Skip to main content

Lymphoma in Other Diseases

  • Chapter
  • First Online:
Neoplastic Diseases of the Blood

Abstract

When lymphomas occur in association with other diseases, usually the underlying disease or its treatment produces immunodysregulation [1]. In most cases, this immune dysfunction takes the form of immunodeficiency, which can result from either inherited or acquired defects [2]. Such acquired immunodeficiencies may be associated with infectious diseases, most commonly viral infections [3–6], transplants with intentional iatrogenic immunosuppression [7, 8], and chemical environmental agents [9, 10]. However, in the autoimmune disorders, a different set of mechanisms are operative, since affected individuals demonstrate hyperactivity of the immune system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Louie S, Daoust PR, Schwartz RS. Immunodeficiency and the pathogenesis of non-Hodgkin’s lymphoma. Semin Oncol. 1980; 7(3):267–84.

    PubMed  CAS  Google Scholar 

  2. Tran H, Nourse J, Hall S, Green M, Griffiths L, Gandhi MK. Immunodeficiency-associated lymphomas. Blood Rev. 2008;22(5): 261–81.

    Article  PubMed  Google Scholar 

  3. Purtilo DT, Stevenson M. Lymphotropic viruses as etiologic agents of lymphoma. Hematol Oncol Clin North Am. 1991;5(5):901–23.

    PubMed  CAS  Google Scholar 

  4. Hjalgrim H, Engels EA. Infectious aetiology of Hodgkin and non-Hodgkin lymphomas: a review of the epidemiological evidence. J Intern Med. 2008;264(6):537–48.

    Article  PubMed  CAS  Google Scholar 

  5. Engels EA. Infectious agents as causes of non-Hodgkin lymphoma. Cancer Epidemiol Biomarkers Prev. 2007;16(3):401–4.

    Article  PubMed  CAS  Google Scholar 

  6. de Martel C, Franceschi S. Infections and cancer: established associations and new hypotheses. Crit Rev Oncol Hematol. 2009; 70(3):183–94.

    Article  PubMed  Google Scholar 

  7. Penn I. Tumors arising in organ transplant recipients. Adv Cancer Res. 1978;28:31–61.

    Article  PubMed  CAS  Google Scholar 

  8. Penn I. Tumors after renal and cardiac transplantation. Hematol Oncol Clin North Am. 1993;7(2):431–45.

    PubMed  CAS  Google Scholar 

  9. Palackdharry CS. The epidemiology of non-Hodgkin’s lymphoma: why the increased incidence? Oncology (Williston Park). 1994;8(8):67–73. discussion 73–8.

    CAS  Google Scholar 

  10. Zahm SH, Blair A. Pesticides and non-Hodgkin’s lymphoma. Cancer Res. 1992;52(19 Suppl):5485s–8s.

    PubMed  CAS  Google Scholar 

  11. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA Cancer J Clin. 2009;59(4):225–49.

    Article  PubMed  Google Scholar 

  12. Devesa SS, Silverman DT, Young Jr JL, et al. Cancer incidence and mortality trends among whites in the United States, 1947–84. J Natl Cancer Inst. 1987;79(4):701–70.

    PubMed  CAS  Google Scholar 

  13. Greenlee RT, Murray T, Bolden S, Wingo PA. Cancer statistics, 2000. CA Cancer J Clin. 2000;50(1):7–33.

    Article  PubMed  CAS  Google Scholar 

  14. Karp JE, Broder S. Acquired immunodeficiency syndrome and non-Hodgkin’s lymphomas. Cancer Res. 1991;51(18):4743–56.

    PubMed  CAS  Google Scholar 

  15. Biggar RJ. AIDS-related cancers in the era of highly active antiretroviral therapy. Oncology (Williston Park). 2001;15(4):439–48. discussion 448–9.

    CAS  Google Scholar 

  16. Longo DL. The Palackharry article reviewed. Oncology. 1994;3:73–7.

    Google Scholar 

  17. Remick SC, McSharry JJ, Wolf BC, et al. Novel oral combination chemotherapy in the treatment of intermediate-grade and high-grade AIDS-related non-Hodgkin’s lymphoma. J Clin Oncol. 1993;11(9):1691–702.

    PubMed  CAS  Google Scholar 

  18. Mannick JB, Asano K, Izumi K, Kieff E, Stamler JS. Nitric oxide produced by human B lymphocytes inhibits apoptosis and Epstein-Barr virus reactivation. Cell. 1994;79(7):1137–46.

    Article  PubMed  CAS  Google Scholar 

  19. Penn I. Cancers complicating organ transplantation. N Engl J Med. 1990;323(25):1767–9.

    Article  PubMed  CAS  Google Scholar 

  20. Penn I. The changing pattern of posttransplant malignancies. Transplant Proc. 1991;23(1 Pt 2):1101–3.

    PubMed  CAS  Google Scholar 

  21. Moore RD, Kessler H, Richman DD, Flexner C, Chaisson RE. Non-Hodgkin’s lymphoma in patients with advanced HIV infection treated with zidovudine. JAMA. 1991;265(17):2208–11.

    Article  PubMed  CAS  Google Scholar 

  22. Pluda JM, Yarchoan R, Jaffe ES, et al. Development of non-Hodgkin lymphoma in a cohort of patients with severe human immunodeficiency virus (HIV) infection on long-term antiretroviral therapy. Ann Intern Med. 1990;113(4):276–82.

    PubMed  CAS  Google Scholar 

  23. Llibre JM, Falco V, Tural C, et al. The changing face of HIV/AIDS in treated patients. Curr HIV Res. 2009;7(4):365–77.

    Article  PubMed  CAS  Google Scholar 

  24. Barbaro G, Barbarini G. HIV infection and cancer in the era of highly active antiretroviral therapy (Review). Oncol Rep. 2007; 17(5):1121–6.

    PubMed  Google Scholar 

  25. Gail MH, Pluda JM, Rabkin CS, et al. Projections of the incidence of non-Hodgkin’s lymphoma related to acquired immunodeficiency syndrome. J Natl Cancer Inst. 1991;83(10):695–701.

    Article  PubMed  CAS  Google Scholar 

  26. Hartge P, Devesa SS. Quantification of the impact of known risk factors on time trends in non-Hodgkin’s lymphoma incidence. Cancer Res. 1992;52(19 Suppl):5566s–9s.

    PubMed  CAS  Google Scholar 

  27. Levine AM. Acquired immunodeficiency syndrome-related lymphoma. Blood. 1992;80(1):8–20.

    PubMed  CAS  Google Scholar 

  28. List AF, Greco FA, Vogler LB. Lymphoproliferative diseases in immunocompromised hosts: the role of Epstein-Barr virus. J Clin Oncol. 1987;5(10):1673–89.

    PubMed  CAS  Google Scholar 

  29. Nasir S, DeAngelis LM. Update on the management of primary CNS lymphoma. Oncology (Williston Park). 2000;14(2):228–34. discussion 237–42, 244.

    CAS  Google Scholar 

  30. De PI. De novo tumors in pediatric organ transplant recipients. Transplant Proc. 1994;26(1):1–2.

    Google Scholar 

  31. Penn I. De novo malignancy in pediatric organ transplant recipients. J Pediatr Surg. 1994;29(2):221–6. discussion 227–8.

    Article  PubMed  CAS  Google Scholar 

  32. Hanto DW, Frizzera G, Gajl-Peczalska KJ, Simmons RL. Epstein-Barr virus, immunodeficiency, and B cell lymphoproliferation. Transplantation. 1985;39(5):461–72.

    Article  PubMed  CAS  Google Scholar 

  33. Hanto DW, Frizzera G, Purtilo DT, et al. Clinical spectrum of lymphoproliferative disorders in renal transplant recipients and evidence for the role of Epstein-Barr virus. Cancer Res. 1981;41(11 Pt 1): 4253–61.

    PubMed  CAS  Google Scholar 

  34. Purtilo DT, Sakamoto K, Saemundsen AK, et al. Documentation of Epstein-Barr virus infection in immunodeficient patients with life-threatening lymphoproliferative diseases by clinical, virological, and immunopathological studies. Cancer Res. 1981;41(11 Pt 1): 4226–36.

    PubMed  CAS  Google Scholar 

  35. Cremer KJ, Spring SB, Gruber J. Role of human immunodeficiency virus type 1 and other viruses in malignancies associated with acquired immunodeficiency disease syndrome. J Natl Cancer Inst. 1990;82(12):1016–24.

    Article  PubMed  CAS  Google Scholar 

  36. Temin HM. Evolution of cancer genes as a mutation-driven process. Cancer Res. 1988;48(7):1697–701.

    PubMed  CAS  Google Scholar 

  37. Coleman WB, Tsongalis GJ. Molecular mechanisms of human carcinogenesis. EXS. 2006;96:321–49.

    PubMed  CAS  Google Scholar 

  38. Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. Nat Med. 2004;10(8):789–99.

    Article  PubMed  CAS  Google Scholar 

  39. Clark W. The role of tumor progression and the progression of cancer. In: Greenwald P, Kramer BS, Weed D, editors. Cancer prevention and control. New York: Marcel Dekker; 1995. p. 135–59.

    Google Scholar 

  40. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990;61(5):759–67.

    Article  PubMed  CAS  Google Scholar 

  41. Kinzler KW, Vogelstein B. Lessons from hereditary colorectal cancer. Cell. 1996;87(2):159–70.

    Article  PubMed  CAS  Google Scholar 

  42. Vogelstein B, Fearon ER, Hamilton SR, et al. Genetic alterations during colorectal-tumor development. N Engl J Med. 1988;319(9): 525–32.

    Article  PubMed  CAS  Google Scholar 

  43. Lenz G, Staudt LM. Aggressive lymphomas. N Engl J Med. 2010;362(15):1417–29.

    Article  PubMed  CAS  Google Scholar 

  44. Farber E. Cell proliferation as a major risk factor for cancer: a ­concept of doubtful validity. Cancer Res. 1995;55(17):3759–62.

    PubMed  CAS  Google Scholar 

  45. Shibata D, Weiss LM, Nathwani BN, Brynes RK, Levine AM. Epstein-Barr virus in benign lymph node biopsies from individuals infected with the human immunodeficiency virus is associated with concurrent or subsequent development of non-Hodgkin’s lymphoma. Blood. 1991;77(7):1527–33.

    PubMed  CAS  Google Scholar 

  46. Gauwerky CE, Haluska FG, Tsujimoto Y, Nowell PC, Croce CM. Evolution of B-cell malignancy: pre-B-cell leukemia resulting from MYC activation in a B-cell neoplasm with a rearranged BCL2 gene. Proc Natl Acad Sci USA. 1988;85(22):8548–52.

    Article  PubMed  CAS  Google Scholar 

  47. Birx DL, Redfield RR, Tosato G. Defective regulation of Epstein-Barr virus infection in patients with acquired immunodeficiency syndrome (AIDS) or AIDS-related disorders. N Engl J Med. 1986;314(14):874–9.

    Article  PubMed  CAS  Google Scholar 

  48. Rooney CM, Rowe M, Wallace LE, Rickinson AB. Epstein-Barr virus-positive Burkitt’s lymphoma cells not recognized by virus-specific T-cell surveillance. Nature. 1985;317(6038):629–31.

    Article  PubMed  CAS  Google Scholar 

  49. Parsonnet J, Hansen S, Rodriguez L, et al. Helicobacter pylori infection and gastric lymphoma. N Engl J Med. 1994;330(18): 1267–71.

    Article  PubMed  CAS  Google Scholar 

  50. Haber D, Harlow E. Tumour-suppressor genes: evolving definitions in the genomic age. Nat Genet. 1997;16(4):320–2.

    Article  PubMed  CAS  Google Scholar 

  51. Knudson AG. Antioncogenes and human cancer. Proc Natl Acad Sci USA. 1993;90(23):10914–21.

    Article  PubMed  CAS  Google Scholar 

  52. Zhang Y, Peng J, Tang Y, He J, Peng J, Zhao Q, He R, Xie X, Peng X, Gan R. The prevalence of Epstein-barr virus infection in different types and sites of lymphomas. Jpn J Infect Dis. 2010;63(2): 132–5.

    PubMed  Google Scholar 

  53. Shah KM, Young LS. Epstein-Barr virus and carcinogenesis: beyond Burkitt’s lymphoma. Clin Microbiol Infect. 2009;15(11): 982–8.

    Article  PubMed  CAS  Google Scholar 

  54. Samanta M, Takada K. Modulation of innate immunity system by Epstein-Barr virus-encoded non-coding RNA and oncogenesis. Cancer Sci. 2010;101(1):29–35.

    Article  PubMed  CAS  Google Scholar 

  55. Thorley-Lawson DA, Gross A. Persistence of the Epstein-Barr virus and the origins of associated lymphomas. N Engl J Med. 2004;350(13):1328–37.

    Article  PubMed  CAS  Google Scholar 

  56. Baumforth KR, Young LS, Flavell KJ, Constandinou C, Murray PG. The Epstein-Barr virus and its association with human cancers. Mol Pathol. 1999;52(6):307–22.

    Article  PubMed  CAS  Google Scholar 

  57. Brooks LA, Lear AL, Young LS, Rickinson AB. Transcripts from the Epstein-Barr virus BamHI A fragment are detectable in all three forms of virus latency. J Virol. 1993;67(6):3182–90.

    PubMed  CAS  Google Scholar 

  58. Cohen JI. Epstein-Barr virus infection. N Engl J Med. 2000;343(7):481–92.

    Article  PubMed  CAS  Google Scholar 

  59. Hsu JL, Glaser SL. Epstein-barr virus-associated malignancies: epidemiologic patterns and etiologic implications. Crit Rev Oncol Hematol. 2000;34(1):27–53.

    Article  PubMed  CAS  Google Scholar 

  60. Kawa K. Epstein-Barr virus-associated diseases in humans. Int J Hematol. 2000;71(2):108–17.

    PubMed  CAS  Google Scholar 

  61. Pagano JS. Epstein-Barr virus: the first human tumor virus and its role in cancer. Proc Assoc Am Physicians. 1999;111(6):573–80.

    Article  PubMed  CAS  Google Scholar 

  62. Gruhne B, Kamranvar SA, Masucci MG, Sompallae R. EBV and genomic instability–a new look at the role of the virus in the pathogenesis of Burkitt’s lymphoma. Semin Cancer Biol. 2009;19(6): 394–400.

    Article  PubMed  CAS  Google Scholar 

  63. De Falco G, Antonicelli G, Onnis A, Lazzi S, Bellan C, Leoncini L. Role of EBV in microRNA dysregulation in Burkitt lymphoma. Semin Cancer Biol. 2009;19(6):401–6.

    Article  PubMed  CAS  Google Scholar 

  64. Magrath IT, Freeman CB, Pizzo P, et al. Characterization of lymphoma-derived cell lines: comparison of cell lines positive and negative for Epstein-Barr virus nuclear antigen. II. Surface markers. J Natl Cancer Inst. 1980;64(3):477–83.

    PubMed  CAS  Google Scholar 

  65. Moore MD, Cooper NR, Tack BF, Nemerow GR. Molecular cloning of the cDNA encoding the Epstein-Barr virus/C3d receptor (complement receptor type 2) of human B lymphocytes. Proc Natl Acad Sci USA. 1987;84(24):9194–8.

    Article  PubMed  CAS  Google Scholar 

  66. Nemerow GR, Wolfert R, McNaughton ME, Cooper NR. Identification and characterization of the Epstein-Barr virus receptor on human B lymphocytes and its relationship to the C3d complement receptor (CR2). J Virol. 1985;55(2):347–51.

    PubMed  CAS  Google Scholar 

  67. Thorley-Lawson DA. Basic virological aspects of Epstein-Barr virus infection. Semin Hematol. 1988;25(3):247–60.

    PubMed  CAS  Google Scholar 

  68. Berard CW, Greene MH, Jaffe ES, Magrath I, Ziegler J. NIH conference. A multidisciplinary approach to non-hodgkin’s lymphomas. Ann Intern Med. 1981;94(2):218–35.

    PubMed  CAS  Google Scholar 

  69. Chang RS, Lewis JP, Abildgaard CF. Prevalence of oropharyngeal excreters of leukocyte-transforming agents among a human population. N Engl J Med. 1973;289(25):1325–9.

    Article  PubMed  CAS  Google Scholar 

  70. Hanto DW, Frizzera G, Gajl-Peczalska KJ, et al. Epstein-Barr virus-induced B-cell lymphoma after renal transplantation: acyclovir therapy and transition from polyclonal to monoclonal B-cell proliferation. N Engl J Med. 1982;306(15):913–8.

    Article  PubMed  CAS  Google Scholar 

  71. Sixbey JW, Nedrud JG, Raab-Traub N, Hanes RA, Pagano JS. Epstein-Barr virus replication in oropharyngeal epithelial cells. N Engl J Med. 1984;310(19):1225–30.

    Article  PubMed  CAS  Google Scholar 

  72. Miller G. Epstein-Barr virus–immortalization and replication. N Engl J Med. 1984;310(19):1255–6.

    Article  PubMed  CAS  Google Scholar 

  73. O’Grady J, Stewart S, Elton RA, Krajewski AS. Epstein-Barr virus in Hodgkin’s disease and site of origin of tumour. Lancet. 1994;343(8892):265–6.

    Article  PubMed  Google Scholar 

  74. Anagnostopoulos I, Hummel M, Kreschel C, Stein H. Morphology, immunophenotype, and distribution of latently and/or productively Epstein-Barr virus-infected cells in acute infectious mononucleosis: implications for the interindividual infection route of Epstein-Barr virus. Blood. 1995;85(3):744–50.

    PubMed  CAS  Google Scholar 

  75. Brooks LA, Crook T, Crawford DH. Epstein-Barr virus and lymphomas. Cancer Surv. 1999;33:99–123.

    Google Scholar 

  76. Niedobitek G, Young LS. Epstein-Barr virus persistence and virus-associated tumours. Lancet. 1994;343(8893):333–5.

    Article  PubMed  CAS  Google Scholar 

  77. Tsoukas CD, Lambris JD. Expression of EBV/C3d receptors on T cells: biological significance. Immunol Today. 1993;14(2):56–9.

    Article  PubMed  CAS  Google Scholar 

  78. Koizumi S, Zhang XK, Imai S, Sugiura M, Usui N, Osato T. Infection of the HTLV-I-harbouring T-lymphoblastoid line MT-2 by Epstein-Barr virus. Virology. 1992;188(2):859–63.

    Article  PubMed  CAS  Google Scholar 

  79. Sinha SK, Todd SC, Hedrick JA, Speiser CL, Lambris JD, Tsoukas CD. Characterization of the EBV/C3d receptor on the human Jurkat T cell line: evidence for a novel transcript. J Immunol. 1993;150(12):5311–20.

    PubMed  CAS  Google Scholar 

  80. Watry D, Hedrick JA, Siervo S, et al. Infection of human thymocytes by Epstein-Barr virus. J Exp Med. 1991;173(4):971–80.

    Article  PubMed  CAS  Google Scholar 

  81. Yoshiyama H, Shimizu N, Takada K. Persistent Epstein-Barr virus infection in a human T-cell line: unique program of latent virus expression. EMBO J. 1995;14(15):3706–11.

    PubMed  CAS  Google Scholar 

  82. Ho FC, Srivastava G, Loke SL, et al. Presence of Epstein-Barr virus DNA in nasal lymphomas of B and ‘T’ cell type. Hematol Oncol. 1990;8(5):271–81.

    Article  PubMed  CAS  Google Scholar 

  83. Imai S, Sugiura M, Oikawa O, et al. Epstein-Barr virus (EBV)-carrying and -expressing T-cell lines established from severe chronic active EBV infection. Blood. 1996;87(4):1446–57.

    PubMed  CAS  Google Scholar 

  84. Jones JF, Shurin S, Abramowsky C, et al. T-cell lymphomas containing Epstein-Barr viral DNA in patients with chronic Epstein-Barr virus infections. N Engl J Med. 1988;318(12):733–41.

    Article  PubMed  CAS  Google Scholar 

  85. Korbjuhn P, Anagnostopoulos I, Hummel M, et al. Frequent latent Epstein-Barr virus infection of neoplastic T cells and bystander B cells in human immunodeficiency virus-negative European peripheral pleomorphic T-cell lymphomas. Blood. 1993;82(1):217–23.

    PubMed  CAS  Google Scholar 

  86. Minarovits J, Hu LF, Imai S, et al. Clonality, expression and methylation patterns of the Epstein-Barr virus genomes in lethal midline granulomas classified as peripheral angiocentric T cell lymphomas. J Gen Virol. 1994;75(Pt 1):77–84.

