Skip to main content

Advertisement

Log in

Adapting agriculture to climate change: a review

Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

The agricultural sector is highly vulnerable to future climate changes and climate variability, including increases in the incidence of extreme climate events. Changes in temperature and precipitation will result in changes in land and water regimes that will subsequently affect agricultural productivity. Given the gradual change of climate in the past, historically, farmers have adapted in an autonomous manner. However, with large and discrete climate change anticipated by the end of this century, planned and transformational changes will be needed. In light of these, the focus of this review is on farm-level and farmers responses to the challenges of climate change both spatially and over time. In this review of adapting agriculture to climate change, the nature, extent, and causes of climate change are analyzed and assessed. These provide the context for adapting agriculture to climate change. The review identifies the binding constraints to adaptation at the farm level. Four major priority areas are identified to relax these constraints, where new initiatives would be required, i.e., information generation and dissemination to enhance farm-level awareness, research and development (R&D) in agricultural technology, policy formulation that facilitates appropriate adaptation at the farm level, and strengthening partnerships among the relevant stakeholders. Forging partnerships among R&D providers, policy makers, extension agencies, and farmers would be at the heart of transformational adaptation to climate change at the farm level. In effecting this transformational change, sustained efforts would be needed for the attendant requirements of climate and weather forecasting and innovation, farmer’s training, and further research to improve the quality of information, invention, and application in agriculture. The investment required for these would be highly significant. The review suggests a sequenced approach through grouping research initiatives into short-term, medium-term, and long-term initiatives, with each initiative in one stage contributing to initiatives in a subsequent stage. The learning by doing inherent in such a process-oriented approach is a requirement owing to the many uncertainties associated with climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • ABARES (2011) The impact of recent flood events on commodities. ABARES Special Report, Canberra. Available at http://www.abares.gov.au

  • Abildtrup J, Gylling M (2001) Climate change and regulation of agricultural land use: a literature survey on adaptation options and policy measures. Danish Institute of Agricultural and Fisheries Economics Farm Management and Production Systems Division. Available at http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.194.8068&rep=rep1&type=pdf

  • Abildtrup J, Audsley E, Fekete-Farkas M, Giupponi C, Gylling M, Rosato P, Rounsevell M (2006) Socio-economic scenario development for the assessment of climate change impacts on agricultural land use: a pairwise comparison approach. Environ Sci Pol 9:101–115. doi:10.1016/j.envsci.2005.11.002

    Google Scholar 

  • Adams RM, Hurd BH, Lenhart S, Leary N (1998) Effects of global climate change on agriculture: an interpretative review. Clim Res 11:19–30

    Google Scholar 

  • ADB (2009) Building climate resilience in the agriculture sector in Asia and the Pacific. Asian Development Bank, Philippines. Available at http://www.adb.org

  • Adger WN, Agrawala S, Mirza MMQ, Conde C, O’Brien K, Pulhin J, Pulwarty R, Smit B, Takahashi K (2007) Assessment of adaptation practices, options, constraints and capacity. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 717–743

    Google Scholar 

  • Allen LH Jr (1990) Plant responses to rising carbon dioxide and potential interactions with air pollutants. J Environ Qual 19:15–34

    Google Scholar 

  • Alley RB, Marotzke J, Nordhaus WD, Overpeck JT, Peteet DM, Pielke RA, Pierrehumbert RT Jr, Rhines PB, Stocker TF, Talley LD, Wallace JM (2003) Abrupt climate change. Science 299:2005–2010. doi:10.1126/science.1081056

    Google Scholar 

  • Alves LM, Marengo J (2010) Assessment of regional seasonal predictability using the PRECIS regional climate modeling system over South America. Theor Appl Climatol 100:337–350. doi:10.1007/s00704-009-0165-2

    Google Scholar 

  • Amthor JS (2000) The McCree–de Wit–Penning de Vries–Thornley respiration paradigms: 30 years later. Ann Bot 86:1–20. doi:10.1006/anbo.2000.1175

    Google Scholar 

  • Anderson WK (2010) Closing the gap between actual and potential yield of rainfed wheat. The impacts of environment, management and cultivar. Field Crop Res 116:14–22

    Google Scholar 

  • Anwar MR, O’Leary G, McNeil D, Hossain H, Nelson R (2007) Climate change impact on rainfed wheat in south-eastern Australia. Field Crop Res 104:139–147

    Google Scholar 

  • Anwar MR, Rodriguez D, Liu DL, Power S, O’Leary GJ (2008) Quality and potential utility of ENSO-based forecasts of spring rainfall and wheat yield in South Eastern Australia. Aust J Agric Res 59:112–126

    Google Scholar 

  • Ashmore MR (2002) Effects of oxidants at the whole plant and community level. In: Bell JNB, Treshow M (eds) Air pollution and plant life. John Wiley, Chichester, pp 89–118

    Google Scholar 

  • Ashmore MR (2005) Assessing the future global impacts of ozone on vegetation. Plant Cell Environ 28:949–964

    Google Scholar 

  • Australian High Commission (2011) Australia helping farmers adapt to climate change. Public Affairs Section at the Australian High Commission India, New Delhi. Available at http://www.india.embassy.gov.au/ndli/pa0611.html

  • BassiriRad H, Constable JVH, Lussenhop J, Kimball BA, Norby RJ, Oechel WC, Reich PB, Schlesinger WH, Zitzer S, Sehtiya HL, Silim S (2003) Widespread foliage δ15N depletion under elevated CO2: inferences for the nitrogen cycle. Glob Chang Biol 9:1582–1590. doi:10.1046/j.1529-8817.2003.00679.x

    Google Scholar 

  • Bates BC, Kundzewicz ZW, Wu S, Palutikof JP (eds) (2008) Climate change and water. Technical paper of the intergovernmental panel on climate change. IPCC Secretariat, Geneva, p 210

