Ju X, Shen J, Chen Q, Liu X, Zhang W, Mi G, Fan M, Jiang R (2012) Chapter one—integrated nutrient management for food security and environmental quality in China. Adv Agron 116:2–269

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique Misle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Misle, E., Kahlaoui, B., Garrido, E., Hachicha, M. (2014). Using an Allometric Model for the Accumulation of Mineral Nutrients in Crops Under Saline and Water Stress: A Field Experience in Fertigation. In: Ahmad, P., Wani, M., Azooz, M., Tran, LS. (eds) Improvement of Crops in the Era of Climatic Changes. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8830-9_4

Download citation

Publish with us

Policies and ethics