    Article  PubMed  CAS  Google Scholar 

  87. Su IJ, Lin KH, Chen CJ, et al. Epstein-Barr virus-associated peripheral T-cell lymphoma of activated CD8 phenotype. Cancer. 1990;66(12):2557–62.

    Article  PubMed  CAS  Google Scholar 

  88. Oudejans JJ, van den Brule AJ, Jiwa NM, et al. BHRF1, the Epstein-Barr virus (EBV) homologue of the BCL-2 protooncogene, is transcribed in EBV-associated B-cell lymphomas and in reactive lymphocytes. Blood. 1995;86(5):1893–902.

    PubMed  CAS  Google Scholar 

  89. Kurth J, Spieker T, Wustrow J, et al. EBV-infected B cells in infectious mononucleosis: viral strategies for spreading in the B cell compartment and establishing latency. Immunity. 2000;13(4): 485–95.

    Article  PubMed  CAS  Google Scholar 

  90. Kurth J, Hansmann ML, Rajewsky K, Kuppers R. Epstein-Barr virus-infected B cells expanding in germinal centers of infectious mononucleosis patients do not participate in the germinal center reaction. Proc Natl Acad Sci USA. 2003;100(8):4730–5.

    Article  PubMed  CAS  Google Scholar 

  91. Allan GJ, Inman GJ, Parker BD, Rowe DT, Farrell PJ. Cell growth effects of Epstein-Barr virus leader protein. J Gen Virol. 1992;73(Pt 6): 1547–51.

    Article  PubMed  CAS  Google Scholar 

  92. Hammerschmidt W, Sugden B. Genetic analysis of immortalizing functions of Epstein-Barr virus in human B lymphocytes. Nature. 1989;340(6232):393–7.

    Article  PubMed  CAS  Google Scholar 

  93. Manet E, Bourillot PY, Waltzer L, Sergeant A. EBV genes and B cell proliferation. Crit Rev Oncol Hematol. 1998;28(2):129–37.

    Article  PubMed  CAS  Google Scholar 

  94. Mannick JB, Cohen JI, Birkenbach M, Marchini A, Kieff E. The Epstein-Barr virus nuclear protein encoded by the leader of the EBNA RNAs is important in B-lymphocyte transformation. J Virol. 1991;65(12):6826–37.

    PubMed  CAS  Google Scholar 

  95. Sinclair AJ, Palmero I, Peters G, Farrell PJ. EBNA-2 and EBNA-LP cooperate to cause G0 to G1 transition during immortalization of resting human B lymphocytes by Epstein-Barr virus. EMBO J. 1994;13(14):3321–8.

    PubMed  CAS  Google Scholar 

  96. Klein E, Kis LL, Takahara M. Pathogenesis of Epstein-Barr virus (EBV)-carrying lymphomas. Acta Microbiol Immunol Hung. 2006;53(4):441–57.

    Article  PubMed  Google Scholar 

  97. Hamilton-Dutoit SJ, Raphael M, Audouin J, et al. In situ demonstration of Epstein-Barr virus small RNAs (EBER 1) in acquired immunodeficiency syndrome-related lymphomas: correlation with tumor morphology and primary site. Blood. 1993;82(2): 619–24.

    PubMed  CAS  Google Scholar 

  98. Hamilton-Dutoit SJ, Rea D, Raphael M, et al. Epstein-Barr virus-latent gene expression and tumor cell phenotype in acquired immunodeficiency syndrome-related non-Hodgkin’s lymphoma. Correlation of lymphoma phenotype with three distinct patterns of viral latency. Am J Pathol. 1993;143(4):1072–85.

    PubMed  CAS  Google Scholar 

  99. Rea D, Delecluse HJ, Hamilton-Dutoit SJ, et al. Epstein-Barr virus latent and replicative gene expression in post-transplant lymphoproliferative disorders and AIDS-related non-Hodgkin’s lymphomas. French Study Group of Pathology for HIV-associated Tumors. Ann Oncol. 1994;5 Suppl 1:113–6.

    PubMed  Google Scholar 

  100. Shibata D, Weiss LM, Hernandez AM, Nathwani BN, Bernstein L, Levine AM. Epstein-Barr virus-associated non-Hodgkin’s lymphoma in patients infected with the human immunodeficiency virus. Blood. 1993;81(8):2102–9.

    PubMed  CAS  Google Scholar 

  101. Rowe M, Rowe DT, Gregory CD, et al. Differences in B cell growth phenotype reflect novel patterns of Epstein-Barr virus latent gene expression in Burkitt’s lymphoma cells. EMBO J. 1987;6(9):2743–51.

    PubMed  CAS  Google Scholar 

  102. Deacon EM, Pallesen G, Niedobitek G, et al. Epstein-Barr virus and Hodgkin’s disease: transcriptional analysis of virus latency in the malignant cells. J Exp Med. 1993;177(2):339–49.

    Article  PubMed  CAS  Google Scholar 

  103. Gregory CD, Dive C, Henderson S, et al. Activation of Epstein-Barr virus latent genes protects human B cells from death by apoptosis. Nature. 1991;349(6310):612–4.

    Article  PubMed  CAS  Google Scholar 

  104. Henderson S, Rowe M, Gregory C, et al. Induction of bcl-2 expression by Epstein-Barr virus latent membrane protein 1 protects infected B cells from programmed cell death. Cell. 1991;65(7):1107–15.

    Article  PubMed  CAS  Google Scholar 

  105. Dreyfus DH, Nagasawa M, Kelleher CA, Gelfand EW. Stable expression of Epstein-Barr virus BZLF-1-encoded ZEBRA protein activates p53-dependent transcription in human Jurkat T-lymphoblastoid cells. Blood. 2000;96(2):625–34.

    PubMed  CAS  Google Scholar 

  106. Grogan E, Jenson H, Countryman J, Heston L, Gradoville L, Miller G. Transfection of a rearranged viral DNA fragment, WZhet, stably converts latent Epstein-Barr viral infection to productive infection in lymphoid cells. Proc Natl Acad Sci USA. 1987;84(5):1332–6.

    Article  PubMed  CAS  Google Scholar 

  107. Rothe R, Liguori L, Villegas-Mendez A, Marques B, Grunwald D, Drouet E, Lenormand JL. Characterization of the cell-penetrating properties of the Epstein-Barr virus ZEBRA trans-activator. J Biol Chem. 2010;285(26):20224–33.

    Article  PubMed  CAS  Google Scholar 

  108. Yao QY, Croom-Carter DS, Tierney RJ, et al. Epidemiology of infection with Epstein-Barr virus types 1 and 2: lessons from the study of a T-cell-immunocompromised hemophilic cohort. J Virol. 1998;72(5):4352–63.

    PubMed  CAS  Google Scholar 

  109. Khanim F, Yao QY, Niedobitek G, Sihota S, Rickinson AB, Young LS. Analysis of Epstein-Barr virus gene polymorphisms in normal donors and in virus-associated tumors from different geographic locations. Blood. 1996;88(9):3491–501.

    PubMed  CAS  Google Scholar 

  110. Yao QY, Rowe M, Martin B, Young LS, Rickinson AB. The Epstein-Barr virus carrier state: dominance of a single growth-transforming isolate in the blood and in the oropharynx of healthy virus carriers. J Gen Virol. 1991;72(Pt 7):1579–90.

    Article  PubMed  CAS  Google Scholar 

  111. Srivastava T, Zwick DL, Rothberg PG, Warady BA. Posttransplant lymphoproliferative disorder in pediatric renal transplantation. Pediatr Nephrol. 1999;13(9):748–54.

    Article  PubMed  CAS  Google Scholar 

  112. Yao QY, Tierney RJ, Croom-Carter D, et al. Frequency of multiple Epstein-Barr virus infections in T-cell-immunocompromised individuals. J Virol. 1996;70(8):4884–94.

    PubMed  CAS  Google Scholar 

  113. Schuster V, Ott G, Seidenspinner S, Kreth HW. Common Epstein-Barr virus (EBV) type-1 variant strains in both malignant and benign EBV-associated disorders. Blood. 1996;87(4):1579–85.

    PubMed  CAS  Google Scholar 

  114. Knecht H, Bachmann E, Brousset P, et al. Mutational hot spots within the carboxy terminal region of the LMP1 oncogene of Epstein-Barr virus are frequent in lymphoproliferative disorders. Oncogene. 1995;10(3):523–8.

    PubMed  CAS  Google Scholar 

  115. Chiang AK, Wong KY, Liang AC, Srivastava G. Comparative analysis of Epstein-Barr virus gene polymorphisms in nasal T/NK-cell lymphomas and normal nasal tissues: implications on virus strain selection in malignancy. Int J Cancer. 1999;80(3):356–64.

    Article  PubMed  CAS  Google Scholar 

  116. Tacyildiz N, Cavdar AO, Ertem U, et al. Unusually high frequency of a 69-bp deletion within the carboxy terminus of the LMP-1 oncogene of Epstein-Barr virus detected in Burkitt’s lymphoma of Turkish children. Leukemia. 1998;12(11):1796–805.

    Article  PubMed  CAS  Google Scholar 

  117. Sandvej K, Peh SC, Andresen BS, Pallesen G. Identification of potential hot spots in the carboxy-terminal part of the Epstein-Barr virus (EBV) BNLF-1 gene in both malignant and benign EBV-associated diseases: high frequency of a 30-bp deletion in Malaysian and Danish peripheral T-cell lymphomas. Blood. 1994;84(12):4053–60.

    PubMed  CAS  Google Scholar 

  118. Knecht H, Berger C, al-Homsi AS, McQuain C, Brousset P. Epstein-Barr virus oncogenesis. Crit Rev Oncol Hematol. 1997;26(2):117–35.

    Article  PubMed  CAS  Google Scholar 

  119. Snudden DK, Hearing J, Smith PR, Grasser FA, Griffin BE. EBNA-1, the major nuclear antigen of Epstein-Barr virus, resembles ‘RGG’ RNA binding proteins. EMBO J. 1994;13(20):4840–7.

    PubMed  CAS  Google Scholar 

  120. Yates J, Warren N, Reisman D, Sugden B. A cis-acting element from the Epstein-Barr viral genome that permits stable replication of recombinant plasmids in latently infected cells. Proc Natl Acad Sci USA. 1984;81(12):3806–10.

    Article  PubMed  CAS  Google Scholar 

  121. Roth G, Curiel T, Lacy J. Epstein-Barr viral nuclear antigen 1 antisense oligodeoxynucleotide inhibits proliferation of Epstein-Barr virus-immortalized B cells. Blood. 1994;84(2):582–7.

    PubMed  CAS  Google Scholar 

  122. Feuillard J, Schuhmacher M, Kohanna S, et al. Inducible loss of NF-kappaB activity is associated with apoptosis and Bcl-2 down-regulation in Epstein-Barr virus-transformed B lymphocytes. Blood. 2000;95(6):2068–75.

    PubMed  CAS  Google Scholar 

  123. Henkel T, Ling PD, Hayward SD, Peterson MG. Mediation of Epstein-Barr virus EBNA2 transactivation by recombination signal-binding protein J kappa. Science. 1994;265(5168):92–5.

    Article  PubMed  CAS  Google Scholar 

  124. Hsieh JJ, Hayward SD. Masking of the CBF1/RBPJ kappa transcriptional repression domain by Epstein-Barr virus EBNA2. Science. 1995;268(5210):560–3.

    Article  PubMed  CAS  Google Scholar 

  125. Mosialos G. The role of Rel/NF-kappa B proteins in viral oncogenesis and the regulation of viral transcription. Semin Cancer Biol. 1997;8(2):121–9.

    Article  PubMed  CAS  Google Scholar 

  126. Waltzer L, Logeat F, Brou C, Israel A, Sergeant A, Manet E. The human J kappa recombination signal sequence binding protein (RBP-J kappa) targets the Epstein-Barr virus EBNA2 protein to its DNA responsive elements. EMBO J. 1994;13(23):5633–8.

    PubMed  CAS  Google Scholar 

  127. Fahraeus R, Palmqvist L, Nerdstedt A, Farzad S, Rymo L, Lain S. Response to cAMP levels of the Epstein-Barr virus EBNA2-inducible LMP1 oncogene and EBNA2 inhibition of a PP1-like activity. EMBO J. 1994;13(24):6041–51.

    PubMed  CAS  Google Scholar 

  128. Laux G, Adam B, Strobl LJ, Moreau-Gachelin F. The Spi-1/PU.1 and Spi-B ets family transcription factors and the recombination signal binding protein RBP-J kappa interact with an Epstein-Barr virus nuclear antigen 2 responsive cis-element. EMBO J. 1994;13(23):5624–32.

    PubMed  CAS  Google Scholar 

  129. Li HP, Chang YS. Epstein-Barr virus latent membrane protein 1: structure and functions. J Biomed Sci. 2003;10(5):490–504.

    Article  PubMed  CAS  Google Scholar 

  130. Grilli M, Chiu JJ, Lenardo MJ. NF-kappa B and Rel: participants in a multiform transcriptional regulatory system. Int Rev Cytol. 1993;143:1–62.

    Article  PubMed  CAS  Google Scholar 

  131. Wang CY, Mayo MW, Korneluk RG, Goeddel DV, Baldwin Jr AS. NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science. 1998;281(5383):1680–3.

    Article  PubMed  CAS  Google Scholar 

  132. Camilleri-Broet S, Camparo P, Mokhtari K, et al. Overexpression of BCL-2, BCL-X, and BAX in primary central nervous system lymphomas that occur in immunosuppressed patients. Mod Pathol. 2000;13(2):158–65.

    Article  PubMed  CAS  Google Scholar 

  133. Yamaoka S, Inoue H, Sakurai M, et al. Constitutive activation of NF-kappa B is essential for transformation of rat fibroblasts by the human T-cell leukemia virus type I Tax protein. EMBO J. 1996;15(4):873–87.

    PubMed  CAS  Google Scholar 

  134. Arvanitakis L, Yaseen N, Sharma S. Latent membrane protein-1 induces cyclin D2 expression, pRb hyperphosphorylation, and loss of TGF-beta 1-mediated growth inhibition in EBV-positive B cells. J Immunol. 1995;155(3):1047–56.

    PubMed  CAS  Google Scholar 

  135. Cohen JI, Wang F, Mannick J, Kieff E. Epstein-Barr virus nuclear protein 2 is a key determinant of lymphocyte transformation. Proc Natl Acad Sci USA. 1989;86(23):9558–62.

    Article  PubMed  CAS  Google Scholar 

  136. Wang D, Liebowitz D, Kieff E. An EBV membrane protein expressed in immortalized lymphocytes transforms established rodent cells. Cell. 1985;43(3 Pt 2):831–40.

    Article  PubMed  CAS  Google Scholar 

  137. Wang F, Gregory C, Sample C, et al. Epstein-Barr virus latent membrane protein (LMP1) and nuclear proteins 2 and 3C are effectors of phenotypic changes in B lymphocytes: EBNA-2 and LMP1 cooperatively induce CD23. J Virol. 1990;64(5):2309–18.

    PubMed  CAS  Google Scholar 

  138. West MJ. Structure and function of the Epstein-Barr virus transcription factor, EBNA 3C. Curr Protein Pept Sci. 2006;7(2):123–36.

    Article  PubMed  CAS  Google Scholar 

  139. Parker GA, Crook T, Bain M, Sara EA, Farrell PJ, Allday MJ. Epstein-Barr virus nuclear antigen (EBNA)3C is an immortalizing oncoprotein with similar properties to adenovirus E1A and papillomavirus E7. Oncogene. 1996;13(12):2541–9.

    PubMed  CAS  Google Scholar 

  140. Schwartz RS. Epstein-Barr virus–oncogen or mitogen? N Engl J Med. 1980;302(23):1307–8.

    Article  PubMed  CAS  Google Scholar 

  141. Wade M, Allday MJ. Epstein-Barr virus suppresses a G(2)/M checkpoint activated by genotoxins. Mol Cell Biol. 2000;20(4): 1344–60.

    Article  PubMed  CAS  Google Scholar 

  142. Murray PG, Swinnen LJ, Constandinou CM, et al. BCL-2 but not its Epstein-Barr virus-encoded homologue, BHRF1, is commonly expressed in posttransplantation lymphoproliferative disorders. Blood. 1996;87(2):706–11.

    PubMed  CAS  Google Scholar 

  143. Rickinson AB, Yao QY, Wallace LE. The Epstein-Barr virus as a model of virus-host interactions. Br Med Bull. 1985;41(1):75–9.

    PubMed  CAS  Google Scholar 

  144. Yang J, Lemas VM, Flinn IW, Krone C, Ambinder RF. Application of the ELISPOT assay to the characterization of CD8(+) responses to Epstein-Barr virus antigens. Blood. 2000;95(1):241–8.

    PubMed  CAS  Google Scholar 

  145. Curtis RE, Travis LB, Rowlings PA, et al. Risk of lymphoproliferative disorders after bone marrow transplantation: a multi-institutional study. Blood. 1999;94(7):2208–16.

    PubMed  CAS  Google Scholar 

  146. Heslop HE, Ng CY, Li C, et al. Long-term restoration of immunity against Epstein-Barr virus infection by adoptive transfer of gene-modified virus-specific T lymphocytes. Nat Med. 1996;2(5):551–5.

    Article  PubMed  CAS  Google Scholar 

  147. Heslop HE, Perez M, Benaim E, Rochester R, Brenner MK, Rooney CM. Transfer of EBV-specific CTL to prevent EBV lymphoma post bone marrow transplant. J Clin Apher. 1999;14(3): 154–6.

    Article  PubMed  CAS  Google Scholar 

  148. Moss DJ, Khanna R, Sherritt M, Elliott SL, Burrows SR. Developing immunotherapeutic strategies for the control of Epstein-Barr virus-associated malignancies. J Acquir Immune Defic Syndr. 1999;21 Suppl 1:S80–3.

    PubMed  CAS  Google Scholar 

  149. Sun Q, Pollok KE, Burton RL, et al. Simultaneous ex vivo expansion of cytomegalovirus and Epstein-Barr virus-specific cytotoxic T lymphocytes using B-lymphoblastoid cell lines expressing cytomegalovirus pp 65. Blood. 1999;94(9):3242–50.

    PubMed  CAS  Google Scholar 

  150. Brenner MK, Heslop HE. Adoptive T cell therapy of cancer. Curr Opin Immunol. 2010;22(2):251–7.

    Article  PubMed  CAS  Google Scholar 

  151. Caldas C, Ambinder R. Epstein-Barr virus and bone marrow transplantation. Curr Opin Oncol. 1995;7(2):102–6.

    Article  PubMed  CAS  Google Scholar 

  152. Liebowitz D. Epstein-Barr virus and a cellular signaling pathway in lymphomas from immunosuppressed patients. N Engl J Med. 1998;338(20):1413–21.

    Article  PubMed  CAS  Google Scholar 

  153. Chang RS, Lewis JP, Reynolds RD, Sullivan MJ, Neuman J. Oropharyngeal excretion of Epstein-Barr virus by patients with lymphoproliferative disorders and by recipients of renal homografts. Ann Intern Med. 1978;88(1):34–40.

    PubMed  CAS  Google Scholar 

  154. Hsu DH, de Waal Malefyt R, Fiorentino DF, et al. Expression of interleukin-10 activity by Epstein-Barr virus protein BCRF1. Science. 1990;250(4982):830–2.

    Article  PubMed  CAS  Google Scholar 

  155. Moore KW, Vieira P, Fiorentino DF, Trounstine ML, Khan TA, Mosmann TR. Homology of cytokine synthesis inhibitory factor (IL-10) to the Epstein-Barr virus gene BCRFI. Science. 1990;248(4960):1230–4.

    Article  PubMed  CAS  Google Scholar 

  156. Vieira P, de Waal-Malefyt R, Dang MN, et al. Isolation and expression of human cytokine synthesis inhibitory factor cDNA clones: homology to Epstein-Barr virus open reading frame BCRFI. Proc Natl Acad Sci USA. 1991;88(4):1172–6.

    Article  PubMed  CAS  Google Scholar 

  157. Tosato G, Steinberg AD, Blaese RM. Defective EBV-specific suppressor T-cell function in rheumatoid arthritis. N Engl J Med. 1981;305(21):1238–43.

    Article  PubMed  CAS  Google Scholar 

  158. Yokoi T, Miyawaki T, Yachie A, Kato K, Kasahara Y, Taniguchi N. Epstein-Barr virus-immortalized B cells produce IL-6 as an autocrine growth factor. Immunology. 1990;70(1):100–5.

    PubMed  CAS  Google Scholar 

  159. Shapiro RS. Epstein-Barr virus-associated B-cell lymphoproliferative disorders in immunodeficiency: meeting the challenge. J Clin Oncol. 1990;8(3):371–3.