    Google Scholar 

  • Bell GDH (2011) Cultivated plants of the farm. Cambridge University Press, Cambridge, ISBN 9781107662797, pp 292

  • Betts RA (2012) Integrated approaches to climate-crop modelling: needs and challenges. Phil Trans R Soc B 360:2049–2065. doi:10.1098/rstb.2005.1739

    Google Scholar 

  • Betts RA, Collins M, Hemming DL, Jones CD, Lowe JA, Sanderson MG (2011) When could global warming reach 4 °C? Phil Trans R Soc A 369:67–84. doi:10.1098/rsta.2010.0292

    Google Scholar 

  • Bindi M, Fibbi L, Gozzini B, Orlandini S, Miglietta F (1996) Modelling the impact of future climate scenarios on yield and yield variability of grapevine. Clim Res 7:213–224. doi:10.3354/cr007213

    Google Scholar 

  • Blasing TJ, Solomon AM (1984) Response of the North American corn belt to climate warming. Prog Biomet 3:311–321

    Google Scholar 

  • BoM (2006a) Living with drought. Australian Bureau of Meteorology. Available at http://www.bom.gov.au/climate/drought/livedrought.shtml

  • BoM (2006b) Severe tropical cyclone Larry. Queensland Regional Office, Australian Bureau of Meteorology. Available at http://www.bom.gov.au/weather/qld/cyclone/tc_larry/

  • BoM (2011) Special climate statement 24. An extremely wet end to 2010 leads to widespread flooding across eastern Australia. Available at http://www.bom.gov.au/climate/current/statements/scs24.pdf

  • Bora S, Ceccacci I, Delgado C, Townsend R (2010) Food security and conflict. World Developmental Report 2011, Background Paper. Agriculture and Rural Development Department, World Bank. Available at http://www.worldbank.org/

  • Bowes G (1991) Growth at elevated CO2: photosynthetic responses mediated through Rubisco. Plant Cell Environ 14:795–806

    Google Scholar 

  • Bradshaw B, Dolan H, Smit B (2004) Farm-level adaptation to climatic variability and change: crop diversification in the Canadian prairies. Clim Chang 67:119–141. doi:10.1007/s10584-004-0710-z

    Google Scholar 

  • Brown O, Crawford A (2008) Assessing the security implications of climate change for West Africa: country case studies of Ghana and Burkina Faso. International Institute for Sustainable Development, Canada, 52 pp. Available at http://www.iisd.org/pdf/2008/security_implications_west_africa.pdf

  • Cai W, Shi G, Cowan T, Bi D, Ribbe J (2005) The response of the southern annular mode, the East Australian Current, and the southern mid-latitude ocean circulation to global warming. Geo Res Lett 32:L23706. doi:10.1029/2005GL024701

    Google Scholar 

  • Cai W, Cowan T, Sullivan A (2009) Recent unprecedented skewness towards positive Indian Ocean Dipole occurrences and its impact on Australian rainfall. Geo Res Lett 36:L11705. doi:10.1029/2009GL037604

    Google Scholar 

  • Cai W, van Rensch P, Cowan T, Hendon HH (2011) Teleconnection pathways of ENSO and the IOD and the mechanisms for impacts on Australian rainfall. J Clim 24:3910–3923

    Google Scholar 

  • Canadell JG, Le Quéré C, Raupach MR, Field CB, Buitenhuis ET, Ciais P, Conway TJ, Gillett NP, Houghton RA, Marland G (2007) Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. PANS 104:18866–18870. doi:10.1073/pnas.0702737104

    Google Scholar 

  • Carter TR, Jones RN, Lu X, Bhadwal S, Conde C, Mearns LO, O’Neill BC, Rounsevell MDA, Zurek MB (2007) New assessment methods and the characterisation of future conditions. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 133–171

    Google Scholar 

  • Cassou C (2008) Intraseasonal interaction between the Madden–Julian Oscillation and the North Atlantic Oscillation. Nature 455:523–527

    Google Scholar 

  • Chameides WL, Kasibhatla PS, Yienger J, Levy HI (1994) Growth of continental-scale metro-agroplexes, regional ozone pollution, and world food production. Science 264:74–77

    Google Scholar 

  • Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought—from genes to the whole plant. Func Plant Bio 30:239–264

    Google Scholar 

  • Chen C, Qian C, Deng A, Zhang W (2011) Progressive and active adaptations of cropping system to climate change in Northeast China. Eur J Agron 38:94–103

    Google Scholar 

  • Cicerone RJ (1987) Changes in stratospheric ozone. Science 237:35–42

    Google Scholar 

  • Cicerone RJ, Oremland RS (1988) Biogeochemical aspects of atmospheric methane. Glob Biogeochem Cycles 2:299–327. doi:10.1029/GB002i004p00299

    Google Scholar 

  • Clark A, Brinkley T, Lamont B, Laughlin G (2000) Exceptional circumstances: a case study in the application of climate information to decision making. In: Cli-Manage Conference, Albury, NSW, 23–25 October 2000. Available at http://adl.brs.gov.au/brsShop/data/12901_alburyfinal.pdf

  • Cleugh H, Smith MS, Battaglia M, Graham P (eds) (2011) Climate change: science and solution for Australia. CSIRO, Collingwood, p 155

    Google Scholar 

  • Cline WR (2007) Global warming and agriculture. Impact estimates by country. Centre for Global Development and Peter G. Peterson Institute for International Economics Washington, DC, 250 pp. Available at http://www.cgdev.org/

  • Coakley SM, Scherm H, Chakraborty S (1999) Climate change and disease management. Annu Rev Phyto 37:399–426