    PubMed  CAS  Google Scholar 

  160. Sakamoto K, Freed HJ, Purtilo DT. Antibody responses to ­Epstein-Barr virus in families with the X-linked lymphoproliferative syndrome. J Immunol. 1980;125(2):921–5.

    PubMed  CAS  Google Scholar 

  161. ar-Rushdi A, Nishikura K, Erikson J, Watt R, Rovera G, Croce CM. Differential expression of the translocated and the untranslocated c-myc oncogene in Burkitt lymphoma. Science. 1983;222(4622):390–3.

    Article  PubMed  CAS  Google Scholar 

  162. Croce CM, Nowell PC. Molecular basis of human B cell neoplasia. Blood. 1985;65(1):1–7.

    PubMed  CAS  Google Scholar 

  163. Hayday AC, Gillies SD, Saito H, et al. Activation of a translocated human c-myc gene by an enhancer in the immunoglobulin heavy-chain locus. Nature. 1984;307(5949):334–40.

    Article  PubMed  CAS  Google Scholar 

  164. Klein G. Multiple phenotypic consequences of the Ig/Myc translocation in B-cell-derived tumors. Genes Chromosomes Cancer. 1989;1(1):3–8.

    Article  PubMed  CAS  Google Scholar 

  165. Nishikura K, ar-Rushdi A, Erikson J, Watt R, Rovera G, Croce CM. Differential expression of the normal and of the translocated human c-myc oncogenes in B cells. Proc Natl Acad Sci USA. 1983;80(15):4822–6.

    Article  PubMed  CAS  Google Scholar 

  166. Taub R, Moulding C, Battey J, et al. Activation and somatic mutation of the translocated c-myc gene in burkitt lymphoma cells. Cell. 1984;36(2):339–48.

    Article  PubMed  CAS  Google Scholar 

  167. Haluska FG, Russo G, Kant J, Andreef M, Croce CM. Molecular resemblance of an AIDS-associated lymphoma and endemic Burkitt lymphomas: implications for their pathogenesis. Proc Natl Acad Sci USA. 1989;86(22):8907–11.

    Article  PubMed  CAS  Google Scholar 

  168. Neri A, Barriga F, Knowles DM, Magrath IT, Dalla-Favera R. Different regions of the immunoglobulin heavy-chain locus are involved in chromosomal translocations in distinct pathogenetic forms of Burkitt lymphoma. Proc Natl Acad Sci USA. 1988;85(8):2748–52.

    Article  PubMed  CAS  Google Scholar 

  169. Pelicci PG, Knowles 2nd DM, Magrath I, Dalla-Favera R. Chromosomal breakpoints and structural alterations of the c-myc locus differ in endemic and sporadic forms of Burkitt lymphoma. Proc Natl Acad Sci USA. 1986;83(9):2984–8.

    Article  PubMed  CAS  Google Scholar 

  170. Shiramizu B, Barriga F, Neequaye J, et al. Patterns of chromosomal breakpoint locations in Burkitt’s lymphoma: relevance to geography and Epstein-Barr virus association. Blood. 1991;77(7):1516–26.

    PubMed  CAS  Google Scholar 

  171. Shiramizu B, Magrath I. Localization of breakpoints by polymerase chain reactions in Burkitt’s lymphoma with 8;14 translocations. Blood. 1990;75(9):1848–52.

    PubMed  CAS  Google Scholar 

  172. Ji L, Arcinas M, Boxer LM. NF-kappa B sites function as positive regulators of expression of the translocated c-myc allele in Burkitt’s lymphoma. Mol Cell Biol. 1994;14(12):7967–74.

    PubMed  CAS  Google Scholar 

  173. Cesarman E, Dalla-Favera R, Bentley D, Groudine M. Mutations in the first exon are associated with altered transcription of c-myc in Burkitt lymphoma. Science. 1987;238(4831):1272–5.

    Article  PubMed  CAS  Google Scholar 

  174. Bhatia K, Spangler G, Gaidano G, Hamdy N, Dalla-Favera R, Magrath I. Mutations in the coding region of c-myc occur frequently in acquired immunodeficiency syndrome-associated lymphomas. Blood. 1994;84(3):883–8.

    PubMed  CAS  Google Scholar 

  175. Yu BW, Ichinose I, Bonham MA, Zajac-Kaye M. Somatic mutations in c-myc intron I cluster in discrete domains that define protein binding sequences. J Biol Chem. 1993;268(26):19586–92.

    PubMed  CAS  Google Scholar 

  176. Erikson J, ar-Rushdi A, Drwinga HL, Nowell PC, Croce CM. Transcriptional activation of the translocated c-myc oncogene in burkitt lymphoma. Proc Natl Acad Sci USA. 1983;80(3):820–4.

    Article  PubMed  CAS  Google Scholar 

  177. Erikson J, Nishikura K, ar-Rushdi A, et al. Translocation of an immunoglobulin kappa locus to a region 3′ of an unrearranged c-myc oncogene enhances c-myc transcription. Proc Natl Acad Sci USA. 1983;80(24):7581–5.

    Article  PubMed  CAS  Google Scholar 

  178. Kelly K, Cochran BH, Stiles CD, Leder P. Cell-specific regulation of the c-myc gene by lymphocyte mitogens and platelet-derived growth factor. Cell. 1983;35(3 Pt 2):603–10.

    Article  PubMed  CAS  Google Scholar 

  179. Prochownik EV. Protooncogenes and cell differentiation. Transfus Med Rev. 1989;3(1):24–38.

    Article  PubMed  CAS  Google Scholar 

  180. Haluska FG, Tsujimoto Y, Croce CM. Oncogene activation by chromosome translocation in human malignancy. Annu Rev Genet. 1987;21:321–45.

    Article  PubMed  CAS  Google Scholar 

  181. Lombardi L, Newcomb EW, Dalla-Favera R. Pathogenesis of Burkitt lymphoma: expression of an activated c-myc oncogene causes the tumorigenic conversion of EBV-infected human B lymphoblasts. Cell. 1987;49(2):161–70.

    Article  PubMed  CAS  Google Scholar 

  182. Adams JM, Harris AW, Pinkert CA, et al. The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice. Nature. 1985;318(6046):533–8.

    Article  PubMed  CAS  Google Scholar 

  183. Langdon WY, Harris AW, Cory S, Adams JM. The c-myc oncogene perturbs B lymphocyte development in E-mu-myc transgenic mice. Cell. 1986;47(1):11–8.

    Article  PubMed  CAS  Google Scholar 

  184. Lacy J, Summers WP, Summers WC. Post-transcriptional mechanisms of deregulation of MYC following conversion of a human B cell line by Epstein-Barr virus. EMBO J. 1989;8(7):1973–80.

    PubMed  CAS  Google Scholar 

  185. Buisson M, Manet E, Trescol-Biemont MC, Gruffat H, Durand B, Sergeant A. The Epstein-Barr virus (EBV) early protein EB2 is a posttranscriptional activator expressed under the control of EBV transcription factors EB1 and R. J Virol. 1989;63(12):5276–84.

    PubMed  CAS  Google Scholar 

  186. Kenney S, Kamine J, Holley-Guthrie E, et al. The Epstein-Barr virus immediate-early gene product, BMLF1, acts in trans by a posttranscriptional mechanism which is reporter gene dependent. J Virol. 1989;63(9):3870–7.

    PubMed  CAS  Google Scholar 

  187. Corbo L, Le Roux F, Sergeant A. The EBV early gene product EB2 transforms rodent cells through a signalling pathway involving c-Myc. Oncogene. 1994;9(11):3299–304.

    PubMed  CAS  Google Scholar 

  188. Amati B, Dalton S, Brooks MW, Littlewood TD, Evan GI, Land H. Transcriptional activation by the human c-Myc oncoprotein in yeast requires interaction with Max. Nature. 1992;359(6394):423–6.

    Article  PubMed  CAS  Google Scholar 

  189. Kretzner L, Blackwood EM, Eisenman RN. Myc and Max proteins possess distinct transcriptional activities. Nature. 1992;359(6394):426–9.

    Article  PubMed  CAS  Google Scholar 

  190. Cogliati T, Dunn BK, Bar-Ner M, Cultraro CM, Segal S. Transfected wild-type and mutant max regulate cell growth and differentiation of murine erythroleukemia cells. Oncogene. 1993;8(5):1263–8.

    PubMed  CAS  Google Scholar 

  191. Prendergast GC, Lawe D, Ziff EB. Association of Myn, the murine homolog of max, with c-Myc stimulates methylation-sensitive DNA binding and ras cotransformation. Cell. 1991;65(3):395–407.

    Article  PubMed  CAS  Google Scholar 

  192. Haluska FG, Tsujimoto Y, Croce CM. The t(8;14) chromosome translocation of the Burkitt lymphoma cell line Daudi occurred during immunoglobulin gene rearrangement and involved the heavy chain diversity region. Proc Natl Acad Sci USA. 1987;84(19):6835–9.

    Article  PubMed  CAS  Google Scholar 

  193. Gaidano G, Dalla-Favera R. Molecular pathogenesis of AIDS-related lymphomas. Adv Cancer Res. 1995;67:113–53.

    Article  PubMed  CAS  Google Scholar 

  194. Weinstein IB. Mitogenesis is only one factor in carcinogenesis. Science. 1991;251(4992):387–8.

    Article  PubMed  CAS  Google Scholar 

  195. Frizzera G, Hanto DW, Gajl-Peczalska KJ, et al. Polymorphic diffuse B-cell hyperplasias and lymphomas in renal transplant recipients. Cancer Res. 1981;41(11 Pt 1):4262–79.

    PubMed  CAS  Google Scholar 

  196. Crompton CH, Cheung RK, Donjon C, et al. Epstein-Barr virus surveillance after renal transplantation. Transplantation. 1994;57(8):1182–9.

    Article  PubMed  CAS  Google Scholar 

  197. Ballerini P, Gaidano G, Gong JZ, et al. Multiple genetic lesions in acquired immunodeficiency syndrome-related non-Hodgkin’s lymphoma. Blood. 1993;81(1):166–76.

    PubMed  CAS  Google Scholar 

  198. Lee ES, Locker J, Nalesnik M, et al. The association of Epstein-Barr virus with smooth-muscle tumors occurring after organ transplantation. N Engl J Med. 1995;332(1):19–25.

    Article  PubMed  CAS  Google Scholar 

  199. McClain KL, Leach CT, Jenson HB, et al. Association of Epstein-Barr virus with leiomyosarcomas in children with AIDS. N Engl J Med. 1995;332(1):12–8.

    Article  PubMed  CAS  Google Scholar 

  200. Neri A, Barriga F, Inghirami G, et al. Epstein-Barr virus infection precedes clonal expansion in Burkitt’s and acquired immunodeficiency syndrome-associated lymphoma. Blood. 1991;77(5):1092–5.

    PubMed  CAS  Google Scholar 

  201. Crawford DH. Biology and disease associations of Epstein-Barr virus. Philos Trans R Soc Lond B Biol Sci. 2001;356(1408): 461–73.

    Article  PubMed  CAS  Google Scholar 

  202. de Leval L, Hasserjian RP. Diffuse large B-cell lymphomas and burkitt lymphoma. Hematol Oncol Clin North Am. 2009;23(4): 791–827.

    Article  PubMed  Google Scholar 

  203. Klein G, Klein E. Evolution of tumours and the impact of molecular oncology. Nature. 1985;315(6016):190–5.

    Article  PubMed  CAS  Google Scholar 

  204. Ziegler JL. Burkitt’s lymphoma. N Engl J Med. 1981;305(13): 735–45.

    Article  PubMed  CAS  Google Scholar 

  205. Thorley-Lawson DA, Allday MJ. The curious case of the tumour virus: 50 years of Burkitt’s lymphoma. Nat Rev Microbiol. 2008;6(12):913–24.

    Article  PubMed  CAS  Google Scholar 

  206. Bernard O, Cory S, Gerondakis S, Webb E, Adams JM. Sequence of the murine and human cellular myc oncogenes and two modes of myc transcription resulting from chromosome translocation in B lymphoid tumours. EMBO J. 1983;2(12):2375–83.

    PubMed  CAS  Google Scholar 

  207. Douglass EC, Magrath IT, Lee EC, Whang-Peng J. Serial cytogenetic studies of nonendemic Burkitt’s lymphoma cell lines. J Natl Cancer Inst. 1980;65(5):891–5.

    PubMed  CAS  Google Scholar 

  208. Willis TG, Dyer MJ. The role of immunoglobulin translocations in the pathogenesis of B-cell malignancies. Blood. 2000;96(3): 808–22.

    PubMed  CAS  Google Scholar 

  209. Hochberg D, Middeldorp JM, Catalina M, Sullivan JL, Luzuriaga K, Thorley-Lawson DA. Demonstration of the Burkitt’s lymphoma Epstein-Barr virus phenotype in dividing latently infected memory cells in vivo. Proc Natl Acad Sci USA. 2004;101(1): 239–44.

    Article  PubMed  CAS  Google Scholar 

  210. Dorsett Y, Robbiani DF, Jankovic M, Reina-San-Martin B, Eisenreich TR, Nussenzweig MC. A role for AID in chromosome translocations between c-myc and the IgH variable region. J Exp Med. 2007;204(9):2225–32.

    Article  PubMed  CAS  Google Scholar 

  211. Emanuel BS, Selden JR, Chaganti RS, Jhanwar S, Nowell PC, Croce CM. The 2p breakpoint of a 2;8 translocation in Burkitt lymphoma interrupts the V kappa locus. Proc Natl Acad Sci USA. 1984;81(8):2444–6.

    Article  PubMed  CAS  Google Scholar 

  212. Haluska FG, Tsujimoto Y, Croce CM. Mechanisms of chromosome translocation in B- and T-cell neoplasia. Trends Genet. 1987;3:11–5.

    Article  CAS  Google Scholar 

  213. Lenoir GM, Preud’homme JL, Bernheim A, Berger R. Correlation between immunoglobulin light chain expression and variant translocation in Burkitt’s lymphoma. Nature. 1982;298(5873):474–6.

    Article  PubMed  CAS  Google Scholar 

  214. Zech L, Haglund U, Nilsson K, Klein G. Characteristic chromosomal abnormalities in biopsies and lymphoid-cell lines from patients with Burkitt and non-Burkitt lymphomas. Int J Cancer. 1976;17(1):47–56.

    Article  PubMed  CAS  Google Scholar 

  215. Shaffer AL, Rosenwald A, Staudt LM. Lymphoid malignancies: the dark side of B-cell differentiation. Nat Rev Immunol. 2002; 2(12):920–32.

    Article  PubMed  CAS  Google Scholar 

  216. Kuppers R, Dalla-Favera R. Mechanisms of chromosomal translocations in B cell lymphomas. Oncogene. 2001;20(40):5580–94.

    Article  PubMed  CAS  Google Scholar 

  217. Dalla-Favera R, Martinotti S, Gallo RC, Erikson J, Croce CM. Translocation and rearrangements of the c-myc oncogene locus in human undifferentiated B-cell lymphomas. Science. 1983; 219(4587):963–7.

    Article  PubMed  CAS  Google Scholar 

  218. Taub R, Kirsch I, Morton C, et al. Translocation of the c-myc gene into the immunoglobulin heavy chain locus in human Burkitt lymphoma and murine plasmacytoma cells. Proc Natl Acad Sci USA. 1982;79(24):7837–41.

    Article  PubMed  CAS  Google Scholar 

  219. Haluska FG, Finver S, Tsujimoto Y, Croce CM. The t(8; 14) chromosomal translocation occurring in B-cell malignancies results from mistakes in V-D-J joining. Nature. 1986;324(6093):158–61.

    Article  PubMed  CAS  Google Scholar 

  220. Kuppers R, Klein U, Hansmann ML, Rajewsky K. Cellular origin of human B-cell lymphomas. N Engl J Med. 1999;341(20): 1520–9.

    Article  PubMed  CAS  Google Scholar 

  221. Onizuka T, Moriyama M, Yamochi T, et al. BCL-6 gene product, a 92- to 98-kD nuclear phosphoprotein, is highly expressed in germinal center B cells and their neoplastic counterparts. Blood. 1995;86(1):28–37.

    PubMed  CAS  Google Scholar 

  222. Klein U, Dalla-Favera R. Germinal centres: role in B-cell physiology and malignancy. Nat Rev Immunol. 2008;8(1):22–33.

    Article  PubMed  CAS  Google Scholar 

  223. Gregory CD, Tursz T, Edwards CF, et al. Identification of a subset of normal B cells with a Burkitt’s lymphoma (BL)-like phenotype. J Immunol. 1987;139(1):313–8.

    PubMed  CAS  Google Scholar 

  224. Benjamin D, Magrath IT, Maguire R, Janus C, Todd HD, Parsons RG. Immunoglobulin secretion by cell lines derived from African and American undifferentiated lymphomas of Burkitt’s and non-Burkitt’s type. J Immunol. 1982;129(3):1336–42.

    PubMed  CAS  Google Scholar 

  225. Gelmann EP, Psallidopoulos MC, Papas TS, Dalla-Favera R. Identification of reciprocal translocation sites within the c-myc oncogene and immunoglobulin mu locus in a Burkitt lymphoma. Nature. 1983;306(5945):799–803.

    Article  PubMed  CAS  Google Scholar 

  226. Yano T, Sander CA, Clark HM, Dolezal MV, Jaffe ES, Raffeld M. Clustered mutations in the second exon of the MYC gene in sporadic Burkitt’s lymphoma. Oncogene. 1993;8(10):2741–8.

    PubMed  CAS  Google Scholar 

  227. Levine AM. Lymphoma complicating immunodeficiency disorders. Ann Oncol. 1994;5 Suppl 2:29–35.

    PubMed  Google Scholar 

  228. Perkins AS, Friedberg JW. Burkitt lymphoma in adults. Hematology Am Soc Hematol Educ Program 2008:341–8.

    Google Scholar 

  229. Troye-Blomberg M, Perlmann H, Patarroyo ME, Perlmann P. Regulation of the immune response in Plasmodium falciparum malaria. II. Antigen specific proliferative responses in vitro. Clin Exp Immunol. 1983;53(2):345–53.

    PubMed  CAS  Google Scholar 

  230. Troye-Blomberg M, Sjoholm PE, Perlmann H, Patarroyo ME, Perlmann P. Regulation of the immune response in Plasmodium falciparum malaria. I. Non-specific proliferative responses in vitro and characterization of lymphocytes. Clin Exp Immunol. 1983;53(2):335–44.

    PubMed  CAS  Google Scholar 

  231. Whittle HC, Brown J, Marsh K, et al. T-cell control of Epstein-Barr virus-infected B cells is lost during P. falciparum malaria. Nature. 1984;312(5993):449–50.

    Article  PubMed  CAS  Google Scholar 

  232. Moss DJ, Burrows SR, Castelino DJ, et al. A comparison of Epstein-Barr virus-specific T-cell immunity in malaria-endemic and -nonendemic regions of Papua New Guinea. Int J Cancer. 1983;31(6):727–32.

    Article  PubMed  CAS  Google Scholar 

  233. Chene A, Donati D, Orem J, et al. Endemic Burkitt’s lymphoma as a polymicrobial disease: new insights on the interaction between Plasmodium falciparum and Epstein-Barr virus. Semin Cancer Biol. 2009;19(6):411–20.

    Article  PubMed  CAS  Google Scholar 

  234. de-The G, Geser A, Day NE, et al. Epidemiological evidence for causal relationship between Epstein-Barr virus and Burkitt’s lymphoma from Ugandan prospective study. Nature. 1978;274(5673):756–61.

    Article  PubMed  CAS  Google Scholar 

  235. Geser A, de The G, Lenoir G, Day NE, Williams EH. Final case reporting from the Ugandan prospective study of the relationship between EBV and Burkitt’s lymphoma. Int J Cancer. 1982;29(4): 397–400.

    Article  PubMed  CAS  Google Scholar 

  236. Pearson GR, Qualtiere LF, Klein G, Norin T, Bal IS. Epstein-Barr virus-specific antibody-dependent cellular cytotoxicity in patients with Burkitt’s lymphoma. Int J Cancer. 1979;24(4):402–6.

    Article  PubMed  CAS  Google Scholar 

  237. Rabbitts TH. Chromosomal translocations in human cancer. Nature. 1994;372(6502):143–9.

    Article  PubMed  CAS  Google Scholar 

  238. Lindstrom MS, Wiman KG. Role of genetic and epigenetic changes in Burkitt lymphoma. Semin Cancer Biol. 2002;12(5): 381–7.

    Article  PubMed  CAS  Google Scholar 

  239. Strasser A. The role of BH3-only proteins in the immune system. Nat Rev Immunol. 2005;5(3):189–200.

    Article  PubMed  CAS  Google Scholar 

  240. Hemann MT, Bric A, Teruya-Feldstein J, et al. Evasion of the p53 tumour surveillance network by tumour-derived MYC mutants. Nature. 2005;436(7052):807–11.

    Article  PubMed  CAS  Google Scholar 

  241. Dang CV, O’Donnell KA, Juopperi T. The great MYC escape in tumorigenesis. Cancer Cell. 2005;8(3):177–8.

    Article  PubMed  CAS  Google Scholar 

  242. Andiman WA, Eastman R, Martin K, et al. Opportunistic lymphoproliferations associated with Epstein-Barr viral DNA in infants and children with AIDS. Lancet. 1985;2(8469–70):1390–3.

    Article  PubMed  CAS  Google Scholar 

  243. Guarner J, del Rio C, Carr D, Hendrix LE, Eley JW, Unger ER. Non-Hodgkin’s lymphomas in patients with human immunodeficiency virus infection. Presence of Epstein-Barr virus by in situ hybridization, clinical presentation, and follow-up. Cancer. 1991;68(11):2460–5.

    Article  PubMed  CAS  Google Scholar 

  244. Pedersen C, Gerstoft J, Lundgren JD, et al. HIV-associated lymphoma: histopathology and association with Epstein-Barr virus genome related to clinical, immunological and prognostic features. Eur J Cancer. 1991;27(11):1416–23.

    Article  PubMed  CAS  Google Scholar 

  245. Birx DL, Redfield RR, Tencer K, Fowler A, Burke DS, Tosato G. Induction of interleukin-6 during human immunodeficiency virus infection. Blood. 1990;76(11):2303–10.

    PubMed  CAS  Google Scholar 

  246. Breen EC, Rezai AR, Nakajima K, et al. Infection with HIV is associated with elevated IL-6 levels and production. J Immunol. 1990;144(2):480–4.

    PubMed  CAS  Google Scholar 

  247. Emilie D, Coumbaras J, Raphael M, et al. Interleukin-6 production in high-grade B lymphomas: correlation with the presence of malignant immunoblasts in acquired immunodeficiency syndrome and in human immunodeficiency virus-seronegative patients. Blood. 1992;80(2):498–504.

    PubMed  CAS  Google Scholar 

  248. Scala G, Quinto I, Ruocco MR, et al. Expression of an exogenous interleukin 6 gene in human Epstein Barr virus B cells confers growth advantage and in vivo tumorigenicity. J Exp Med. 1990;172(1):61–8.

    Article  PubMed  CAS  Google Scholar 

  249. Mauray S, Fuzzati-Armentero MT, Trouillet P, et al. Epstein-Barr virus-dependent lymphoproliferative disease: critical role of IL-6. Eur J Immunol. 2000;30(7):2065–73.

    Article  PubMed  CAS  Google Scholar 

  250. Grierson H, Purtilo DT. Epstein-Barr virus infections in males with the X-linked lymphoproliferative syndrome. Ann Intern Med. 1987;106(4):538–45.

    PubMed  CAS  Google Scholar 

  251. Munz C, Moormann A. Immune escape by Epstein-Barr virus associated malignancies. Semin Cancer Biol. 2008;18(6):381–7.

    Article  PubMed  CAS  Google Scholar 

  252. Hjalgrim H, Smedby KE, Rostgaard K, et al. Infectious mononucleosis, childhood social environment, and risk of Hodgkin lymphoma. Cancer Res. 2007;67(5):2382–8.

    Article  PubMed  CAS  Google Scholar 

  253. Quintanilla-Martinez L, Kumar S, Fend F, et al. Fulminant EBV(+) T-cell lymphoproliferative disorder following acute/chronic EBV infection: a distinct clinicopathologic syndrome. Blood. 2000;96(2):443–51.

    PubMed  CAS  Google Scholar 

  254. Jaffe ES. Pathologic and clinical spectrum of post-thymic T-cell malignancies. Cancer Invest. 1984;2(5):413–26.

    Article  PubMed  CAS  Google Scholar 

  255. Lipford Jr EH, Margolick JB, Longo DL, Fauci AS, Jaffe ES. Angiocentric immunoproliferative lesions: a clinicopathologic spectrum of post-thymic T-cell proliferations. Blood. 1988;72(5): 1674–81.

    PubMed  Google Scholar 

  256. Longo DL, DeVita Jr VT, Jaffe ES. Lymphocytic lymphomas. In: DeVita VT, Hellman S, Rosenberg SA, editors. Cancer. Principles & practice of oncology. Philadelphia: JB Lippincott Co.; 1993.

    Google Scholar 

  257. Wilson WH, Kingma DW, Raffeld M, Wittes RE, Jaffe ES. Association of lymphomatoid granulomatosis with Epstein-Barr viral infection of B lymphocytes and response to interferon-alpha 2b. Blood. 1996;87(11):4531–7.

    PubMed  CAS  Google Scholar 

  258. Fauci AS, Haynes BF, Costa J, Katz P, Wolff SM. Lymphomatoid Granulomatosis. Prospective clinical and therapeutic experience over 10 years. N Engl J Med. 1982;306(2):68–74.

    Article  PubMed  CAS  Google Scholar 

  259. Katzenstein AL, Peiper SC. Detection of Epstein-Barr virus genomes in lymphomatoid granulomatosis: analysis of 29 cases by the polymerase chain reaction technique. Mod Pathol. 1990;3(4):435–41.

    PubMed  CAS  Google Scholar 

  260. Guinee Jr D, Jaffe E, Kingma D. Pulmonary lymphomatoid granulomatosis. Evidence for a proliferation of Epstein-Barr virus infected B-lymphocytes with a prominent T-cell component and vasculitis. Am J Surg Pathol. 1994;18(8):753–64.

    Article  PubMed  Google Scholar 

  261. Chan JK, Ng CS, Lau WH, Lo ST. Most nasal/nasopharyngeal lymphomas are peripheral T-cell neoplasms. Am J Surg Pathol. 1987;11(6):418–29.

    Article  PubMed  CAS  Google Scholar 

  262. Harabuchi Y, Yamanaka N, Kataura A, et al. Epstein-Barr virus in nasal T-cell lymphomas in patients with lethal midline granuloma. Lancet. 1990;335(8682):128–30.

    Article  PubMed  CAS  Google Scholar 

  263. Lome-Maldonado C, Canioni D, Hermine O, et al. Angio-immunoblastic T cell lymphoma (AILD-TL) rich in large B cells and associated with Epstein-Barr virus infection. A different subtype of AILD-TL? Leukemia. 2002;16(10):2134–41.

    Article  PubMed  CAS  Google Scholar 

  264. Quintanilla-Martinez L, Fend F, Moguel LR, et al. Peripheral T-cell lymphoma with Reed-Sternberg-like cells of B-cell phenotype and genotype associated with Epstein-Barr virus infection. Am J Surg Pathol. 1999;23(10):1233–40.

    Article  PubMed  CAS  Google Scholar 

  265. Weiss LM, Jaffe ES, Liu XF, Chen YY, Shibata D, Medeiros LJ. Detection and localization of Epstein-Barr viral genomes in angioimmunoblastic lymphadenopathy and angioimmunoblastic lymphadenopathy-like lymphoma. Blood. 1992;79(7):1789–95.

    PubMed  CAS  Google Scholar 

  266. Abruzzo LV, Schmidt K, Weiss LM, et al. B-cell lymphoma after angioimmunoblastic lymphadenopathy: a case with oligoclonal gene rearrangements associated with Epstein-Barr virus. Blood. 1993;82(1):241–6.

    PubMed  CAS  Google Scholar 

  267. Lipford EH, Smith HR, Pittaluga S, Jaffe ES, Steinberg AD, Cossman J. Clonality of angioimmunoblastic lymphadenopathy and implications for its evolution to malignant lymphoma. J Clin Invest. 1987;79(2):637–42.

    Article  PubMed  CAS  Google Scholar 

  268. Anagnostopoulos I, Hummel M, Finn T, et al. Heterogeneous Epstein-Barr virus infection patterns in peripheral T-cell lymphoma of angioimmunoblastic lymphadenopathy type. Blood. 1992;80(7):1804–12.

    PubMed  CAS  Google Scholar 

  269. Bashir RM, Harris NL, Hochberg FH, Singer RM. Detection of Epstein-Barr virus in CNS lymphomas by in-situ hybridization. Neurology. 1989;39(6):813–7.

    Article  PubMed  CAS  Google Scholar 

  270. Hochberg FH, Miller G, Schooley RT, Hirsch MS, Feorino P, Henle W. Central-nervous-system lymphoma related to Epstein-Barr virus. N Engl J Med. 1983;309(13):745–8.

    Article  PubMed  CAS  Google Scholar 

  271. Kitai R, Matsuda K, Adachi E, et al. Epstein-Barr virus-associated primary central nervous system lymphoma in the Japanese population. Neurol Med Chir (Tokyo). 2010;50(2):114–8.

    Article  Google Scholar 

  272. Lam KY, Lo CY, Kwong DL, Lee J, Srivastava G. Malignant lymphoma of the thyroid. A 30-year clinicopathologic experience and an evaluation of the presence of Epstein-Barr virus. Am J Clin Pathol. 1999;112(2):263–70.

    PubMed  CAS  Google Scholar 

  273. Chapel F, Fabiani B, Davi F, et al. Epstein-Barr virus and gastric carcinoma in Western patients: comparison of pathological parameters and p53 expression in EBV-positive and negative tumours. Histopathology. 2000;36(3):252–61.

    Article  PubMed  CAS  Google Scholar 

  274. DiGiuseppe JA, Wu TC, Corio RL. Analysis of Epstein-Barr virus-encoded small RNA 1 expression in benign lymphoepithelial salivary gland lesions. Mod Pathol. 1994;7(5):555–9.

    PubMed  CAS  Google Scholar 

  275. Feinmesser R, Miyazaki I, Cheung R, Freeman JL, Noyek AM, Dosch HM. Diagnosis of nasopharyngeal carcinoma by DNA amplification of tissue obtained by fine-needle aspiration. N Engl J Med. 1992;326(1):17–21.

    Article  PubMed  CAS  Google Scholar 

  276. Hong T, Shimada Y, Kano M, et al. The Epstein-Barr virus is rarely associated with esophageal cancer. Int J Mol Med. 2000;5(4):363–8.

    PubMed  CAS  Google Scholar 

  277. Imai S, Koizumi S, Sugiura M, et al. Gastric carcinoma: monoclonal epithelial malignant cells expressing Epstein-Barr virus latent infection protein. Proc Natl Acad Sci USA. 1994;91(19):9131–5.

    Article  PubMed  CAS  Google Scholar 

  278. Kumar S, Fend F, Quintanilla-Martinez L, et al. Epstein-Barr virus-positive primary gastrointestinal Hodgkin’s disease: association with inflammatory bowel disease and immunosuppression. Am J Surg Pathol. 2000;24(1):66–73.

    Article  PubMed  CAS  Google Scholar 

  279. Leyvraz S, Henle W, Chahinian AP, et al. Association of Epstein-Barr virus with thymic carcinoma. N Engl J Med. 1985;312(20): 1296–9.

    Article  PubMed  CAS  Google Scholar 

  280. Osato T, Imai S. Epstein-Barr virus and gastric carcinoma. Semin Cancer Biol. 1996;7(4):175–82.

    Article  PubMed  CAS  Google Scholar 

  281. Pathmanathan R, Prasad U, Sadler R, Flynn K, Raab-Traub N. Clonal proliferations of cells infected with Epstein-Barr virus in preinvasive lesions related to nasopharyngeal carcinoma. N Engl J Med. 1995;333(11):693–8.

    Article  PubMed  CAS  Google Scholar 

  282. Patton DF, Ribeiro RC, Jenkins JJ, Sixbey JW. Thymic carcinoma with a defective Epstein-Barr virus encoding the BZLF1 trans-activator. J Infect Dis. 1994;170(1):7–12.

    Article  PubMed  CAS  Google Scholar 

  283. Sashiyama H, Nozawa A, Kimura M, et al. Case report: A case of lymphoepithelioma-like carcinoma of the oesophagus and review of the literature. J Gastroenterol Hepatol. 1999;14(6):534–9.

    Article  PubMed  CAS  Google Scholar 

  284. Wong MP, Chung LP, Yuen ST, et al. In situ detection of Epstein-Barr virus in non-small cell lung carcinomas. J Pathol. 1995;177(3):233–40.

    Article  PubMed  CAS  Google Scholar 

  285. Bonnet M, Guinebretiere JM, Kremmer E, et al. Detection of Epstein-Barr virus in invasive breast cancers. J Natl Cancer Inst. 1999;91(16):1376–81.

    Article  PubMed  CAS  Google Scholar 

  286. Brink AA, van Den Brule AJ, van Diest P, Meijer CJ. Re: detection of Epstein-Barr virus in invasive breast cancers. J Natl Cancer Inst. 2000;92(8):655–6. author reply 656.

    Article  PubMed  CAS  Google Scholar 

  287. Glaser SL, Ambinder RF, DiGiuseppe JA, Horn-Ross PL, Hsu JL. Absence of Epstein-Barr virus EBER-1 transcripts in an epidemiologically diverse group of breast cancers. Int J Cancer. 1998;75(4):555–8.

    Article  PubMed  CAS  Google Scholar 

  288. Magrath I, Bhatia K. Breast cancer: a new Epstein-Barr virus-associated disease? J Natl Cancer Inst. 1999;91(16):1349–50.

    Article  PubMed  CAS  Google Scholar 

  289. Kaufman D, Longo DL. Hodgkin’s disease. Crit Rev Oncol Hematol. 1992;13(2):135–87.

    Article  PubMed  CAS  Google Scholar 

  290. Alexander FE, Jarrett RF, Lawrence D, et al. Risk factors for Hodgkin’s disease by Epstein-Barr virus (EBV) status: prior infection by EBV and other agents. Br J Cancer. 2000;82(5):1117–21.

    Article  PubMed  CAS  Google Scholar 

  291. Glaser SL, Keegan TH, Clarke CA, et al. Exposure to childhood infections and risk of Epstein-Barr virus-defined Hodgkin’s lymphoma in women. Int J Cancer. 2005;115(4):599–605.

    Article  PubMed  CAS  Google Scholar 

  292. Mueller N. Overview of the epidemiology of malignancy in immune deficiency. J Acquir Immune Defic Syndr. 1999;21 Suppl 1:S5–10.

    PubMed  Google Scholar 

  293. Herbst H, Dallenbach F, Hummel M, et al. Epstein-Barr virus latent membrane protein expression in Hodgkin and Reed-Sternberg cells. Proc Natl Acad Sci USA. 1991;88(11):4766–70.

    Article  PubMed  CAS  Google Scholar 

  294. Uccini S, Monardo F, Ruco LP, et al. High frequency of Epstein-Barr virus genome in HIV-positive patients with Hodgkin’s disease. Lancet. 1989;1(8652):1458.

    Article  PubMed  CAS  Google Scholar 

  295. Weiss LM, Movahed LA, Warnke RA, Sklar J. Detection of Epstein-Barr viral genomes in Reed-Sternberg cells of Hodgkin’s disease. N Engl J Med. 1989;320(8):502–6.

    Article  PubMed  CAS  Google Scholar 

  296. Nerurkar AY, Vijayan P, Srinivas V, et al. Discrepancies in Epstein-Barr virus association at presentation and relapse of classical Hodgkin’s disease: impact on pathogenesis. Ann Oncol. 2000;11(4):475–8.

    Article  PubMed  CAS  Google Scholar 

  297. Naresh KN, Johnson J, Srinivas V, et al. Epstein-Barr virus association in classical Hodgkin’s disease provides survival advantage to patients and correlates with higher expression of proliferation markers in Reed-Sternberg cells. Ann Oncol. 2000;11(1):91–6.

    Article  PubMed  CAS  Google Scholar 

  298. Liu TY, Wu SJ, Huang MH, et al. EBV-positive Hodgkin lymphoma is associated with suppression of p21cip1/waf1 and a worse prognosis. Mol Cancer. 2010;9:32.

    Article  PubMed  CAS  Google Scholar 

  299. Dolcetti R, Boiocchi M. Epstein-Barr virus in the pathogenesis of Hodgkin’s disease. Biomed Pharmacother. 1998;52(1):13–25.

    Article  PubMed  CAS  Google Scholar 

  300. Herbst H, Foss HD, Samol J, et al. Frequent expression of interleukin-10 by Epstein-Barr virus-harboring tumor cells of Hodgkin’s disease. Blood. 1996;87(7):2918–29.

    PubMed  CAS  Google Scholar 

  301. Jarrett RF, MacKenzie J. Epstein-Barr virus and other candidate viruses in the pathogenesis of Hodgkin’s disease. Semin Hematol. 1999;36(3):260–9.

    PubMed  CAS  Google Scholar 

  302. Preciado MV, De Matteo E, Diez B, Menarguez J, Grinstein S. Presence of Epstein-Barr virus and strain type assignment in Argentine childhood Hodgkin’s disease. Blood. 1995;86(10):3922–9.

    PubMed  CAS  Google Scholar 

  303. Akanmu AS. AIDS-associated malignancies. Afr J Med Med Sci. 2006;35(Suppl):57–70.

    PubMed  Google Scholar 

  304. Gerard L, Galicier L, Boulanger E, et al. Improved survival in HIV-related Hodgkin’s lymphoma since the introduction of highly active antiretroviral therapy. AIDS. 2003;17(1):81–7.

    Article  PubMed  CAS  Google Scholar 

  305. Burgi A, Brodine S, Wegner S, et al. Incidence and risk factors for the occurrence of non-AIDS-defining cancers among human immunodeficiency virus-infected individuals. Cancer. 2005;104(7): 1505–11.

    Article  PubMed  Google Scholar 

  306. Ziegler JL, Beckstead JA, Volberding PA, et al. Non-Hodgkin’s lymphoma in 90 homosexual men. Relation to generalized lymphadenopathy and the acquired immunodeficiency syndrome. N Engl J Med. 1984;311(9):565–70.

    Article  PubMed  CAS  Google Scholar 

  307. Knowles DM, Chamulak GA, Subar M, et al. Lymphoid neoplasia associated with the acquired immunodeficiency syndrome (AIDS). The New York University Medical Center experience with 105 patients (1981–1986). Ann Intern Med. 1988;108(5):744–53.

    PubMed  CAS  Google Scholar 

  308. Meyer PR, Yanagihara ET, Parker JW, Lukes RJ. A distinctive follicular hyperplasia in the acquired immune deficiency syndrome (AIDS) and the AIDS related complex. A pre-lymphomatous state for B cell lymphomas? Hematol Oncol. 1984;2(4): 319–47.

    PubMed  CAS  Google Scholar 

  309. Levine AM, Gill PS, Meyer PR. Natural history of persistent, generalized lymphadenopathy in gay men: Risk of lymphoma (NHL) and factors associated with development of lymphoma. Blood. 1986;68:130a.

    Google Scholar 

  310. Knowles DM. Etiology and pathogenesis of AIDS-related non-Hodgkin’s lymphoma. Hematol Oncol Clin North Am. 1996;10(5):1081–109.

    Article  PubMed  CAS  Google Scholar 

  311. Ziegler JL, Drew WL, Miner RC, et al. Outbreak of Burkitt’s-like lymphoma in homosexual men. Lancet. 1982;2(8299):631–3.

    Article  PubMed  CAS  Google Scholar 

  312. Doll DC, List AF. Burkitt’s lymphoma in a homosexual. Lancet. 1982;1(8279):1026–7.

    Article  PubMed  CAS  Google Scholar 

  313. Levine AM, Meyer PR, Begandy MK, et al. Development of B-cell lymphoma in homosexual me. Clinical and immunologic findings. Ann Intern Med. 1984;100(1):7–13.

    PubMed  CAS  Google Scholar 

  314. Ioachim HL, Cooper MC, Hellman GC. Lymphomas in men at high risk for acquired immune deficiency syndrome (AIDS). A study of 21 cases. Cancer. 1985;56(12):2831–42.

    Article  PubMed  CAS  Google Scholar 

  315. Dancis A, Odajnk C, Krigel RL. Association of Hodgkin’s and non-Hodgkin’s lymphoma and the acquired immunodeficiency syndrome (AIDS). Proc Am Soc Oncol. 1984;3:61.a.

    Google Scholar 

  316. Centers for Disease Control. Revision of the case definition of acquired immunodeficiency syndrome for national reporting–United States. MMWR Morb Mortal Wkly Rep. 1985;34(25): 373–5.