    Google Scholar 

  • Cohen J, Barlow M (2005) The NAO, the AO, and global warming: how closely related? J Clim 18:4498–4513. doi:10.1175/JCLI3530.1

    Google Scholar 

  • Collins M, An, S, Cai W, Ganachaud A, Guilyardi E, Jin F, Jochum M, Lengaigne M, Power S, Timmermann A, Vecchi G, Wittenberg A (2010) The impact of global warming on the tropical Pacific Ocean and El Niño. Nature Geoscience 3. doi:10.1038/NGEO868

  • CSIRO (2009) Indian Ocean temperature link to bushfires. Available at http://www.csiro.au/news/Indian-Ocean-Temp-And-Bushfire.html

  • CSIRO, Bureau of Meteorology (2007) Climate change in Australia. Technical Report, pp 140. Available at http://www.climatechangeinaustralia.gov.au

  • Cullen HM, Kaplan A, Arkin PA, deMenocal PB (2002) Impact of the North Atlantic oscillation on Middle Eastern climate and streamflow. Clim Chang 55:315–338

    Google Scholar 

  • DAFF (2006a) National water initiative. Department of Agriculture, Forestry and Fisheries, Australia. Available at http://www.pmc.gov.au/water_reform/nwi.cfm

  • DAFF (2006b) Contours. Department of Agriculture, Fisheries and Forestry, Australia, 24 pp. Available at http://www.daff.gov.au/__data/assets/pdf_file/0020/98201/contours-dec-06.pdf

  • DAFF (2012) Demonstration of climate change adaptation and mitigation on-farm and food processor projects. Australian Government, Department of Agriculture, Forestry and Fisheries, Australia. Available at http://www.daff.gov.au/. Accessed 28 January 2012

  • Dai A (2011) Drought under global warming: a review. Wiley Interdisciplinary Reviews: Clim Chang 2:45–65

    Google Scholar 

  • Daniel R (2009) Canopy management in the northern grains region. Northern Grower Alliance, Northern Focus, Australian Grain, July–August 2009, pp I–V. Available at http://www.ausgrain.com.au/Back%20Issues/192jagrn09/Ni_Canopy.pdf

  • de Loë R, Kreutzwiser R, Moraru L (2001) Adaptation options for the near term: climate change and the Canadian water sector. Glob Environ Chang 11:231–245

    Google Scholar 

  • Donald A, Meinke H, Power B, Wheeler MC, Maia A, De HN, Stone RC, Ribbe J, White N (2006) Near-global impact of the Madden–Julian oscillation on rainfall. Geo Res Lett 33:L09704. doi:10.1029/2005GL025155

    Google Scholar 

  • Drake BG, Gonzàlez-Meler MA, Long SP (1997) More efficient plants: a consequence of rising atmospheric CO2? Annu Rev Plant Physio Plant Mole Bio 48:609–639

    Google Scholar 

  • Easterling W, Aggarwal P, Batima P, Brander K, Erda L, Howden M, Kirilenko A, Morton J, Soussana JF, Schmidhuber J, Tubiello F (2007) Food, fibre and forest products. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 273–313

    Google Scholar 

  • Emanuel K (2005) Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436:686–688

    Google Scholar 

  • Erda L (1996) Agricultural vulnerability and adaptation to global warming in China. Water Air Soil Poll 92:63–73. doi:10.1007/BF00175553

    Google Scholar 

  • FAO (2006) Livestock’s long shadow: environmental issues and options. FAO, Rome. Available at http://www.fao.org

  • FAO (2007) Adaptation to climate change in agriculture, forestry, and fisheries: perspective, framework and priorities. FAO, Rome. Available at http://www.fao.org

  • FAOSTAT (2012) Food And Agriculture Organization Of The United Nations. Available at http://faostat.fao.org/site/444/default.aspx#ancor. Accessed 16 January 2012

  • Finlay K, Aurambout J, De Barro P, Trebicki P, Griffiths W, Kriticos D, Parry H, Luck J (2011) Climate change implications for the pest status and vectoring potential of the bird cherry-oat aphid, Rhopalosiphum padi. Science Exchange 2011, Preparedness and Prevention, CRC10071: Climate Change. Available at http://www.crcplantbiosecurity.com.au/publications/npb1615

  • Fischer G, Shah M, Velthuizen H (2002) Climate change and agricultural vulnerability. Special report as contribution to the World Summit on Sustainable Development, Johannesburg 2002. International Institute for Applied Systems Analysis, Laxenburg, p 152

    Google Scholar 

  • Fischer G, Shah M, Tubiello FN, Velthuizen H (2005) Socio-economic and climate change impacts on agriculture: an integrated assessment, 1990–2080. Philos Trans R Soc Lond B Biol Sci 360:2067–2083. doi:10.1098/rstb.2005.1744

    Google Scholar 

  • Folland CK, Karl TR, Salinger MJ (2002) Observed climate variability and change. Weather 57:268–278

    Google Scholar 

  • García-Ispierto I, López-Gatius F, Bech-Sabat G, Santolaria P, Yániz JL, Nogareda C, De Rensis F, López-Béjar M (2007) Climate factors affecting conception rate of high producing dairy cows in northeastern Spain. Theriogenology 67:1379–1385

    Google Scholar 

  • Garnaut R (2011a) The science of climate change. Garnaut Climate Change Review—Update 2011, Canberra. Available at http://www.ag.gov.au/cca

  • Garnaut R (2011b) The science of climate change. Garnaut Climate Change Review—Update 2011, Canberra. Available at http://www.ag.gov.au/cca

  • Gifford RM (1992) Implications of the globally increasing atmospheric CO2 concentration and temperature for the Australian Terrestrial carbon budget: integration using a simple model. Aust J Bot 40:527–543