    Google Scholar 

  317. Centers for Disease Control. Revision of the CDC surveillance case definition for acquired immunodeficiency syndrome for national reporting – United States. MMWR Morb Mortal Wkly Rep. 1987;36 Suppl 25:1–15.

    Google Scholar 

  318. Centers for Disease Control. Revised classification system for HIV infection and expanded surveillance case definition for AIDS among adolescents and adults. MMWR Morb Mortal Wkly Rep. 1992;41(RR-17):1–19.

    Google Scholar 

  319. Said JW. Human immunodeficiency virus-related lymphoid proliferations. Semin Diagn Pathol. 1997;14(1):48–53.

    PubMed  CAS  Google Scholar 

  320. Levine AM, Sadeghi S, Espina B, Tulpule A, Nathwani B. Characteristics of indolent non-Hodgkin lymphoma in patients with type 1 human immunodeficiency virus infection. Cancer. 2002;94(5):1500–6.

    Article  PubMed  Google Scholar 

  321. Dal Maso L, Franceschi S. Epidemiology of non-Hodgkin lymphomas and other haemolymphopoietic neoplasms in people with AIDS. Lancet Oncol. 2003;4(2):110–9.

    Article  PubMed  Google Scholar 

  322. Beral V, Peterman T, Berkelman R, Jaffe H. AIDS-associated non-Hodgkin lymphoma. Lancet. 1991;337(8745):805–9.

    Article  PubMed  CAS  Google Scholar 

  323. Hamilton-Dutoit SJ, Pallesen G, Karkov J, Skinhoj P, Franzmann MB, Pedersen C. Identification of EBV-DNA in tumour cells of AIDS-related lymphomas by in-situ hybridisation. Lancet. 1989;1(8637):554–2.

    Article  PubMed  CAS  Google Scholar 

  324. Rabkin CS, Sei S. Susceptibility genes for AIDS and AIDS-related lymphoma. Curr Top Microbiol Immunol. 1999;246:111–4. discussion 115.

    Article  PubMed  CAS  Google Scholar 

  325. Wilkes MS, Fortin AH, Felix JC, Godwin TA, Thompson WG. Value of necropsy in acquired immunodeficiency syndrome. Lancet. 1988;2(8602):85–8.

    Article  PubMed  CAS  Google Scholar 

  326. Ridolfo AL, Santambrogio S, Mainini F, et al. High frequency of non-Hodgkin’s lymphoma in patients with HIV-associated Kaposi’s sarcoma. AIDS. 1996;10(2):181–5.

    Article  PubMed  CAS  Google Scholar 

  327. Pedersen C, Gerstoft J, Tauris P, et al. Trends in survival of Danish AIDS patients from 1981 to 1989. AIDS. 1990;4(11):1111–6.

    Article  PubMed  CAS  Google Scholar 

  328. Kaplan LD, Abrams DI, Feigal E, et al. AIDS-associated non-Hodgkin’s lymphoma in San Francisco. JAMA. 1989;261(5): 719–24.

    Article  PubMed  CAS  Google Scholar 

  329. Gisselbrecht C, Oksenhendler E, Tirelli U, et al. Human immunodeficiency virus-related lymphoma treatment with intensive combination chemotherapy. French-Italian Cooperative Group. Am J Med. 1993;95(2):188–96.

    Article  PubMed  CAS  Google Scholar 

  330. Rabkin CS, Hilgartner MW, Hedberg KW, et al. Incidence of lymphomas and other cancers in HIV-infected and HIV-uninfected patients with hemophilia. JAMA. 1992;267(8):1090–4.

    Article  PubMed  CAS  Google Scholar 

  331. Tulpule A, Levine A. AIDS-related lymphoma. Blood Rev. 1999;13(3):147–50.

    Article  PubMed  CAS  Google Scholar 

  332. Evison J, Jost J, Ledergerber B, Jost L, Strasser F, Weber R. HIV-associated non-Hodgkin’s lymphoma: highly active antiretroviral therapy improves remission rate of chemotherapy. AIDS. 1999;13(6):732–4.

    Article  PubMed  CAS  Google Scholar 

  333. Pluda JM, Venzon DJ, Tosato G, et al. Parameters affecting the development of non-Hodgkin’s lymphoma in patients with severe human immunodeficiency virus infection receiving antiretroviral therapy. J Clin Oncol. 1993;11(6):1099–107.

    PubMed  CAS  Google Scholar 

  334. Centers for Disease Control. Opportunistic non-Hodgkin’s lymphomas among severely immunocompromised HIV-infected patients surviving for prolonged periods on antiretroviral therapy–United States. JAMA. 1991;266(12):1620–1.

    Article  Google Scholar 

  335. Hamilton-Dutoit SJ, Pallesen G, Franzmann M, et al. AIDS-related lymphoma. Histopathology, immunophenotype, and association with Epstein-Barr virus as demonstrated by in situ nucleic acid hybridization. Am J Pathol. 1991;138(1):149–63.

    PubMed  CAS  Google Scholar 

  336. Yarchoan R, Venzon DJ, Pluda JM, et al. CD4 count and the risk for death in patients infected with HIV receiving antiretroviral therapy. Ann Intern Med. 1991;115(3):184–9.

    PubMed  CAS  Google Scholar 

  337. Levine AM, Bernstein L, Sullivan-Halley J, Shibata D, Mahterian SB, Nathwani BN. Role of zidovudine antiretroviral therapy in the pathogenesis of acquired immunodeficiency syndrome-related lymphoma. Blood. 1995;86(12):4612–6.

    PubMed  CAS  Google Scholar 

  338. Cote TR, Biggar RJ. Does zidovudine cause non-Hodgkin’s lymphoma? AIDS. 1995;9(4):404–5.

    PubMed  CAS  Google Scholar 

  339. Grulich AE, Wan X, Law MG, et al. B-cell stimulation and prolonged immune deficiency are risk factors for non-Hodgkin’s lymphoma in people with AIDS. AIDS. 2000;14(2):133–40.

    Article  PubMed  CAS  Google Scholar 

  340. Schapiro JM, Winters MA, Stewart F, et al. The effect of high-dose saquinavir on viral load and CD4+ T-cell counts in HIV-infected patients. Ann Intern Med. 1996;124(12):1039–50.

    PubMed  CAS  Google Scholar 

  341. Deeks SG, Smith M, Holodniy M, Kahn JO. HIV-1 protease inhibitors. A review for clinicians. JAMA. 1997;277(2):145–53.

    Article  PubMed  CAS  Google Scholar 

  342. Saravolatz LD, Winslow DL, Collins G, et al. Zidovudine alone or in combination with didanosine or zalcitabine in HIV-infected patients with the acquired immunodeficiency syndrome or fewer than 200 CD4 cells per cubic millimeter. Investigators for the Terry Beirn Community Programs for Clinical Research on AIDS. N Engl J Med. 1996;335(15):1099–106.

    Article  PubMed  CAS  Google Scholar 

  343. Saag MS, Kilby JM. HIV-1 and HAART: a time to cure, a time to kill. Nat Med. 1999;5(6):609–11.

    Article  PubMed  CAS  Google Scholar 

  344. Hazenberg MD, Stuart JW, Otto SA, et al. T-cell division in human immunodeficiency virus (HIV)-1 infection is mainly due to immune activation: a longitudinal analysis in patients before and during highly active antiretroviral therapy (HAART). Blood. 2000;95(1):249–55.

    PubMed  CAS  Google Scholar 

  345. Hammer SM, Katzenstein DA, Hughes MD, et al. A trial comparing nucleoside monotherapy with combination therapy in HIV-infected adults with CD4 cell counts from 200 to 500 per cubic millimeter. AIDS Clinical Trials Group Study 175 Study Team. N Engl J Med. 1996;335(15):1081–90.

    Article  PubMed  CAS  Google Scholar 

  346. Feigal EG. AIDS-associated malignancies: research perspectives. Biochim Biophys Acta. 1999;1423(1):C1–9.

    PubMed  CAS  Google Scholar 

  347. D’Aquila RT, Hughes MD, Johnson VA, et al. Nevirapine, zidovudine, and didanosine compared with zidovudine and didanosine in patients with HIV-1 infection. A randomized, double-blind, placebo-controlled trial. National Institute of Allergy and Infectious Diseases AIDS Clinical Trials Group Protocol 241 Investigators. Ann Intern Med. 1996;124(12):1019–30.

    PubMed  Google Scholar 

  348. Bartlett JA, Benoit SL, Johnson VA, et al. Lamivudine plus zidovudine compared with zalcitabine plus zidovudine in patients with HIV infection. A randomized, double-blind, placebo-controlled trial. North American HIV Working Party. Ann Intern Med. 1996;125(3):161–72.

    PubMed  CAS  Google Scholar 

  349. Katzenstein DA, Hammer SM, Hughes MD, et al. The relation of virologic and immunologic markers to clinical outcomes after nucleoside therapy in HIV-infected adults with 200 to 500 CD4 cells per cubic millimeter. AIDS Clinical Trials Group Study 175 Virology Study Team. N Engl J Med. 1996;335(15):1091–8.

    Article  PubMed  CAS  Google Scholar 

  350. Moore RD, Chaisson RE. Natural history of HIV infection in the era of combination antiretroviral therapy. AIDS. 1999;13(14):1933–42.

    Article  PubMed  CAS  Google Scholar 

  351. Mocroft A, Sabin CA, Youle M, et al. Changes in AIDS-defining illnesses in a London Clinic, 1987–1998. J Acquir Immune Defic Syndr. 1999;21(5):401–7.

    Article  PubMed  CAS  Google Scholar 

  352. Lederman MM, Valdez H. Immune restoration with antiretroviral therapies: implications for clinical management. JAMA. 2000;284(2):223–8.

    Article  PubMed  CAS  Google Scholar 

  353. Sparano JA, Anand K, Desai J, Mitnick RJ, Kalkut GE, Hanau LH. Effect of highly active antiretroviral therapy on the incidence of HIV-associated malignancies at an urban medical center. J Acquir Immune Defic Syndr. 1999;21 Suppl 1:S18–22.

    PubMed  CAS  Google Scholar 

  354. Masliah E, DeTeresa RM, Mallory ME, Hansen LA. Changes in pathological findings at autopsy in AIDS cases for the last 15 years. AIDS. 2000;14(1):69–74.

    Article  PubMed  CAS  Google Scholar 

  355. Ledergerber B, Telenti A, Egger M. Risk of HIV related Kaposi’s sarcoma and non-Hodgkin’s lymphoma with potent antiretroviral therapy: prospective cohort study. Swiss HIV Cohort Study. BMJ. 1999;319(7201):23–4.

    Article  PubMed  CAS  Google Scholar 

  356. Ledergerber B, Egger M, Erard V, et al. AIDS-related opportunistic illnesses occurring after initiation of potent antiretroviral therapy: the Swiss HIV Cohort Study. JAMA. 1999;282(23):2220–6.

    Article  PubMed  CAS  Google Scholar 

  357. Jones JL, Hanson DL, Dworkin MS, Ward JW, Jaffe HW. Effect of antiretroviral therapy on recent trends in selected cancers among HIV-infected persons Adult/Adolescent Spectrum of HIV Disease Project Group. J Acquir Immune Defic Syndr. 1999;21 Suppl 1:S11–7.

    PubMed  CAS  Google Scholar 

  358. Jacobson LP, Yamashita TE, Detels R, et al. Impact of potent antiretroviral therapy on the incidence of Kaposi’s sarcoma and non-Hodgkin’s lymphomas among HIV-1-infected individuals Multicenter AIDS Cohort Study. J Acquir Immune Defic Syndr. 1999;21 Suppl 1:S34–41.

    PubMed  CAS  Google Scholar 

  359. International Collaboration on HIV and Cancer. Highly active antiretroviral therapy and incidence of cancer in human immunodeficiency virus-infected adults. J Natl Cancer Inst. 2000;92(22):1823–30.

    Article  Google Scholar 

  360. Grulich AE. AIDS-associated non-Hodgkin’s lymphoma in the era of highly active antiretroviral therapy. J Acquir Immune Defic Syndr. 1999;21 Suppl 1:S27–30.

    PubMed  CAS  Google Scholar 

  361. Buchbinder SP, Holmberg SD, Scheer S, Colfax G, O’Malley P, Vittinghoff E. Combination antiretroviral therapy and incidence of AIDS-related malignancies. J Acquir Immune Defic Syndr. 1999;21 Suppl 1:S23–6.

    PubMed  CAS  Google Scholar 

  362. Kirk O, Pedersen C, Cozzi-Lepri A, et al. Non-Hodgkin lymphoma in HIV-infected patients in the era of highly active antiretroviral therapy. Blood. 2001;98(12):3406–12.

    Article  PubMed  CAS  Google Scholar 

  363. Polesel J, Clifford GM, Rickenbach M, et al. Non-Hodgkin ­lymphoma incidence in the Swiss HIV Cohort Study before and after highly active antiretroviral therapy. AIDS. 2008;22(2): 301–6.

    Article  PubMed  Google Scholar 

  364. Serraino D, De Paoli A, Zucchetto A, Pennazza S, Bruzzone S, Spina M, De Paoli P, Rezza G, Dal Maso L, Suligoi B. The impact of Kaposi sarcoma and non-Hodgkin lymphoma on mortality of people with AIDS in the highly active antiretroviral therapies era. Cancer Epidemiol. 2010;34(3):257–61.

    Article  PubMed  Google Scholar 

  365. Hogan CM, Hammer SM. Host determinants in HIV infection and disease. Part 2: genetic factors and implications for antiretroviral therapeutics. Ann Intern Med. 2001;134(10):978–96.

    PubMed  CAS  Google Scholar 

  366. Lowenthal DA, Straus DJ, Campbell SW, Gold JW, Clarkson BD, Koziner B. AIDS-related lymphoid neoplasia. The memorial hospital experience. Cancer. 1988;61(11):2325–37.

    Article  PubMed  CAS  Google Scholar 

  367. Meeker TC, Shiramizu B, Kaplan L, et al. Evidence for molecular subtypes of HIV-associated lymphoma: division into peripheral monoclonal, polyclonal and central nervous system lymphoma. AIDS. 1991;5(6):669–74.

    Article  PubMed  CAS  Google Scholar 

  368. Rabkin CS, Biggar RJ, Horm JW. Increasing incidence of cancers associated with the human immunodeficiency virus epidemic. Int J Cancer. 1991;47(5):692–6.

    Article  PubMed  CAS  Google Scholar 

  369. Walsh C, Wernz JC, Levine A, et al. Phase I trial of m-BACOD and granulocyte macrophage colony stimulating factor in HIV-associated non-Hodgkin’s lymphoma. J Acquir Immune Defic Syndr. 1993;6(3):265–71.

    PubMed  CAS  Google Scholar 

  370. Raphael M, Gentilhomme O, Tulliez M, Byron PA, Diebold J. Histopathologic features of high-grade non-Hodgkin’s lymphomas in acquired immunodeficiency syndrome. The French Study Group of Pathology for Human Immunodeficiency Virus-Associated Tumors. Arch Pathol Lab Med. 1991;115(1):15–20.

    PubMed  CAS  Google Scholar 

  371. Levine AM, Gill PS, Meyer PR, et al. Retrovirus and malignant lymphoma in homosexual men. JAMA. 1985;254(14):1921–5.

    Article  PubMed  CAS  Google Scholar 

  372. Kalter SP, Riggs SA, Cabanillas F, et al. Aggressive non-Hodgkin’s lymphomas in immunocompromised homosexual males. Blood. 1985;66(3):655–9.

    PubMed  CAS  Google Scholar 

  373. Carbone A, Tirelli U, Vaccher E, et al. A clinicopathologic study of lymphoid neoplasias associated with human immunodeficiency virus infection in Italy. Cancer. 1991;68(4):842–52.

    Article  PubMed  CAS  Google Scholar 

  374. Boyle MJ, Swanson CE, Turner JJ, et al. Definition of two distinct types of AIDS-associated non-Hodgkin lymphoma. Br J Haematol. 1990;76(4):506–12.

    Article  PubMed  CAS  Google Scholar 

  375. Bermudez MA, Grant KM, Rodvien R, Mendes F. Non-Hodgkin’s lymphoma in a population with or at risk for acquired immunodeficiency syndrome: indications for intensive chemotherapy. Am J Med. 1989;86(1):71–6.

    Article  PubMed  CAS  Google Scholar 

  376. Harris NL, Jaffe ES, Stein H, et al. A revised European-American classification of lymphoid neoplasms: a proposal from the International Lymphoma Study Group. Blood. 1994;84(5): 1361–92.

    PubMed  CAS  Google Scholar 

  377. Levine AM, Wernz JC, Kaplan L, et al. Low-dose chemotherapy with central nervous system prophylaxis and zidovudine maintenance in AIDS-related lymphoma. A prospective multi-institutional trial. JAMA. 1991;266(1):84–8.

    Article  PubMed  CAS  Google Scholar 

  378. Gill PS, Levine AM, Krailo M, et al. AIDS-related malignant lymphoma: results of prospective treatment trials. J Clin Oncol. 1987;5(9):1322–8.

    PubMed  CAS  Google Scholar 

  379. Carbone A, Gloghini A, Volpe R, Boiocchi M, Tirelli U. High frequency of Epstein-Barr virus latent membrane protein-1 expression in acquired immunodeficiency syndrome-related Ki-1 (CD30)-positive anaplastic large-cell lymphomas. Italian Cooperative Group on AIDS and Tumors. Am J Clin Pathol. 1994;101(6):768–72.

    PubMed  CAS  Google Scholar 

  380. Biggar RJ, Frisch M, Goedert JJ. Risk of cancer in children with AIDS. AIDS-Cancer Match Registry Study Group. JAMA. 2000;284(2):205–9.

    Article  PubMed  CAS  Google Scholar 

  381. Gonzalez-Clemente JM, Ribera JM, Campo E, Bosch X, Montserrat E, Grau JM. Ki-1+ anaplastic large-cell lymphoma of T-cell origin in an HIV-infected patient. AIDS. 1991;5(6):751–5.

    Article  PubMed  CAS  Google Scholar 

  382. Carbone A, Gloghini A, Zanette I, Canal B, Volpe R. Demonstration of Epstein-Barr viral genomes by in situ hybridization in acquired immune deficiency syndrome-related high grade and anaplastic large cell CD30+ lymphomas. Am J Clin Pathol. 1993;99(3): 289–97.

    PubMed  CAS  Google Scholar 

  383. Jambusaria A, Shafer D, Wu H, Al-Saleem T, Perlis C. Cutaneous plasmablastic lymphoma. J Am Acad Dermatol. 2008;58(4):676–8.

    Article  PubMed  Google Scholar 

  384. Alizadeh AA, Eisen MB, Davis RE, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000;403(6769):503–11.

    Article  PubMed  CAS  Google Scholar 

  385. Hystad ME, Myklebust JH, Bo TH, et al. Characterization of early stages of human B cell development by gene expression profiling. J Immunol. 2007;179(6):3662–71.

    PubMed  CAS  Google Scholar 

  386. Sausville EA. T-cell leukemia-lymphoma and mycosis fungoides. Curr Opin Oncol. 1992;4(5):829–39.

    Article  PubMed  CAS  Google Scholar 

  387. Mantina H, Wiggill TM, Carmona S, Perner Y, Stevens WS. Characterization of Lymphomas in a high prevalence HIV setting. J Acquir Immune Defic Syndr. 2010;53(5):656–60.

    PubMed  Google Scholar 

  388. Castillo J, Perez K, Milani C, Dezube BJ, Pantanowitz L. Peripheral T-cell lymphomas in HIV-infected individuals: a comprehensive review. J HIV Ther. 2009;14(2):34–40.

    PubMed  Google Scholar 

  389. Nahass GT, Kraffert CA, Penneys NS. Cutaneous T-cell lymphoma associated with the acquired immunodeficiency syndrome. Arch Dermatol. 1991;127(7):1020–2.

    Article  PubMed  CAS  Google Scholar 

  390. Crane GA, Variakojis D, Rosen ST, Sands AM, Roenigk Jr HH. Cutaneous T-cell lymphoma in patients with human immunodeficiency virus infection. Arch Dermatol. 1991;127(7): 989–94.

    Article  PubMed  CAS  Google Scholar 

  391. Shibata D, Brynes RK, Rabinowitz A, et al. Human T-cell ­lymphotropic virus type I (HTLV-I)-associated adult T-cell ­leukemia-lymphoma in a patient infected with human immunodeficiency virus type 1 (HIV-1). Ann Intern Med. 1989; 111(11):871–5.

    PubMed  CAS  Google Scholar 

  392. Parker SC, Fenton DA, McGibbon DH. Homme rouge and the acquired immunodeficiency syndrome. N Engl J Med. 1989;321(13):906–7.

    PubMed  CAS  Google Scholar 

  393. Kelsey RC, Saker A, Morgan M. Cardiac lymphoma in a patient with AIDS. Ann Intern Med. 1991;115(5):370–1.

    PubMed  CAS  Google Scholar 

  394. Burkes RL, Meyer PR, Gill PS, Parker JW, Rasheed S, Levine AM. Rectal lymphoma in homosexual men. Arch Intern Med. 1986;146(5):913–5.

    Article  PubMed  CAS  Google Scholar 

  395. Lee CYS, Chun K, Shimonishi JJ. Non-Hodgkin’s lymphoma of the oral cavity associated with HIV infection. Hawil Dental J. 1994; June:6–11.

    Google Scholar 

  396. Woodman R, Shin K, Pineo G. Primary non-Hodgkin’s lymphoma of the brain. A review. Medicine (Baltimore). 1985;64(6): 425–30.

    Article  CAS  Google Scholar 

  397. Henry JM, Heffner Jr RR, Dillard SH, Earle KM, Davis RL. Primary malignant lymphomas of the central nervous system. Cancer. 1974;34(4):1293–302.

    Article  PubMed  CAS  Google Scholar 

  398. Eby NL, Grufferman S, Flannelly CM, Schold Jr SC, Vogel FS, Burger PC. Increasing incidence of primary brain lymphoma in the US. Cancer. 1988;62(11):2461–5.

    Article  PubMed  CAS  Google Scholar 

  399. Forsyth PA, DeAngelis LM. Biology and management of AIDS-associated primary CNS lymphomas. Hematol Oncol Clin North Am. 1996;10(5):1125–34.

    Article  PubMed  CAS  Google Scholar 

  400. MacMahon EM, Glass JD, Hayward SD, et al. Epstein-Barr virus in AIDS-related primary central nervous system lymphoma. Lancet. 1991;338(8773):969–73.

    Article  PubMed  CAS  Google Scholar 

  401. So YT, Beckstead JH, Davis RL. Primary central nervous system lymphoma in acquired immune deficiency syndrome: a clinical and pathological study. Ann Neurol. 1986;20(5):566–72.

    Article  PubMed  CAS  Google Scholar 

  402. Gill PS, Levine AM, Meyer PR, et al. Primary central nervous system lymphoma in homosexual men. Clinical, immunologic, and pathologic features. Am J Med. 1985;78(5):742–8.

    Article  PubMed  CAS  Google Scholar 

  403. Formenti SC, Gill PS, Lean E, et al. Primary central nervous system lymphoma in AIDS. Results of radiation therapy. Cancer. 1989;63(6):1101–7.

    Article  PubMed  CAS  Google Scholar 

  404. Baumgartner JE, Rachlin JR, Beckstead JH, et al. Primary central nervous system lymphomas: natural history and response to radiation therapy in 55 patients with acquired immunodeficiency syndrome. J Neurosurg. 1990;73(2):206–11.

    Article  PubMed  CAS  Google Scholar 

  405. Snider WD, Simpson DM, Nielsen S, Gold JW, Metroka CE, Posner JB. Neurological complications of acquired immune deficiency syndrome: analysis of 50 patients. Ann Neurol. 1983;14(4):403–18.

    Article  PubMed  CAS  Google Scholar 

  406. Diamond C, Taylor TH, Aboumrad T, Anton-Culver H. Changes in acquired immunodeficiency syndrome-related non-Hodgkin lymphoma in the era of highly active antiretroviral therapy: incidence, presentation, treatment, and survival. Cancer. 2006;106(1):128–35.

    Article  PubMed  CAS  Google Scholar 

  407. Snider WD, Simpson DM, Aronyk KE, Nielsen SL. Primary lymphoma of the nervous system associated with acquired immune-deficiency syndrome. N Engl J Med. 1983;308(1):45.

    PubMed  CAS  Google Scholar 

  408. Sneller MC, Strober W, Eisenstein E, Jaffe JS, Cunningham-Rundles C. NIH conference. New insights into common variable immunodeficiency. Ann Intern Med. 1993;118(9):720–30.

    PubMed  CAS  Google Scholar 

  409. Enting RH, Esselink RA, Portegies P. Lymphomatous meningitis in AIDS-related systemic non-Hodgkin’s lymphoma: a report of eight cases. J Neurol Neurosurg Psychiatry. 1994;57(2):150–3.

    Article  PubMed  CAS  Google Scholar 

  410. Nakhleh RE, Manivel JC, Copenhaver CM, Sung JH, Strickler JG. In situ hybridization for the detection of Epstein-Barr virus in central nervous system lymphomas. Cancer. 1991;67(2):444–8.

    Article  PubMed  CAS  Google Scholar 

  411. Bashir RM, Hochberg FH, Harris NL, Purtilo D. Variable expression of Epstein-Barr virus genome as demonstrated by in situ hybridization in central nervous system lymphomas in immunocompromised patients. Mod Pathol. 1990;3(4):429–34.

    PubMed  CAS  Google Scholar 

  412. Nuckols JD, Liu K, Burchette JL, McLendon RE, Traweek ST. Primary central nervous system lymphomas: a 30-year experience at a single institution. Mod Pathol. 1999;12(12):1167–73.

    PubMed  CAS  Google Scholar 

  413. Subar M, Neri A, Inghirami G, Knowles DM, Dalla-Favera R. Frequent c-myc oncogene activation and infrequent presence of Epstein-Barr virus genome in AIDS-associated lymphoma. Blood. 1988;72(2):667–71.

    PubMed  CAS  Google Scholar 

  414. Walts AE, Shintaku IP, Said JW. Diagnosis of malignant lymphoma in effusions from patients with AIDS by gene rearrangement. Am J Clin Pathol. 1990;94(2):170–5.

    PubMed  CAS  Google Scholar 

  415. Knowles DM, Inghirami G, Ubriaco A, Dalla-Favera R. Molecular genetic analysis of three AIDS-associated neoplasms of uncertain lineage demonstrates their B-cell derivation and the possible pathogenetic role of the Epstein-Barr virus. Blood. 1989;73(3):792–9.

    PubMed  CAS  Google Scholar 

  416. Nador RG, Cesarman E, Knowles DM, Said JW. Herpes-like DNA sequences in a body-cavity-based lymphoma in an HIV-negative patient. N Engl J Med. 1995;333(14):943.

    Article  PubMed  CAS  Google Scholar 

  417. Simonelli C, Spina M, Cinelli R, et al. Clinical features and outcome of primary effusion lymphoma in HIV-infected patients: a single-institution study. J Clin Oncol. 2003;21(21):3948–54.

    Article  PubMed  Google Scholar 

  418. Mbulaiteye SM, Biggar RJ, Goedert JJ, Engels EA. Pleural and peritoneal lymphoma among people with AIDS in the United States. J Acquir Immune Defic Syndr. 2002;29(4):418–21.

    PubMed  Google Scholar 

  419. Strauchen JA, Hauser AD, Burstein D, Jimenez R, Moore PS, Chang Y. Body cavity-based malignant lymphoma containing Kaposi sarcoma-associated herpesvirus in an HIV-negative man with previous Kaposi sarcoma. Ann Intern Med. 1996;125(10):822–5.

    PubMed  CAS  Google Scholar 

  420. Nador RG, Cesarman E, Chadburn A, et al. Primary effusion lymphoma: a distinct clinicopathologic entity associated with the Kaposi’s sarcoma-associated herpes virus. Blood. 1996;88(2): 645–56.

    PubMed  CAS  Google Scholar 

  421. Knowles DM, Cesarman E, Chadburn A, et al. Correlative ­morphologic and molecular genetic analysis demonstrates three distinct categories of posttransplantation lymphoproliferative disorders. Blood. 1995;85(2):552–65.

    PubMed  CAS  Google Scholar 

  422. Cesarman E, Chang Y, Moore PS, Said JW, Knowles DM. Kaposi’s sarcoma-associated herpesvirus-like DNA sequences in AIDS-related body-cavity-based lymphomas. N Engl J Med. 1995;332(18):1186–91.

    Article  PubMed  CAS  Google Scholar 

  423. Jones D, Ballestas ME, Kaye KM, et al. Primary-effusion lymphoma and Kaposi’s sarcoma in a cardiac-transplant recipient. N Engl J Med. 1998;339(7):444–9.

    Article  PubMed  CAS  Google Scholar 

  424. Fassone L, Bhatia K, Gutierrez M, et al. Molecular profile of Epstein-Barr virus infection in HHV-8-positive primary effusion lymphoma. Leukemia. 2000;14(2):271–7.

    Article  PubMed  CAS  Google Scholar 

  425. Dotti G, Fiocchi R, Motta T, et al. Primary effusion lymphoma after heart transplantation: a new entity associated with human herpesvirus-8. Leukemia. 1999;13(5):664–70.

    Article  PubMed  CAS  Google Scholar 

  426. Moore PS, Chang Y. Detection of herpesvirus-like DNA sequences in Kaposi’s sarcoma in patients with and without HIV infection. N Engl J Med. 1995;332(18):1181–5.

    Article  PubMed  CAS  Google Scholar 

  427. Chang Y, Cesarman E, Pessin MS, et al. Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s sarcoma. Science. 1994;266(5192):1865–9.

    Article  PubMed  CAS  Google Scholar 

  428. Ambroziak JA, Blackbourn DJ, Herndier BG, et al. Herpes-like sequences in HIV-infected and uninfected Kaposi’s sarcoma patients. Science. 1995;268(5210):582–3.

    Article  PubMed  CAS  Google Scholar 

  429. Carbone A, Gloghini A. KSHV/HHV8-associated lymphomas. Br J Haematol. 2008;140(1):13–24.

    PubMed  Google Scholar 

  430. Ballestas ME, Chatis PA, Kaye KM. Efficient persistence of extrachromosomal KSHV DNA mediated by latency-associated nuclear antigen. Science. 1999;284(5414):641–4.

    Article  PubMed  CAS  Google Scholar 

  431. Judde JG, Lacoste V, Briere J, et al. Monoclonality or oligoclonality of human herpesvirus 8 terminal repeat sequences in Kaposi’s sarcoma and other diseases. J Natl Cancer Inst. 2000;92(9):729–36.

    Article  PubMed  CAS  Google Scholar 

  432. Oksenhendler E, Clauvel JP, Jouveshomme S, Davi F, Mansour G. Complete remission of a primary effusion lymphoma with antiretroviral therapy. Am J Hematol. 1998;57(3):266.

    Article  PubMed  CAS  Google Scholar 

  433. Ansari MQ, Dawson DB, Nador R, et al. Primary body cavity-based AIDS-related lymphomas. Am J Clin Pathol. 1996; 105(2):221–9.

    PubMed  CAS  Google Scholar 

  434. Callahan J, Pai S, Cotter M, Robertson ES. Distinct patterns of viral antigen expression in Epstein-Barr virus and Kaposi’s sarcoma-associated herpesvirus coinfected body-cavity-based lymphoma cell lines: potential switches in latent gene expression due to coinfection. Virology. 1999;262(1):18–30.

    Article  PubMed  CAS  Google Scholar 

  435. Mullaney BP, Ng VL, Herndier BG, McGrath MS, Pallavicini MG. Comparative genomic analyses of primary effusion lymphoma. Arch Pathol Lab Med. 2000;124(6):824–6.

    PubMed  CAS  Google Scholar 

  436. Carbone A, Gloghini A. AIDS-related lymphomas: from pathogenesis to pathology. Br J Haematol. 2005;130(5):662–70.

    Article  PubMed  CAS  Google Scholar 

  437. Italian Cooperative Group for AIDS-Related Tumors. Malignant lymphomas in patients with or at risk for AIDS in Italy. Italian Cooperative Group for AIDS-Related Tumors. J Natl Cancer Inst. 1988;80(11):855–60.

    Article  Google Scholar 

  438. Pelicci PG, Knowles 2nd DM, Arlin ZA, et al. Multiple monoclonal B cell expansions and c-myc oncogene rearrangements in acquired immune deficiency syndrome-related lymphoproliferative disorders. Implications for lymphomagenesis. J Exp Med. 1986;164(6):2049–60.

    Article  PubMed  CAS  Google Scholar 

  439. Delecluse HJ, Raphael M, Magaud JP, et al. Variable morphology of human immunodeficiency virus-associated lymphomas with c-myc rearrangements. The French Study Group of Pathology for Human Immunodeficiency Virus-Associated Tumors, I. Blood. 1993;82(2):552–63.

    PubMed  CAS  Google Scholar 

  440. Sklar J, Cleary ML, Thielemans K, Gralow J, Warnke R, Levy R. Biclonal B-cell lymphoma. N Engl J Med. 1984;311(1):20–7.

    Article  PubMed  CAS  Google Scholar 

  441. Groopman JE, Sullivan JL, Mulder C, et al. Pathogenesis of B cell lymphoma in a patient with AIDS. Blood. 1986;67(3):612–5.

    PubMed  CAS  Google Scholar 

  442. Whang-Peng J, Lee EC, Sieverts H, Magrath IT. Burkitt’s lymphoma in AIDS: cytogenetic study. Blood. 1984;63(4):818–22.

    PubMed  CAS  Google Scholar 

  443. Petersen JM, Tubbs RR, Savage RA, et al. Small noncleaved B cell Burkitt-like lymphoma with chromosome t(8;14) translocation and Epstein-Barr virus nuclear-associated antigen in a homosexual man with acquired immune deficiency syndrome. Am J Med. 1985;78(1):141–8.

    Article  PubMed  CAS  Google Scholar 

  444. Gaidano G, Parsa NZ, Tassi V, et al. In vitro establishment of AIDS-related lymphoma cell lines: phenotypic characterization, oncogene and tumor suppressor gene lesions, and heterogeneity in Epstein-Barr virus infection. Leukemia. 1993;7(10):1621–9.

    PubMed  CAS  Google Scholar 

  445. Clark HM, Yano T, Otsuki T, Jaffe ES, Shibata D, Raffeld M. Mutations in the coding region of c-MYC in AIDS-associated and other aggressive lymphomas. Cancer Res. 1994;54(13):3383–6.

    PubMed  CAS  Google Scholar 

  446. Chaganti RS, Jhanwar SC, Koziner B, Arlin Z, Mertelsmann R, Clarkson BD. Specific translocations characterize Burkitt’s-like lymphoma of homosexual men with the acquired immunodeficiency syndrome. Blood. 1983;61(6):1265–8.

    PubMed  CAS  Google Scholar 

  447. Odajnyk C, Subar M, Dugan M. Clinical features and correlation with immunopathology and molecular biology in a large group of patients with AIDS-associated small cleaved cell lymphoma. Proc Am Soc Hematol. 1986;68:131a.

    Google Scholar 

  448. Gaidano G, Lo Coco F, Ye BH, et al. Rearrangements of the BCL-6 gene in acquired immunodeficiency syndrome-associated non-Hodgkin’s lymphoma: association with diffuse large-cell subtype. Blood. 1994;84(2):397–402.

    PubMed  CAS  Google Scholar 

  449. Lo Coco F, Ye BH, Lista F, et al. Rearrangements of the BCL6 gene in diffuse large cell non-Hodgkin’s lymphoma. Blood. 1994;83(7):1757–9.

    PubMed  CAS  Google Scholar 

  450. Tsujimoto Y, Yunis J, Onorato-Showe L, Erikson J, Nowell PC, Croce CM. Molecular cloning of the chromosomal breakpoint of B-cell lymphomas and leukemias with the t(11;14) chromosome translocation. Science. 1984;224(4656):1403–6.

    Article  PubMed  CAS  Google Scholar 

  451. Sherr CJ. Mammalian G1 cyclins. Cell. 1993;73(6):1059–65.

    Article  PubMed  CAS  Google Scholar 

  452. Motokura T, Bloom T, Kim HG, et al. A novel cyclin encoded by a bcl1-linked candidate oncogene. Nature. 1991;350(6318): 512–5.

    Article  PubMed  CAS  Google Scholar 

  453. Komatsu H, Iida S, Yamamoto K, et al. A variant chromosome translocation at 11q13 identifying PRAD1/cyclin D1 as the BCL-1 gene. Blood. 1994;84(4):1226–31.

    PubMed  CAS  Google Scholar 

  454. Raffeld M, Sander CA, Yano T, Jaffe ES. Mantle cell lymphoma: an update. Leuk Lymphoma. 1992;8(3):161–6.

    Article  PubMed  CAS  Google Scholar 

  455. Gaidano G, Ballerini P, Gong JZ, et al. p53 mutations in human lymphoid malignancies: association with Burkitt lymphoma and chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 1991;88(12):5413–7.

    Article  PubMed  CAS  Google Scholar 

  456. Farrell PJ, Allan GJ, Shanahan F, Vousden KH, Crook T. p53 is frequently mutated in Burkitt’s lymphoma cell lines. EMBO J. 1991;10(10):2879–87.

    PubMed  CAS  Google Scholar 

  457. Nakamura H, Said JW, Miller CW, Koeffler HP. Mutation and protein expression of p53 in acquired immunodeficiency syndrome-related lymphomas. Blood. 1993;82(3):920–6.

    PubMed  CAS  Google Scholar 

  458. Roy B, Beamon J, Balint E, Reisman D. Transactivation of the human p53 tumor suppressor gene by c-Myc/Max contributes to elevated mutant p53 expression in some tumors. Mol Cell Biol. 1994;14(12):7805–15.

    PubMed  CAS  Google Scholar 

  459. Delecluse HJ, Hummel M, Marafioti T, Anagnostopoulos I, Stein H. Common and HIV-related diffuse large B-cell lymphomas differ in their immunoglobulin gene mutation pattern. J Pathol. 1999;188(2):133–8.

    Article  PubMed  CAS  Google Scholar 

  460. Cingolani A, Gastaldi R, Fassone L, et al. Epstein-Barr virus infection is predictive of CNS involvement in systemic AIDS-related non-Hodgkin’s lymphomas. J Clin Oncol. 2000;18(19): 3325–30.

    PubMed  CAS  Google Scholar 

  461. Montagnier L, Gruest J, Chamaret S, et al. Adaptation of ­lymphadenopathy associated virus (LAV) to replication in ­EBV-transformed B lymphoblastoid cell lines. Science. 1984; 225(4657):63–6.

    Article  PubMed  CAS  Google Scholar 

  462. Laurence J, Astrin SM. Human immunodeficiency virus induction of malignant transformation in human B lymphocytes. Proc Natl Acad Sci USA. 1991;88(17):7635–9.

    Article  PubMed  CAS  Google Scholar 

  463. Shiramizu B, Herndier BG, McGrath MS. Identification of a common clonal human immunodeficiency virus integration site in human immunodeficiency virus-associated lymphomas. Cancer Res. 1994;54(8):2069–72.

    PubMed  CAS  Google Scholar 

  464. Yarchoan R, Redfield RR, Broder S. Mechanisms of B cell activation in patients with acquired immunodeficiency syndrome and related disorders. Contribution of antibody-producing B cells, of Epstein-Barr virus-infected B cells, and of immunoglobulin production induced by human T cell lymphotropic virus, type III/lymphadenopathy-associated virus. J Clin Invest. 1986;78(2): 439–47.

    Article  PubMed  CAS  Google Scholar 

  465. Schnittman SM, Lane HC, Higgins SE, Folks T, Fauci AS. Direct polyclonal activation of human B lymphocytes by the acquired immune deficiency syndrome virus. Science. 1986;233(4768): 1084–6.

    Article  PubMed  CAS  Google Scholar 

  466. Fauci AS, Schnittman SM, Poli G, Koenig S, Pantaleo G. NIH conference. Immunopathogenic mechanisms in human immunodeficiency virus (HIV) infection. Ann Intern Med. 1991;114(8):678–93.

    PubMed  CAS  Google Scholar 

  467. Konrad RJ, Kricka LJ, Goodman DB, Goldman J, Silberstein LE. Brief report: myeloma-associated paraprotein directed against the HIV-1 p24 antigen in an HIV-1-seropositive patient. N Engl J Med. 1993;328(25):1817–9.

    Article  PubMed  CAS  Google Scholar 

  468. Cunto-Amesty G, Przybylski G, Honczarenko M, Monroe JG, Silberstein LE. Evidence that immunoglobulin specificities of AIDS-related lymphoma are not directed to HIV-related antigens. Blood. 2000;95(4):1393–9.

    PubMed  CAS  Google Scholar 

  469. Hirano T, Taga T, Nakano N, et al. Purification to homogeneity and characterization of human B-cell differentiation factor (BCDF or BSFp-2). Proc Natl Acad Sci USA. 1985;82(16):5490–4.