    Google Scholar 

  • Gonzalez-Meler MA, Taneva L, Trueman RJ (2004) Plant respiration and elevated atmospheric CO2 concentration: cellular responses and global significance. Ann Bot 94:647–656. doi:10.1093/aob/mch189

    Google Scholar 

  • Goudriaan J, Zadoks JC (1995) Global climate change: modelling the potential responses of agro-ecosystems with special reference to crop protection. Environ Pollut 87:215–224

    Google Scholar 

  • GRDC (2008) Grain Research & Development Corporation. An economic analysis of GRDC’s investment climate research (2002–2007). GRDC Impact Assessment Report Series. Available at http://www.grdc.com.au/uploads/documents/GRDC_ImpAss_ClimateCluster.pdf

  • Gregory PJ, Johnson SN, Newton AC, Ingram JSI (2009) Integrating pests and pathogens into the climate change/food security debate. J Exp Bot 60:2827–2838. doi:10.1093/jxb/erp080

    Google Scholar 

  • Hall SJ, Matson PA, Roth P (1996) NO x emission from soil: implications for air quality modeling in agricultural regions. Ann Rev Ene Envir 21:311–346

    Google Scholar 

  • Hamilton JG, Dermody O, Aldea M, Zangerl AR, Rogers A, Berenbaum MR, Delucia EH (2005) Anthropogenic changes in tropospheric composition increase susceptibility of soybean to insect herbivory. Envir Ento 34:479–485. doi:10.1603/0046-225X-34.2.479

    Google Scholar 

  • Hammer GL, Holzworth DP, Stone R (1996) The value of skill in seasonal forecasting to wheat crop management in a region with high climate variability. Aust J Agric Res 47:717–737

    Google Scholar 

  • Harries JE (1996) The greenhouse Earth: a view from space. Quart J Meteo Soc 122:799–818

    Google Scholar 

  • Hazell P, Wood S (2008) Drivers of change in global agriculture. Philos Trans R Soc BBiol Sci 363:495–515. doi:10.1098/rstb.2007.2166

    Google Scholar 

  • Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Xiaosu D (eds) (2001) Climate change 2001: the scientific basis. Contributions of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 881 pp

  • Howden SM, Soussana JF, Tubiello FN, Chhetri N, Dunlop M, Meinke H (2007) Adapting agriculture to climate change. PNAS 104:19691–19696. doi:10.1073/pnas.0701890104

    Google Scholar 

  • Hulme M, Doherty R, Ngara T, New MG, Lister D (2001) African climate change: 1900–2100. Clim Res 17:145–168

    Google Scholar 

  • IFAD (2012) Livestock and climate change. Livestock thematic papers. Available at http://www.ifad.org. Accessed 28 January 2012

  • IPCC (2001) Climate change 2001: working group I: the scientific basis. Available at http://www.grida.no/publications/other/ipcc_tar/

  • IPCC (2007a) In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, p 879

    Google Scholar 

  • IPCC (2007b) Summary for policymakers. In: Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA (eds) Climate change 2007: mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (2010) Meeting Report of the Intergovernmental Panel on Climate Change Expert Meeting on Assessing and Combining Multi Model Climate Projections. In: Stocker TF, Qin D, Plattner GK, Tignor M, Midgley PM (eds) IPCC Working Group I Technical Support Unit, University of Bern, Bern, Switzerland, 117 pp. Available at http://www.ipcc.ch/pdf/supporting-material/expert-meeting-assessing-multi-model-projections-2010-01.pdf

  • Jablonski LM, Wang X, Curtis PS (2002) Plant reproduction under elevated CO2 conditions: a meta-analysis of reports on 79 crop and wild species. New Phytol 156:9–26

    Google Scholar 

  • Jones C, Waliser DE, Lau KM, Stern W (2004) Global occurrences of extreme precipitation and the Madden–Julian oscillation: observations and predictability. J Clim 17:4575–4589. doi:10.1175/3238.1

    Google Scholar 

  • Katerji N, Mastrorilli M, Rana G (2008) Water use efficiency of crops cultivated in the Mediterranean region: review and analysis. Eur J Agron 28:493–507

    Google Scholar 

  • Kates RW, Travis WR, Wilbanks TJ (2012) Transformational adaptation when incremental adaptations to climate change are insufficient. PANS 109:7156–7161. doi:10.1073/pnas.1115521109

    Google Scholar 

  • Kawatani Y, Hamilton K, Watanabe S (2011) The quasi-biennial oscillation in a double CO2 climate. J Atmos Sci 68:265–283

    Google Scholar 

  • Keating BA, Carberry PS, Hammer GL, Probert ME, Robertson MJ, Holzworth D, Huth NI, Hargreaves JNG, Meinke H, Hochman Z, McLean G, Verburg K, Snow V, Dimes JP, Silburn M, Wang E, Brown S, Bristow KL, Asseng S, Chapman S, McCown RL, Freebairn DM, Smith CJ (2003) An overview of APSIM, a model designed for farming systems simulation. Eur J Agron 18:267–288

    Google Scholar 

  • Keenan TD, Cleugh HA (eds) (2011) Climate science update: a report to the 2011 Garnaut Review. CAWCR Technical Report No. 036

  • Kim HY, Lieffering M, Miura S, Kobayashi K, Okada N (2001) Growth and nitrogen uptake of CO2-enriched rice under field conditions. New Phytol 150:223–229

    Google Scholar 

  • Kimball BA (1983) Carbon dioxide and agricultural yield: an assemblage and analysis of 430 prior observations. Agron J 75:779–788

    Google Scholar 

  • Kimball BA, Kobayashi K, Bindi M (2002) Responses of agricultural crops to free-air CO2 enrichment. Adv Agron 77:293–368

    Google Scholar 

  • Kirono DGC, Tapper NJ (1999) ENSO rainfall variability and impacts on crop production in Indonesia. Phys Geog 20:508–519