    Article  PubMed  CAS  Google Scholar 

  470. Schwab G, Siegall CB, Aarden LA, Neckers LM, Nordan RP. Characterization of an interleukin-6-mediated autocrine growth loop in the human multiple myeloma cell line, U266. Blood. 1991;77(3):587–93.

    PubMed  CAS  Google Scholar 

  471. Kawano M, Hirano T, Matsuda T, et al. Autocrine generation and requirement of BSF-2/IL-6 for human multiple myelomas. Nature. 1988;332(6159):83–5.

    Article  PubMed  CAS  Google Scholar 

  472. Tosato G, Tanner J, Jones KD, Revel M, Pike SE. Identification of interleukin-6 as an autocrine growth factor for Epstein-Barr virus-immortalized B cells. J Virol. 1990;64(6):3033–41.

    PubMed  CAS  Google Scholar 

  473. Nakajima K, Martinez-Maza O, Hirano T, et al. Induction of IL-6 (B cell stimulatory factor-2/IFN-beta 2) production by HIV. J Immunol. 1989;142(2):531–6.

    PubMed  CAS  Google Scholar 

  474. Aoki Y, Yarchoan R, Braun J, Iwamoto A, Tosato G. Viral and cellular cytokines in AIDS-related malignant lymphomatous effusions. Blood. 2000;96(4):1599–601.

    PubMed  CAS  Google Scholar 

  475. Benjamin D, Knobloch TJ, Dayton MA. Human B-cell interleukin-10: B-cell lines derived from patients with acquired immunodeficiency syndrome and Burkitt’s lymphoma constitutively secrete large quantities of interleukin-10. Blood. 1992;80(5): 1289–98.

    PubMed  CAS  Google Scholar 

  476. Blattner WA. Human retroviruses: their role in cancer. Proc Assoc Am Phys. 1999;111:563–72.

    Article  PubMed  CAS  Google Scholar 

  477. Poiesz B, Dube D, Dube S, et al. HTLV-II-associated cutaneous T-cell lymphoma in a patient with HIV-1 infection. N Engl J Med. 2000;342(13):930–6.

    Article  PubMed  CAS  Google Scholar 

  478. Salahuddin SZ, Ablashi DV, Markham PD, et al. Isolation of a new virus, HBLV, in patients with lymphoproliferative disorders. Science. 1986;234(4776):596–601.

    Article  PubMed  CAS  Google Scholar 

  479. Frenkel N, Schirmer EC, Wyatt LS, et al. Isolation of a new ­herpesvirus from human CD4+ T cells. Proc Natl Acad Sci USA. 1990;87(2):748–52.

    Article  PubMed  CAS  Google Scholar 

  480. Carbone A, Cesarman E, Spina M, Gloghini A, Schulz TF. HIV-associated lymphomas and gamma-herpesviruses. Blood. 2009;113(6):1213–24.

    Article  PubMed  CAS  Google Scholar 

  481. Yachie A, Tosato G, Straus S, Blaese RM. T cell stimulation and polyclonal B cell activation induced by cytomegalovirus. Clin Res. 1984;32:510a.

    Google Scholar 

  482. Robert-Guroff M, Weiss SH, Giron JA, et al. Prevalence of antibodies to HTLV-I, -II, and -III in intravenous drug abusers from an AIDS endemic region. JAMA. 1986;255(22):3133–7.

    Article  PubMed  CAS  Google Scholar 

  483. Kanner SB, Parks ES, Scott GB, Parks WP. Simultaneous infections with human T cell leukemia virus type I and the human immunodeficiency virus. J Infect Dis. 1987;155(4):617–25.

    Article  PubMed  CAS  Google Scholar 

  484. Cortes E, Detels R, Aboulafia D, et al. HIV-1, HIV-2, and HTLV-I infection in high-risk groups in Brazil. N Engl J Med. 1989;320(15):953–8.

    Article  PubMed  CAS  Google Scholar 

  485. Baurmann H, Miclea JM, Ferchal F, et al. Adult T-cell leukemia associated with HTLV-I and simultaneous infection by human immunodeficiency virus type 2 and human herpesvirus 6 in an African woman: a clinical, virologic, and familial serologic study. Am J Med. 1988;85(6):853–7.

    Article  PubMed  CAS  Google Scholar 

  486. Bartholomew C, Saxinger WC, Clark JW, et al. Transmission of HTLV-I and HIV among homosexual men in Trinidad. JAMA. 1987;257(19):2604–8.

    Article  PubMed  CAS  Google Scholar 

  487. Zack JA, Cann AJ, Lugo JP, Chen IS. HIV-1 production from infected peripheral blood T cells after HTLV-I induced mitogenic stimulation. Science. 1988;240(4855):1026–9.

    Article  PubMed  CAS  Google Scholar 

  488. Davis MG, Kenney SC, Kamine J, Pagano JS, Huang ES. Immediate-early gene region of human cytomegalovirus trans-activates the promoter of human immunodeficiency virus. Proc Natl Acad Sci USA. 1987;84(23):8642–6.

    Article  PubMed  CAS  Google Scholar 

  489. Siekevitz M, Josephs SF, Dukovich M, Peffer N, Wong-Staal F, Greene WC. Activation of the HIV-1 LTR by T cell mitogens and the trans-activator protein of HTLV-I. Science. 1987;238(4833):1575–8.

    Article  PubMed  CAS  Google Scholar 

  490. Levine AM. AIDS-related malignancies: the emerging epidemic. J Natl Cancer Inst. 1993;85(17):1382–97.

    Article  PubMed  CAS  Google Scholar 

  491. Zutter MM, Martin PJ, Sale GE, et al. Epstein-Barr virus lymphoproliferation after bone marrow transplantation. Blood. 1988;72(2):520–9.

    PubMed  CAS  Google Scholar 

  492. Tirelli U, Errante D, Oksenhendler E, et al. The treatment of AIDS-related lymphoma. French-Italian Cooperative Study Group. JAMA. 1992;267(4):509–10.

    Article  PubMed  CAS  Google Scholar 

  493. Tirelli U, Errante D, Oksenhendler E, et al. Prospective study with combined low-dose chemotherapy and zidovudine in 37 patients with poor-prognosis AIDS-related non-Hodgkin’s lymphoma. French-Italian Cooperative Study Group. Ann Oncol. 1992;3(10): 843–7.

    PubMed  CAS  Google Scholar 

  494. Sparano JA, Wiernik PH, Strack M, Leaf A, Becker N, Valentine ES. Infusional cyclophosphamide, doxorubicin, and etoposide in human immunodeficiency virus- and human T-cell leukemia virus type I-related non-Hodgkin’s lymphoma: a highly active regimen. Blood. 1993;81(10):2810–5.

    PubMed  CAS  Google Scholar 

  495. Sparano JA, Wiernik PH, Hu X, et al. Pilot trial of infusional cyclophosphamide, doxorubicin, and etoposide plus didanosine and filgrastim in patients with human immunodeficiency virus-associated non-Hodgkin’s lymphoma. J Clin Oncol. 1996;14(11):3026–35.

    PubMed  CAS  Google Scholar 

  496. Schurmann D, Grunewald T, Weiss R, Jautzke G, Pohle HD, Ruf B. Intensive treatment of AIDS-related non-Hodgkin’s lymphomas with the MACOP-B protocol. Eur J Haematol. 1995;54(2): 73–7.

    Article  PubMed  CAS  Google Scholar 

  497. Kaplan LD, Straus DJ, Testa MA, et al. Low-dose compared with standard-dose m-BACOD chemotherapy for non-Hodgkin’s lymphoma associated with human immunodeficiency virus infection. National Institute of Allergy and Infectious Diseases AIDS Clinical Trials Group. N Engl J Med. 1997;336(23):1641–8.

    Article  PubMed  CAS  Google Scholar 

  498. Kaplan LD, Kahn JO, Crowe S, et al. Clinical and virologic effects of recombinant human granulocyte-macrophage colony-stimulating factor in patients receiving chemotherapy for human immunodeficiency virus-associated non-Hodgkin’s lymphoma: results of a randomized trial. J Clin Oncol. 1991;9(6):929–40.

    PubMed  CAS  Google Scholar 

  499. Longo DL, DeVita Jr VT, Duffey PL, et al. Superiority of ProMACE-CytaBOM over ProMACE-MOPP in the treatment of advanced diffuse aggressive lymphoma: results of a prospective randomized trial. J Clin Oncol. 1991;9(1):25–38.

    PubMed  CAS  Google Scholar 

  500. Fisher RI, Gaynor ER, Dahlberg S, et al. Comparison of a standard regimen (CHOP) with three intensive chemotherapy regimens for advanced non-Hodgkin’s lymphoma. N Engl J Med. 1993;328(14):1002–6.

    Article  PubMed  CAS  Google Scholar 

  501. Coiffier B, Gisselbrecht C, Herbrecht R, Tilly H, Bosly A, Brousse N. LNH-84 regimen: a multicenter study of intensive chemotherapy in 737 patients with aggressive malignant lymphoma. J Clin Oncol. 1989;7(8):1018–26.

    PubMed  CAS  Google Scholar 

  502. Armitage JO. Treatment of non-Hodgkin’s lymphoma. N Engl J Med. 1993;328(14):1023–30.

    Article  PubMed  CAS  Google Scholar 

  503. Coiffier B, Lepage E, Briere J, et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med. 2002;346(4):235–42.

    Article  PubMed  CAS  Google Scholar 

  504. Kaplan LD. Management of HIV-associated non-Hodgkin’s lymphoma. AIDS Clin Care. 1994;6:1–3.

    Google Scholar 

  505. Mounier N, Spina M, Gabarre J, et al. AIDS-related non-Hodgkin lymphoma: final analysis of 485 patients treated with risk-adapted intensive chemotherapy. Blood. 2006;107(10):3832–40.

    Article  PubMed  CAS  Google Scholar 

  506. Marti-Carvajal AJ, Cardona AF, Lawrence A. Interventions for previously untreated patients with AIDS-associated non-Hodgkin’s lymphoma. Cochrane Database Syst Rev 2009(3):CD005419.

    Google Scholar 

  507. Kaplan LD, Lee JY, Ambinder RF, et al. Rituximab does not improve clinical outcome in a randomized phase 3 trial of CHOP with or without rituximab in patients with HIV-associated non-Hodgkin lymphoma: AIDS-Malignancies Consortium Trial 010. Blood. 2005;106(5):1538–43.

    Article  PubMed  CAS  Google Scholar 

  508. Ratner L, Lee J, Tang S, et al. Chemotherapy for human immunodeficiency virus-associated non-Hodgkin’s lymphoma in combination with highly active antiretroviral therapy. J Clin Oncol. 2001;19(8):2171–8.

    PubMed  CAS  Google Scholar 

  509. Hoffmann C, Wolf E, Fatkenheuer G, et al. Response to highly active antiretroviral therapy strongly predicts outcome in patients with AIDS-related lymphoma. AIDS. 2003;17(10):1521–9.

    Article  PubMed  Google Scholar 

  510. Little RF, Pittaluga S, Grant N, et al. Highly effective treatment of acquired immunodeficiency syndrome-related lymphoma with dose-adjusted EPOCH: impact of antiretroviral therapy suspension and tumor biology. Blood. 2003;101(12):4653–9.

    Article  PubMed  CAS  Google Scholar 

  511. Sparano JA, Lee JY, Kaplan LD, et al. Rituximab plus concurrent infusional EPOCH chemotherapy is highly effective in HIV-associated B-cell non-Hodgkin lymphoma. Blood. 2010;115(15):3008–16.

    Article  PubMed  CAS  Google Scholar 

  512. Newell M, Goldstein D, Milliken S, et al. Phase I/II trial of filgrastim (r-metHuG-CSF), CEOP chemotherapy and antiretroviral therapy in HIV-related non-Hodgkin’s lymphoma. Ann Oncol. 1996;7(10):1029–36.

    Article  PubMed  CAS  Google Scholar 

  513. Kersten MJ, Verduyn TJ, Reiss P, Evers LM, de Wolf F, van Oers MH. Treatment of AIDS-related non-Hodgkin’s lymphoma with chemotherapy (CNOP) and r-hu-G-CSF: clinical outcome and effect on HIV-1 viral load. Ann Oncol. 1998;9(10):1135–8.

    Article  PubMed  CAS  Google Scholar 

  514. Levine AM. Management of AIDS-related lymphoma. Curr Opin Oncol. 2008;20(5):522–8.

    Article  PubMed  CAS  Google Scholar 

  515. Kewalramani T, Zelenetz AD, Nimer SD, et al. Rituximab and ICE as second-line therapy before autologous stem cell transplantation for relapsed or primary refractory diffuse large B-cell lymphoma. Blood. 2004;103(10):3684–8.

    Article  PubMed  CAS  Google Scholar 

  516. Bi J, Espina BM, Tulpule A, Boswell W, Levine AM. High-dose cytosine-arabinoside and cisplatin regimens as salvage therapy for refractory or relapsed AIDS-related non-Hodgkin’s lymphoma. J Acquir Immune Defic Syndr. 2001;28(5):416–21.

    PubMed  CAS  Google Scholar 

  517. Krishnan A, Molina A, Zaia J, et al. Durable remissions with autologous stem cell transplantation for high-risk HIV-associated lymphomas. Blood. 2005;105(2):874–8.

    Article  PubMed  CAS  Google Scholar 

  518. Spitzer TR, Ambinder RF, Lee JY, et al. Dose-reduced busulfan, cyclophosphamide, and autologous stem cell transplantation for human immunodeficiency virus-associated lymphoma: AIDS Malignancy Consortium study 020. Biol Blood Marrow Transplant. 2008;14(1):59–66.

    Article  PubMed  CAS  Google Scholar 

  519. Unger PD, Strauchen JA. Hodgkin’s disease in AIDS complex patient. Report of four cases and tissue immunologic marker studies. Cancer. 1986;58(4):821–5.

    Article  PubMed  CAS  Google Scholar 

  520. Temple JJ, Andes WA. AIDS and Hodgkin’s disease. Lancet. 1986;2(8504):454–5.

    Article  PubMed  CAS  Google Scholar 

  521. Schoeppel SL, Hoppe RT, Dorfman RF, et al. Hodgkin’s disease in homosexual men with generalized lymphadenopathy. Ann Intern Med. 1985;102(1):68–70.

    PubMed  CAS  Google Scholar 

  522. Scheib RG, Siegel RS. Atypical Hodgkin’s disease and the acquired immunodeficiency syndrome. Ann Intern Med. 1985;102(4):554.

    PubMed  CAS  Google Scholar 

  523. Robert NJ, Schneiderman H. Hodgkin’s disease and the acquired immunodeficiency syndrome. Ann Intern Med. 1984;101(1):142–3.

    PubMed  CAS  Google Scholar 

  524. Prior E, Goldberg AF, Conjalka MS, Chapman WE, Tay S, Ames ED. Hodgkin’s disease in homosexual men. An AIDS-related phenomenon? Am J Med. 1986;81(6):1085–8.

    Article  PubMed  CAS  Google Scholar 

  525. Longo DL, Fauci AS, Macher AM. Kaposi’s sarcoma and other neoplasms. NIH Conference: Acquired Immunodeficiency Syndrome: Epidemiologic, Clinical, Immunologic, and Therapeutic Considerations. Ann Intern Med. 1984;100:96–8.

    Google Scholar 

  526. Baer DM, Anderson ET, Wilkinson LS. Acquired immune deficiency syndrome in homosexual men with Hodgkin’s disease. Three case reports. Am J Med. 1986;80(4):738–40.

    Article  PubMed  CAS  Google Scholar 

  527. Hessol NA, Katz MH, Liu JY, Buchbinder SP, Rubino CJ, Holmberg SD. Increased incidence of Hodgkin disease in homosexual men with HIV infection. Ann Intern Med. 1992;117(4):309–11.

    PubMed  CAS  Google Scholar 

  528. Mounier N, Spina M, Spano JP. Hodgkin lymphoma in HIV positive patients. Curr HIV Res. 2010;8(2):141–6.

    Article  PubMed  CAS  Google Scholar 

  529. Tirelli U, Vaccher E, Rezza G, et al. Hodgkin’s disease in association with acquired immunodeficiency syndrome (AIDS). A report on 36 patients. Gruppo Italiano Cooperativo AIDS and Tumori. Acta Oncol. 1989;28(5):637–9.

    Article  PubMed  CAS  Google Scholar 

  530. Biggar RJ, Rabkin CS. The epidemiology of acquired immunodeficiency syndrome-related lymphomas. Curr Opin Oncol. 1992;4(5):883–93.

    Article  PubMed  CAS  Google Scholar 

  531. Cheung TW, Arai S. HIV-associated Hodkin’s disease. The AIDS Reader 1999(March/April):131–137.

    Google Scholar 

  532. Lyter DW, Bryant J, Thackeray R, Rinaldo CR, Kingsley LA. Incidence of human immunodeficiency virus-related and nonrelated malignancies in a large cohort of homosexual men. J Clin Oncol. 1995;13(10):2540–6.

    PubMed  CAS  Google Scholar 

  533. Tirelli U, Vaccher E, Rezza G, et al. Hodgkin disease and infection with the human immunodeficiency virus (HIV) in Italy. Ann Intern Med. 1988;108(2):309–10.

    PubMed  CAS  Google Scholar 

  534. Serrano M, Bellas C, Campo E, et al. Hodgkin’s disease in patients with antibodies to human immunodeficiency virus. A study of 22 patients. Cancer. 1990;65(10):2248–54.

    Article  PubMed  CAS  Google Scholar 

  535. Roithmann S, Tourani JM, Andrieu JM. Hodgkin’s disease in HIV-infected intravenous drug abusers. N Engl J Med. 1990;323(4):275–6.

    PubMed  CAS  Google Scholar 

  536. Monfardini S, Tirelli U, Vaccher E, Foa R, Gavosto F. Hodgkin’s disease in 63 intravenous drug users infected with human immunodeficiency virus. Gruppo Italiano Cooperativo AIDS & Tumori (GICAT). Ann Oncol. 1991;2 Suppl 2:201–5.

    PubMed  Google Scholar 

  537. DeVita Jr VT, Mauch PM, Harris NL. Hodgkin’s disease. In: DeVita Jr VT, Hellman S, Roseneberg S, editors. Cancer: Principles and practice of oncology. 5th ed. New York: Lippincott-Raven; 1997. p. 2242–83.

    Google Scholar 

  538. Herida M, Mary-Krause M, Kaphan R, et al. Incidence of non-AIDS-defining cancers before and during the highly active antiretroviral therapy era in a cohort of human immunodeficiency virus-infected patients. J Clin Oncol. 2003;21(18):3447–53.

    Article  PubMed  Google Scholar 

  539. Engels EA, Pfeiffer RM, Goedert JJ, et al. Trends in cancer risk among people with AIDS in the United States 1980–2002. AIDS. 2006;20(12):1645–54.

    Article  PubMed  Google Scholar 

  540. Powles T, Robinson D, Stebbing J, et al. Highly active antiretroviral therapy and the incidence of non-AIDS-defining cancers in people with HIV infection. J Clin Oncol. 2009;27(6):884–90.

    Article  PubMed  Google Scholar 

  541. Pelstring RJ, Zellmer RB, Sulak LE, Banks PM, Clare N. Hodgkin’s disease in association with human immunodeficiency virus infection. Pathologic and immunologic features. Cancer. 1991;67(7):1865–73.

    Article  PubMed  CAS  Google Scholar 

  542. Gold JE, Altarac D, Ree HJ, Khan A, Sordillo PP, Zalusky R. HIV-associated Hodgkin disease: a clinical study of 18 cases and review of the literature. Am J Hematol. 1991;36(2):93–9.

    Article  PubMed  CAS  Google Scholar 

  543. Ames ED, Conjalka MS, Goldberg AF, et al. Hodgkin’s disease and AIDS. Twenty-three new cases and a review of the literature. Hematol Oncol Clin North Am. 1991;5(2):343–56.

    PubMed  CAS  Google Scholar 

  544. Urba WJ, Longo DL. Hodgkin’s disease. N Engl J Med. 1992;326(10):678–87.

    Article  PubMed  CAS  Google Scholar 

  545. Tirelli U, Serraino D, Carbone A. Hodgkin disease and HIV. Ann Intern Med. 1993;118(4):313. author reply 313–14.

    PubMed  CAS  Google Scholar 

  546. Tirelli U, Errante D, Dolcetti R, et al. Hodgkin’s disease and human immunodeficiency virus infection: clinicopathologic and virologic features of 114 patients from the Italian Cooperative Group on AIDS and Tumors. J Clin Oncol. 1995;13(7):1758–67.