    Google Scholar 

  • Kriticos D, Filmer M (2007) Weeds will thrive on climate change. Farming ahead. Available at http://www.csiro.au/Outcomes/Climate/Adapting/Weeds-will-thrive-on-climate-change.aspx

  • Kron W, Berz G (2007) Flood disasters and climate change: trends and options—a (re-)insurer’s view. In: Lozán JL, Grabl H, Hupfer P, Menzel L, Schönwiese CD (eds) Global change: enough water for all? University of Hamburg, Hamburg, pp 268–273

    Google Scholar 

  • Krupa SV, Kickert RN (1993) The effects of elevated ultraviolet (UV)-B radiation on agricultural production. Report submitted to the Formal Commission on ‘Protecting the Earth’s Atmosphere’ of the German Parliament, Bonn, Germany, 432 pp

  • Le Quere C, Raupach MR, Canadell JG, Marland G et al (2009) Trends in the sources and sinks of carbon dioxide. Nature Geo 2:831–836. doi:10.1038/ngeo689

    Google Scholar 

  • Leakey ADB, Ainsworth EA, Bernacchi CJ, Rogers A, Long SP, Ort DR (2009) Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. J Exp Bot 60:2859–2876. doi:10.1093/jxb/erp096

    Google Scholar 

  • Lee JS (2011) Combined effect of elevated CO2 and temperature on the growth and phenology of two annual C3 and C4 weedy species. Agri Eco Environ 140:484–491

    Google Scholar 

  • Liu DL, Zuo H (2012) Statistical downscaling of daily climate variables for climate for climate change impact assessment over New South Wales, Australia. Clim Chang. doi:10.1007/s10584-012-0464-y

  • Liu DL, Timbal B, Mo J, Fairweather H (2011) A GIS-based climate change adaptation strategy tool. Int J Clim Chang Strat Man 3:140–155

    Google Scholar 

  • Lobell DB (2007) Changes in diurnal temperature range and national cereal yields. Agric For Meteorol 145:229–238

    Google Scholar 

  • Lobell DB, Field CB (2007) Global scale climate–crop yield relationships and the impact of recent warming. Environ Res Lett 2:014002. doi:10.1088/1748-9326/2/1/014002

    Google Scholar 

  • Lobell DB, Field CB (2008) Estimation of the carbon dioxide (CO2) fertilization effect using growth rate anomalies of CO2 and crop yields since 1961. Glob Chang Biol 14:39–45

    Google Scholar 

  • Loya WM, Pregitzer KS, Karberg NJ, King JS, Giardina JP (2003) Reduction of soil carbon formation by tropospheric ozone under increased carbon dioxide levels. Nature 425:705–707

    Google Scholar 

  • Lucier A, Palmer M, Mooney H, Nadelhoffer K, Ojima D, Chavez F (2006) Ecosystems and climate change: research priorities for the U.S. Climate Change Science Program. Recommendations from the Scientific Community. Report on an Ecosystems Workshop, prepared for the Ecosystems Interagency Working Group. Special Series No. SS-92-06, University of Maryland Center for Environmental Science, Chesapeake Biological Laboratory, Solomons, 50 pp

  • Luo Q, Bellotti W, Williams M, Wang E (2009) Adaptation to climate change of wheat growing in South Australia: analysis of management and breeding strategies. Agri Eco Environ 129:261–267

    Google Scholar 

  • Malone RW, Meek DW, Hatfield JL, Mann ME, Jaquis RJ, Ma L (2009) Quasi-biennial corn yield cycles in Iowa. Agric For Meteorol 149:1087–1094

    Google Scholar 

  • Marshall GJ (2003) Trends in the southern annular mode from observations and reanalyses. J Clim 16:4134–4143

    Google Scholar 

  • Marshall GJ, Stott PA, Turner J, Connolley WM, King JC, Lachlan-Cope TA (2004) Causes of exceptional atmospheric circulation changes in the Southern Hemisphere. Geo Res Lett 31:L14205. doi:10.1029/2004GL019952

    Google Scholar 

  • Marshall NA, Stokes CJ, Howden SM, Nelson RN (2010) Enhancing adaptive capacity. In: Stokes C, Howden M (eds) Adapting agriculture to climate change: preparing Australian agriculture, forestry and fisheries for the future. CSIRO, Collingwood, pp 245–256

    Google Scholar 

  • Mathhews R, Wassmann R (2003) Modelling the impacts of climate change and methane emission reductions on rice production: a review. Eur J Agron 19:573–598

    Google Scholar 

  • Meinke H, Stone RC (2005) Seasonal and inter-annual climate forecasting: the new tool for increasing preparedness to climate variability and change in agricultural planning and operations. Clim Chang 70:221–253

    Google Scholar 

  • Meinke H, Abawi Y, Stone RC, Hammer GL, Potgieter AB, Nelson R, Howden SM, Baethgen W, Selvaraju R (2003) Climate risk management and agriculture in Australia and beyond: linking research to practical outcomes. In: The International Conference on Total Disaster Risk Management Report. Asian Disaster Reduction Center (ADRC) and The United Nations Office for the Coordination of Humanitarian Affairs (OCHA), 2–4 December 2003, Kobe, Japan, pp 83–87

  • Meinke H, Sivakumar MVK, Motha RP, Nelson R (2007) Preface: climate predictions for better agricultural risk management. Aust J Agric Res 58:935–938

    Google Scholar 

  • Miller CJ, Howden SM, Jones RN (2010) Intensive livestock industries. In: Stokes C, Howden M (eds) Adapting agriculture to climate change: preparing Australian agriculture, forestry and fisheries for the future. CSIRO, Collingwood, pp 171–185

    Google Scholar 

  • Moreddu C (2000) Overview of farm household strategies and government intervention. In: OECD (Organization for Economic Cooperation and Development), Income Risk Management in Agriculture, Paris

  • Moss RH, Edmonds JE, Hibbard KA, Manning MR, Rose SK, van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T, Meehl GA, Mitchell JFB, Nakicenovic N, Riahi K, Smith SJ, Stouffer RJ, Thomson AM, Weyant JP, Wilbanks TJ (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756. doi:10.1038/nature08823

    Google Scholar 

  • Murray–Darling Basin Authority (2011) The proposed “environmentally sustainable level of take” for surface water of the Murray–Darling Basin: methods and outcomes. MDBA publication no. 226/11, Murray–Darling Basin Authority, Canberra. Available at http://www.mdba.gov.au/

  • Nakicenovic N, Swart R (eds) (2000) IPCC special report on emissions scenarios. Cambridge University Press, UK, p 570

    Google Scholar 

  • Nicholls RJ, Tol RSJ (2006) Impacts and responses to sea-level rise: a global analysis of the SRES scenarios over the twenty-first century. Phil Trans R Soc A 364:1073–1095

    Google Scholar 

  • Nicholls RJ, Hanson SE, Lowe J, Vaughan DA, Lenton T, Ganopolski A, Tol RSJ, Vafeidis AT (2006) Metrics for assessing the economic benefits of climate change policies: sea level rise. Report to the OECD, ENV/EPOC/GSP(2006)3/FINAL, Organisation for Economic Co-operation and Development (OECD), 128 pp

  • Nicholls RJ, Wong PP, Burkett VR, Codignotto JO, Hay JE, McLean RF, Ragoonaden S, Woodroffe CD (2007) Coastal systems and low-lying areas. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 315–356

    Google Scholar 

  • Nyenzi B, Lefale PF (2006) El Niño Southern Oscillation (ENSO) and global warming. Adv Geosci 6:95–101

    Google Scholar 

  • Oladipo EO (1989) The quasi-periodic fluctuations in the drought indices over the North American Great Plains. Nat Haz 2:1–16. doi:10.1007/BF00124754

    Google Scholar 

  • Olesen JE, Trnka M, Kersebaum KC, Skjelvåg AO, Seguin B, Peltonen-Sainio P, Rossi F, Kozyra J, Micale F (2011) Impacts and adaptation of European crop production systems to climate change. Eur J Agron 34:96–112

    Google Scholar 

  • Ortiz R, Sayre KD, Govaerts B, Gupta R, Subbarao GV, Ban T, Hodson D, Dixon JM, Ortiz-Monasterio JI, Reynolds M (2008) Climate change: can wheat beat the heat? Agri Ecosys Environ 126:46–58

    Google Scholar 

  • Palmer WC (1965) Meteorological drought. Research Paper No. 45, US Dept. of Commerce, 58. Available at http://www.ncdc.noaa.gov/oa/climate/research/

  • Parry ML (1978) Climatic change, agriculture and settlement. William Dawson and Sons, Foldestone, p 214. ISBN 0208017224

    Google Scholar 

  • Parry ML, Rosenzweig C, Iglesias A, Livermore M, Fischer G (2004) Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Glob Environ Chang 14:53–67. doi:10.1016/j.gloenvcha.2003.10.008

    Google Scholar 

  • Parry ML, Rosenzweig C, Livermore M (2005) Climate change, global food supply and risk of hunger. Phil Trans R Soc B 360:2125–2138. doi:10.1098/rstb.2005.1751

    Google Scholar 

  • Passioura JB (2002) Environmental biology and crop improvement. Funct Plant Biol 29:537–546

    Google Scholar 

  • Pidwirny M (2006) The carbon cycle. Fundamentals of physical geography, 2nd edn. Available at http://www.physicalgeography.net/fundamentals/9r.html. Accessed 16 January 2012

  • Pittock AB (1975) Climate change and patterns of variability in Australian rainfall. Search 6:498–504

    Google Scholar 

  • Porter JR, Gawith M (1999) Temperatures and the growth and development of wheat: a review. Eur J Agron 10:23–36

    Google Scholar 

  • Porter JR, Semenov MA (2005) Crop responses to climatic variation. Phil Trans R Soc B 360:2021–2035

    Google Scholar 

  • Potgieter AB, Hammer GL, Doherty A, de Voil P (2005) A simple regional-scale model for forecasting sorghum yield across North-Eastern Australia. Agric For Meteorol 132:143–153

    Google Scholar 

  • Potgieter AB, Hammer GL, Doherty A (2006) Oz-wheat: a regional-scale crop yield simulation model for Australian wheat. Queensland Department of Primary Industries & Fisheries, Brisbane. Available at http://www.dpi.qld.gov.au/home.htm

  • Power S, Colman R (2006) Multi-year predictability in a coupled general circulation model. Clim Dyn 26:247–272

    Google Scholar 

  • Power S, Casey T, Folland C, Colman A, Mehta V (1999) Inter-decadal modulation of the impact of ENSO on Australia. Clim Dyn 15:319–324

    Google Scholar 

  • Power S, Haylock M, Colman R, Wang X (2006) The predictability of interdecadal changes in ENSO activity and ENSO teleconnections. J Clim 19:4755–4771

    Google Scholar 

  • Queensland Government (2006) TC Larry Report, 28March 2006. Available at http://www.disaster.qld.gov.au/news/view.asp?id=1323

  • Rahmstorf S, Cazenave A, Church JA, Hansen JE, Keeling RF, Parker DE, Somerville RCJ (2007) Recent climate observations compared to projections. Science 316:709–710. doi:10.1126/science.1136843

    Google Scholar 

  • Raupach MR, Marland G, Ciais P, Le Quéré C, Canadell JG, Klepper G, Field CB (2007) Global and regional drivers of accelerating CO2 emissions. PNAS 104:10288–10293. doi:10.1073/pnas.0700609104

    Google Scholar 

  • Reynolds M, Bonnett D, Chapman SC, Furbank RT, Manès Y, Mather DE, Parry MAJ (2011) Raising yield potential of wheat. I. Overview of a consortium approach and breeding strategies. J Exp Bot 62:439–452. doi:10.1093/jxb/erq311

    Google Scholar 

  • Ronald P (2011) Plant genetics, sustainable agriculture and global food security. Genetics 188:11–20

    Google Scholar 

  • Rosenzweig C (1985) Potential CO2-induced climatic effects on North American wheat producing regions. Clim Chang 7:367–389

    Google Scholar 

  • Rosenzweig C, Hillel D (1995) Climate change and the global harvest: potential impacts on the greenhouse effect on agriculture. Oxford University Press, New York

    Google Scholar 

  • Rosenzweig C, Hillel D (2008) Climate change and the global harvest: impacts of El Niño and other oscillations on agroecosystems. Oxford University Press, New York

    Google Scholar 

  • Rosenzweig C, Tubiello FN, Goldberg RA, Mills E, Bloomfield J (2002) Increased crop damage in the US from excess precipitation under climate change. Glob Envion Chang 12:197–202

    Google Scholar 

  • Rosenzweig C, Casassa G, Karoly DJ, Imeson A, Liu C, Menzel A, Rawlins S, Root TL, Seguin B, Tryjanowski P (2007) Assessment of observed changes and responses in natural and managed systems. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 79–131

    Google Scholar 

  • Roudier P, Sultan B, Quirion P, Berg A (2011) The impact of future climate change on West African crop yields: what does the recent literature say? Glob Envi Chang 21:1073–1083. doi:10.1016/j.gloenvcha.2011.04.007

    Google Scholar 

  • Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401:360–363

    Google Scholar 

  • ScienceDaily (2000) Science news: climate change shifts frost seasons & plant growth. Available at http://www.sciencedaily.com/releases/2000/10/001017073120.htm

  • Scroxton N, Bonham SG, Rickaby REM, Lawrence SHF, Hermoso M, Haywood AM (2011) Persistent El Niño–Southern Oscillation variation during the Pliocene Epoch. Paleoceanography 26(PA2215):1–13. doi:10.1029/2010PA002097

    Google Scholar 

  • Shimono H (2011) Earlier rice phenology as a result of climate change can increase the risk of cold damage during reproductive growth in northern Japan. Agric Ecosys Envir 144:201–207

    Google Scholar 

  • Smit B, Skinner MW (2002) Adaptation options in agriculture to climate change: a typology. Mitig Adapt Strat Glob Chang 7:85–114. doi:10.1023/A:1015862228270

    Google Scholar 

  • Smith MS, Ash A (2011) Adaptation: reducing risk, gaining opportunity. In: Cleugh H, Smith MS, Battaglia M, Graham P (eds) Climate change: science and solution for Australia. CSIRO, Collingwood, pp 59–72

    Google Scholar 

  • Solomon S, Plattner G, Knutti R, Friedlingstein P (2009) Irreversible climate change due to carbon dioxide emissions. PNAS 106:1704–1709. doi:10.1073/pnas.0812721106

    Google Scholar 

  • Sombroek WG (1990) Soils on a warmer earth: tropical and subtropical regions. In: Scharpenseel HW, Schomaker M, Ayoub A (eds) Soils on a warmer earth. Elsevier, Amsterdam, pp 157–174

    Google Scholar 

  • Somerville C, Briscoe J (2001) Genetic engineering and water. Science 292:2217

    Google Scholar 

  • Stephens DJ, Lyons TJ (1998) Variability and trends in sowing dates across the Australian wheatbelt. Aust J Agric Res 49:1111–1118

    Google Scholar 

  • Stern N (2006) The Stern review on the economic effects of climate change. Review 32:793–798. doi:10.1111/j.1728-4457.2006.00153.x

    Google Scholar 

  • Stokes C, Howden M (eds) (2010) Adapting agriculture to climate change: preparing Australian agriculture, forestry and fisheries for the future. CSIRO, Collingwood, p 286

    Google Scholar 

  • Stokes CJ, Crimp S, Gifford R, Ash AJ, Howden SM (2010) Broadacre grazing. In: Stokes C, Howden M (eds) Adapting agriculture to climate change: preparing Australian agriculture, forestry and fisheries for the future. CSIRO, Collingwood, pp 153–170

    Google Scholar 

  • Stone R, Nicholls N, Hammer G (1996) Frost in Northeast Australia: trends and influences of phases of the Southern Oscillation. J Clim 9:1896–1909

    Google Scholar 

  • Tao F, Yokozawa M, Xu Y, Hayashi Y, Zhang Z (2006) Climate changes and trends in phenology and yields of field crops in China, 1981–2000. Agric For Meteorol 138:82–92

    Google Scholar 

  • Tashiro AH, Wardlaw IF (1990) The response to high temperature shock and humidity changes prior to and during the early stages of grain development in wheat. Aust J Plant Physio 17:551–561

    Google Scholar 

  • Teramura AH, Sullivan JH (1994) Effects of UV-B radiation on photosynthesis and growth of terrestrial plants. Photosynthesis Res 39:463–473

    Google Scholar 

  • Teramura AH, Sullivan JH, Ziska LH (1990) Interaction of elevated ultraviolet-B radiation and CO2 on productivity and photosynthetic characteristics in wheat, rice, and soybean. Plant Physiol 94:470–475

    Google Scholar 

  • Terjung WH, Hayes JT, O'Rourke PA, Todhunter PE (1984a) Yield responses of crops to changes in environment and management practices: model sensitivity analysis. 1. Maize. Int J Biometeorology 28:261–278

    Google Scholar 

  • Terjung WH, Hayes JT, O'Rourke PA, Todhunter PE (1984b) Yield responses of crops to changes in environment and management practices: model sensitivity analysis. II. Rice, wheat, and potato. Int J Biometeorology 28:279–292

    Google Scholar 

  • The National Academies Press (2001) Improving the effectiveness of U.S. climate modeling. Panel on improving the effectiveness of U.S. climate modeling, Commission on Geosciences, Environment and Resources, National Research Council. ISBN: 978-0-309-07257-1. National Research Council, Washington, DC, 142 pp. Available at http://www.nap.edu/

  • Thomson AM, Calvin KV, Smith SJ, Kyle GP, Volke A, Patel P, Delgado-Arias S, Bond-Lamberty B, Wise MA, Clarke LE, Edmonds JA (2011) RCP4.5: a pathway for stabilization of radiative forcing by 2100. Clim Chang 109:77–94

    Google Scholar 

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677. doi:10.1038/nature01014

    Google Scholar 

  • Tubiello FN (2005) Climate variability and agriculture: perspectives on current and future challenges. In: Knight B (ed) Impact of climate change, variability and weather fluctuations on crops and their produce markets. Impact Reports, Cambridge

    Google Scholar 

  • Tubiello FN, Soussana JF, Howden SM (2007) Crop and pasture response to climate change. PNAS 104:19686–19690

    Google Scholar 

  • UN (2011) United Nations Press Release, Embargoed Until 3 May 2011, 11:00 A.M., New York Time, World population to reach 10 billion by 2100 if fertility in all countries converges to replacement level. Available at http://esa.un.org/wpp/Other-Information/Press_Release_WPP2010.pdf

  • van Ittersum MK, Howden SM, Asseng S (2003) Sensitivity of productivity and deep drainage of wheat cropping systems in a Mediterranean environment to changes in CO2, temperature and precipitation. Agric Ecosys Environ 97:255–273

    Google Scholar 

  • Vandermeiren K (2005) Impact of rising tropospheric ozone on potato: effects on photosynthesis, growth, productivity and yield quality. Plant Cell Environ 28:982–996

    Google Scholar 

  • van der Werf W, Keesman K, Burgess P, Graves A, Pilbeam D, Incoll LD, Metselaar K, Mayus M, Stappers R, van Keulen H, Palma J, Dupraz C (2007) Yield-SAFE: a parameter-sparse, process-based dynamic model for predicting resource capture, growth, and production in agroforestry systems. Ecological Engineering 29:419–433. doi:10.1016/j.ecoleng.2006.09.017

  • Vines RG (2008) Australian rainfall patterns and the southern oscillation. 2. A regional perspective in relation to Luni-solar (Mn) and Solar-cycle (Sc) signals. Rangel J 30:349–359

    Google Scholar 

  • Visbeck MH, Hurrell JW, Polvani L, Cullen HM (2001) The North Atlantic Oscillation: past, present, and future. PNAS 98:12876–12877. doi:10.1073/pnas.231391598

    Google Scholar 

  • Volk M, Bungener P, Contat F, Montani M, Fuhrer J (2006) Grassland yield declined by a quarter in 5 years of free-air ozone fumigation. Glob Chang Biol 12:74–83

    Google Scholar 

  • Waggoner PE (1983) Agriculture and a climate changed by more carbon dioxide. In: National Research Council, Changing Climate. Report of the Carbon Dioxide Committee, Board of Atmospheric Sciences and Climate. National Academy Press, Washington, DC, pp 383–418

    Google Scholar 

  • Wheeler TR, Hong TD, Ellis RH, Batts GR, Morison JIL, Hadley P (1996) The duration and rate of grain growth, and harvest index, of wheat (Triticum aestivum L.) in response to temperature and CO2. J Exp Bot 47:623–630

    Google Scholar 

  • Wheeler TR, Craufurd PQ, Ellis RH, Porter JR, Prasad PVV (2000) Temperature variability and the yield of annual crops. Agric Ecosys Environ 82:159–167

    Google Scholar 

  • White WB, McKeon G, Sytkus J (2003) Australian drought; the interference of multi-spectral global standing modes and traveling waves. Int J Clim 23:631–662. doi:10.1002/joc.895

    Google Scholar 

  • White JW, Hoogenboom G, Kimball BA, Wall GW (2011) Methodologies for simulating impacts of climate change on crop production. Field Crops Res 124:357–368

    Google Scholar 

  • Williams GDV, Fautley RA, Jones KH, Stewart RB, Wheaton EE (1988) Estimating effects of climatic change on agriculture in Saskatchewan, Canada. In: Parry ML (ed) The impact of climatic variations on agriculture, vol. 1. Assessment in cool temperate and cold regions. Reidel, Dordrecht, pp 219–379

  • Wolf J (2002) Comparison of two potato simulation models under climate change. I. Model calibration and sensitivity analyses. Clim Res 21:173–186

    Google Scholar 

  • Zhang H, Turner NC, Poole ML, Simpson N (2006) Crop production in the high rainfall zones of southern Australia—potential, constraints and opportunities. Aust J Exp Agric 46:1035–1049

    Google Scholar 

  • Zhao M, Pitman AJ, Chase T (2001) The impact of land cover change on the atmospheric circulation. Clim Dynamics 17:467–477

    Google Scholar 

Download references

Acknowledgments

We thank the NSW Department of Primary Industries for the full support of the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhuddin Rajin Anwar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anwar, M.R., Liu, D.L., Macadam, I. et al. Adapting agriculture to climate change: a review. Theor Appl Climatol 113, 225–245 (2013). https://doi.org/10.1007/s00704-012-0780-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-012-0780-1

Keywords

Navigation