    PubMed  CAS  Google Scholar 

  547. Frizzera G, Rosai J, Dehner LP, Spector BD, Kersey JH. Lymphoreticular disorders in primary immunodeficiencies: new findings based on an up-to-date histologic classification of 35 cases. Cancer. 1980;46(4):692–9.

    Article  PubMed  CAS  Google Scholar 

  548. Papo T, Oksenhendler E, Bouvet E, Marche C, Monteil JP, Clauvel JP. Hodgkin’s disease of the tongue in a homosexual HIV-infected patient. Am J Hematol. 1991;37(2):143.

    Article  PubMed  CAS  Google Scholar 

  549. Shaw MT, Jacobs SR. Cutaneous Hodgkin’s disease in a patient with human immunodeficiency virus infection. Cancer. 1989;64(12):2585–7.

    Article  PubMed  CAS  Google Scholar 

  550. Xicoy B, Ribera JM, Miralles P, et al. Results of treatment with doxorubicin, bleomycin, vinblastine and dacarbazine and highly active antiretroviral therapy in advanced stage, human immunodeficiency virus-related Hodgkin’s lymphoma. Haematologica. 2007;92(2):191–8.

    Article  PubMed  CAS  Google Scholar 

  551. Tanaka PY, Pessoa Jr VP, Pracchia LF, Buccheri V, Chamone DA, Calore EE. Hodgkin lymphoma among patients infected with HIV in post-HAART era. Clin Lymphoma Myeloma. 2007;7(5): 364–8.

    Article  PubMed  Google Scholar 

  552. Spina M, Gabarre J, Rossi G, et al. Stanford V regimen and concomitant HAART in 59 patients with Hodgkin disease and HIV infection. Blood. 2002;100(6):1984–8.

    Article  PubMed  CAS  Google Scholar 

  553. Hartmann P, Rehwald U, Salzberger B, et al. BEACOPP therapeutic regimen for patients with Hodgkin’s disease and HIV infection. Ann Oncol. 2003;14(10):1562–9.

    Article  PubMed  CAS  Google Scholar 

  554. Mounier N, Katlama C, Costagliola D, Chichmanian RM, Spano JP. Drug interactions between antineoplastic and antiretroviral therapies: Implications and management for clinical practice. Crit Rev Oncol Hematol. 2009;72(1):10–20.

    Article  PubMed  Google Scholar 

  555. Pallesen G, Hamilton-Dutoit SJ, Rowe M, Young LS. Expression of Epstein-Barr virus latent gene products in tumour cells of Hodgkin’s disease. Lancet. 1991;337(8737):320–2.

    Article  PubMed  CAS  Google Scholar 

  556. Ames ED, Metroka CE, Goldberg AF. Hodgkin disease and HIV. Ann Intern Med. 1993;118(4):313. author reply 313-4.

    PubMed  CAS  Google Scholar 

  557. Martyak LA, Yeganeh M, Saab S. Hepatitis C and lymphoproliferative disorders: from mixed cryoglobulinemia to non-Hodgkin’s lymphoma. Clin Gastroenterol Hepatol. 2009;7(8):900–5.

    Article  PubMed  CAS  Google Scholar 

  558. Dal Maso L, Franceschi S. Hepatitis C virus and risk of lymphoma and other lymphoid neoplasms: a meta-analysis of epidemiologic studies. Cancer Epidemiol Biomarkers Prev. 2006;15(11): 2078–85.

    Article  PubMed  CAS  Google Scholar 

  559. Ohshima K, Suzumiya J, Sato K, et al. Nodal T-cell lymphoma in an HTLV-I-endemic area: proviral HTLV-I DNA, histological classification and clinical evaluation. Br J Haematol. 1998;101(4): 703–11.

    Article  PubMed  CAS  Google Scholar 

  560. Taylor JM, Nicot C. HTLV-1 and apoptosis: role in cellular transformation and recent advances in therapeutic approaches. Apoptosis. 2008;13(6):733–47.

    Article  PubMed  CAS  Google Scholar 

  561. Nicot C. Current views in HTLV-I-associated adult T-cell leukemia/lymphoma. Am J Hematol. 2005;78(3):232–9.

    Article  PubMed  Google Scholar 

  562. Franchini G. Molecular mechanisms of human T-cell leukemia/lymphotropic virus type I infection. Blood. 1995;86(10): 3619–39.

    PubMed  CAS  Google Scholar 

  563. Peloponese Jr JM, Kinjo T, Jeang KT. Human T-cell leukemia virus type 1 Tax and cellular transformation. Int J Hematol. 2007;86(2):101–6.

    Article  PubMed  CAS  Google Scholar 

  564. Nicot C, Mahieux R, Takemoto S, Franchini G. Bcl-X(L) is up-regulated by HTLV-I and HTLV-II in vitro and in ex vivo ATLL samples. Blood. 2000;96(1):275–81.

    PubMed  CAS  Google Scholar 

  565. Kawakami A, Nakashima T, Sakai H, et al. Inhibition of caspase cascade by HTLV-I tax through induction of NF-kappaB nuclear translocation. Blood. 1999;94(11):3847–54.

    PubMed  CAS  Google Scholar 

  566. Horie R. NF-kappaB in pathogenesis and treatment of adult T-cell leukemia/lymphoma. Int Rev Immunol. 2007;26(5–6):269–81.

    Article  PubMed  CAS  Google Scholar 

  567. Matutes E. Adult T-cell leukaemia/lymphoma. J Clin Pathol. 2007;60(12):1373–7.

    Article  PubMed  CAS  Google Scholar 

  568. Soulier J, Grollet L, Oksenhendler E, et al. Kaposi’s sarcoma-associated herpesvirus-like DNA sequences in multicentric Castleman’s disease. Blood. 1995;86(4):1276–80.

    PubMed  CAS  Google Scholar 

  569. Luppi M, Barozzi P, Maiorana A, et al. Human herpesvirus-8 DNA sequences in human immunodeficiency virus-negative angioimmunoblastic lymphadenopathy and benign lymphadenopathy with giant germinal center hyperplasia and increased vascularity. Blood. 1996;87(9):3903–9.

    PubMed  CAS  Google Scholar 

  570. Dupin N, Gorin I, Deleuze J, Agut H, Huraux JM, Escande JP. Herpes-like DNA sequences, AIDS-related tumors, and Castleman’s disease. N Engl J Med. 1995;333(12):798.

    PubMed  CAS  Google Scholar 

  571. Dupin N, Diss TL, Kellam P, et al. HHV-8 is associated with a plasmablastic variant of Castleman disease that is linked to HHV-8-positive plasmablastic lymphoma. Blood. 2000;95(4):1406–12.

    PubMed  CAS  Google Scholar 

  572. Zuckerman E, Zuckerman T, Levine AM, et al. Hepatitis C virus infection in patients with B-cell non-Hodgkin lymphoma. Ann Intern Med. 1997;127(6):423–8.

    PubMed  CAS  Google Scholar 

  573. Mazzaro C, Zagonel V, Monfardini S, et al. Hepatitis C virus and non-Hodgkin’s lymphomas. Br J Haematol. 1996;94(3):544–50.

    Article  PubMed  CAS  Google Scholar 

  574. Luppi M, Longo G, Ferrari MG, et al. Clinico-pathological characterization of hepatitis C virus-related B-cell non-Hodgkin’s lymphomas without symptomatic cryoglobulinemia. Ann Oncol. 1998;9(5):495–8.

    Article  PubMed  CAS  Google Scholar 

  575. Jou JH, Muir AJ. In the clinic. Hepatitis C. Ann Intern Med. 2008;148(11):ITC6-1-ITC6-16.

    PubMed  Google Scholar 

  576. Udomsakdi-Auewarakul C, Auewarakul P, Sukpanichnant S, Muangsup W. Hepatitis C virus infection in patients with non-Hodgkin lymphoma in Thailand. Blood. 2000;95(11):3640–1.

    PubMed  CAS  Google Scholar 

  577. Germanidis G, Haioun C, Pourquier J, et al. Hepatitis C virus infection in patients with overt B-cell non-Hodgkin’s lymphoma in a French center. Blood. 1999;93(5):1778–9.

    PubMed  CAS  Google Scholar 

  578. Giordano TP, Henderson L, Landgren O, et al. Risk of non-Hodgkin lymphoma and lymphoproliferative precursor diseases in US veterans with hepatitis C virus. JAMA. 2007;297(18):2010–7.

    Article  PubMed  CAS  Google Scholar 

  579. Matsuo K, Kusano A, Sugumar A, Nakamura S, Tajima K, Mueller NE. Effect of hepatitis C virus infection on the risk of non-Hodgkin’s lymphoma: a meta-analysis of epidemiological studies. Cancer Sci. 2004;95(9):745–52.

    Article  PubMed  CAS  Google Scholar 

  580. Thieblemont C, Berger F, Dumontet C, et al. Mucosa-associated lymphoid tissue lymphoma is a disseminated disease in one third of 158 patients analyzed. Blood. 2000;95(3):802–6.

    PubMed  CAS  Google Scholar 

  581. Ferreri AJM, Ernberg I, Copie-Bergman C. Infectious agents and lymphoma development: molecular and clinical aspects. J Intern Med. 2009;265(4):421–38.

    Article  PubMed  CAS  Google Scholar 

  582. Peterson WL. Helicobacter pylori and peptic ulcer disease. N Engl J Med. 1991;324(15):1043–8.

    Article  PubMed  CAS  Google Scholar 

  583. McColl K, Murray L, El-Omar E, et al. Symptomatic benefit from eradicating Helicobacter pylori infection in patients with nonulcer dyspepsia. N Engl J Med. 1998;339(26):1869–74.

    Article  PubMed  CAS  Google Scholar 

  584. Fisher RS, Parkman HP. Management of nonulcer dyspepsia. N Engl J Med. 1998;339(19):1376–81.

    Article  PubMed  CAS  Google Scholar 

  585. Blum AL, Talley NJ, O’Morain C, et al. Lack of effect of treating Helicobacter pylori infection in patients with nonulcer dyspepsia. Omeprazole plus Clarithromycin and Amoxicillin Effect One Year after Treatment (OCAY) Study Group. N Engl J Med. 1998;339(26):1875–81.

    Article  PubMed  CAS  Google Scholar 

  586. Parsonnet J, Friedman GD, Vandersteen DP, et al. Helicobacter pylori infection and the risk of gastric carcinoma. N Engl J Med. 1991;325(16):1127–31.

    Article  PubMed  CAS  Google Scholar 

  587. Nomura K, Kanegane H, Karasuyama H, et al. Genetic defect in human X-linked agammaglobulinemia impedes a maturational evolution of pro-B cells into a later stage of pre-B cells in the B-cell differentiation pathway. Blood. 2000;96(2):610–7.

    PubMed  CAS  Google Scholar 

  588. Hansson LE, Nyren O, Hsing AW, et al. The risk of stomach cancer in patients with gastric or duodenal ulcer disease. N Engl J Med. 1996;335(4):242–9.

    Article  PubMed  CAS  Google Scholar 

  589. Herrera V, Parsonnet J. Helicobacter pylori and gastric adenocarcinoma. Clin Microbiol Infect. 2009;15(11):971–6.

    Article  PubMed  CAS  Google Scholar 

  590. Eck M, Schmausser B, Greiner A, Muller-Hermelink HK. Helicobacter pylori in gastric mucosa-associated lymphoid tissue type lymphoma. Recent Results Cancer Res. 2000;156:9–18.

    Article  PubMed  CAS  Google Scholar 

  591. Blaser MJ. In a world of black and white, Helicobacter pylori is gray. Ann Intern Med. 1999;130(8):695–7.

    PubMed  CAS  Google Scholar 

  592. Zucca E, Roggero E. Biology and treatment of MALT lymphoma: the state-of-the-art in 1996. A workshop at the 6th International Conference on Malignant Lymphoma. Mucosa-associated lymphoid tissue. Ann Oncol. 1996;7(8):787–92.

    Article  PubMed  CAS  Google Scholar 

  593. Wotherspoon AC, Ortiz-Hidalgo C, Falzon MR, Isaacson PG. Helicobacter pylori-associated gastritis and primary B-cell gastric lymphoma. Lancet. 1991;338(8776):1175–6.

    Article  PubMed  CAS  Google Scholar 

  594. Schechter NR, Yahalom J. Low-grade MALT lymphoma of the stomach: a review of treatment options. Int J Radiat Oncol Biol Phys. 2000;46(5):1093–103.

    Article  PubMed  CAS  Google Scholar 

  595. Isaacson PG. Gastrointestinal lymphomas of T- and B-cell types. Mod Pathol. 1999;12(2):151–8.

    PubMed  CAS  Google Scholar 

  596. Isaacson P, Wright DH. Extranodal malignant lymphoma arising from mucosa-associated lymphoid tissue. Cancer. 1984;53(11): 2515–24.

    Article  PubMed  CAS  Google Scholar 

  597. Ruzich J, Fisher RI. MALT lymphoma. Clin Oncol Update. 2000;3:1–7.

    Google Scholar 

  598. Burke JS. Are there site-specific differences among the MALT lymphomas–morphologic, clinical? Am J Clin Pathol. 1999;111 (1 Suppl 1):S133–43.

    PubMed  CAS  Google Scholar 

  599. Fisher GH, Rosenberg FJ, Straus SE, et al. Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell. 1995;81(6):935–46.

    Article  PubMed  CAS  Google Scholar 

  600. Santacroce L, Cagiano R, Del Prete R, et al. Helicobacter pylori infection and gastric MALTomas: an up-to-date and therapy highlight. Clin Ter. 2008;159(6):457–62.

    PubMed  CAS  Google Scholar 

  601. Zucca E, Dreyling M. Gastric marginal zone lymphoma of MALT type: ESMO clinical recommendations for diagnosis, treatment and follow-up. Ann Oncol. 2009;20 Suppl 4:113–4.

    PubMed  Google Scholar 

  602. Zucca E, Bertoni F, Roggero E, Cavalli F. The gastric marginal zone B-cell lymphoma of MALT type. Blood. 2000;96(2):410–9.

    PubMed  CAS  Google Scholar 

  603. Bayerdorffer E, Miehlke S, Neubauer A, Stolte M. Gastric MALT-lymphoma and Helicobacter pylori infection. Aliment Pharmacol Ther. 1997;11 Suppl 1:89–94.

    Article  PubMed  Google Scholar 

  604. Hussell T, Isaacson PG, Crabtree JE, Spencer J. Helicobacter pylori-specific tumour-infiltrating T cells provide contact dependent help for the growth of malignant B cells in low-grade gastric lymphoma of mucosa-associated lymphoid tissue. J Pathol. 1996;178(2):122–7.

    Article  PubMed  CAS  Google Scholar 

  605. Hussell T, Isaacson PG, Crabtree JE, Spencer J. The response of cells from low-grade B-cell gastric lymphomas of mucosa-associated lymphoid tissue to Helicobacter pylori. Lancet. 1993;342(8871):571–4.

    Article  PubMed  CAS  Google Scholar 

  606. Fischbach W. Helicobacter pylori and lymphoproliferative disorders. Ital J Gastroenterol Hepatol. 1998;30 Suppl 3:S299–303.

    PubMed  CAS  Google Scholar 

  607. Cheng TY, Lin JT, Chen LT, et al. Association of T-cell regulatory gene polymorphisms with susceptibility to gastric mucosa-associated lymphoid tissue lymphoma. J Clin Oncol. 2006;24(21): 3483–9.

    Article  PubMed  CAS  Google Scholar 

  608. Peng H, Ranaldi R, Diss TC, Isaacson PG, Bearzi I, Pan L. High frequency of CagA  +  Helicobacter pylori infection in high-grade gastric MALT B-cell lymphomas. J Pathol. 1998;185(4):409–12.

    Article  PubMed  CAS  Google Scholar 

  609. Odenbreit S, Puls J, Sedlmaier B, Gerland E, Fischer W, Haas R. Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion. Science. 2000;287(5457):1497–500.

    Article  PubMed  CAS  Google Scholar 

  610. Bertoni F, Cotter FE, Zucca E. Molecular genetics of extranodal marginal zone (MALT-type) B-cell lymphoma. Leuk Lymphoma. 1999;35(1–2):57–68.

    Article  PubMed  CAS  Google Scholar 

  611. Wotherspoon AC, Doglioni C, Diss TC, et al. Regression of primary low-grade B-cell gastric lymphoma of mucosa-associated lymphoid tissue type after eradication of Helicobacter pylori. Lancet. 1993;342(8871):575–7.

    Article  PubMed  CAS  Google Scholar 

  612. Chan JK. Gastrointestinal lymphomas: an overview with emphasis on new findings and diagnostic problems. Semin Diagn Pathol. 1996;13(4):260–96.

    PubMed  CAS  Google Scholar 

  613. Banerjee SK, Weston AP, Persons DL, Campbell DR. Non-random loss of chromosome 3 during transition of Helicobacter pylori-associated gastric MALT to B-cell MALT lymphoma revealed by fluorescence in situ hybridization. Cancer Lett. 1997;121(1):83–90.

    Article  PubMed  CAS  Google Scholar 

  614. Wotherspoon AC, Finn TM, Isaacson PG. Trisomy 3 in low-grade B-cell lymphomas of mucosa-associated lymphoid tissue. Blood. 1995;85(8):2000–4.

    PubMed  CAS  Google Scholar 

  615. Ott G, Katzenberger T, Greiner A, et al. The t(11;18)(q21;q21) chromosome translocation is a frequent and specific aberration in low-grade but not high-grade malignant non-Hodgkin’s lymphomas of the mucosa-associated lymphoid tissue (MALT-) type. Cancer Res. 1997;57(18):3944–8.

    PubMed  CAS  Google Scholar 

  616. Auer IA, Gascoyne RD, Connors JM, et al. t(11;18)(q21;q21) is the most common translocation in MALT lymphomas. Ann Oncol. 1997;8(10):979–85.

    Article  PubMed  CAS  Google Scholar 

  617. Ye H, Liu H, Attygalle A, et al. Variable frequencies of t(11;18)(q21;q21) in MALT lymphomas of different sites: significant association with CagA strains of H pylori in gastric MALT lymphoma. Blood. 2003;102(3):1012–8.

    Article  PubMed  CAS  Google Scholar 

  618. Du MQ. MALT lymphoma: recent advances in aetiology and molecular genetics. J Clin Exp Hematop. 2007;47(2):31–42.

    Article  PubMed  Google Scholar 

  619. Liu H, Ye H, Ruskone-Fourmestraux A, et al. T(11;18) is a marker for all stage gastric MALT lymphomas that will not respond to H. pylori eradication. Gastroenterology. 2002;122(5):1286–94.

    Article  PubMed  CAS  Google Scholar 

  620. Nakamura T, Nakamura S, Yonezumi M, et al. Helicobacter pylori and the t(11;18)(q21;q21) translocation in gastric low-grade B-cell lymphoma of mucosa-associated lymphoid tissue type. Jpn J Cancer Res. 2000;91(3):301–9.

    Article  PubMed  CAS  Google Scholar 

  621. Willis TG, Jadayel DM, Du MQ, et al. Bcl10 is involved in t(1;14)(p22;q32) of MALT B cell lymphoma and mutated in multiple tumor types. Cell. 1999;96(1):35–45.

    Article  PubMed  CAS  Google Scholar 

  622. Du MQ, Peng H, Liu H, et al. BCL10 gene mutation in lymphoma. Blood. 2000;95(12):3885–90.

    PubMed  CAS  Google Scholar 

  623. Ye H, Gong L, Liu H, et al. Strong BCL10 nuclear expression identifies gastric MALT lymphomas that do not respond to H pylori eradication. Gut. 2006;55(1):137–8.

    Article  PubMed  CAS  Google Scholar 

  624. Nakamura S, Ye H, Bacon CM, et al. Clinical impact of genetic aberrations in gastric MALT lymphoma: a comprehensive analysis using interphase fluorescence in situ hybridisation. Gut. 2007;56(10):1358–63.

    Article  PubMed  Google Scholar 

  625. Hansen PB, Vogt KC, Skov RL, Pedersen-Bjergaard U, Jacobsen M, Ralfkiaer E. Primary gastrointestinal non-Hodgkin’s lymphoma in adults: a population-based clinical and histopathologic study. J Intern Med. 1998;244(1):71–8.

    Article  PubMed  CAS  Google Scholar 

  626. de Jong D, Boot H, Taal B. Histological grading with clinical relevance in gastric mucosa-associated lymphoid tissue (MALT) lymphoma. Recent Results Cancer Res. 2000;156:27–32.

    Article  PubMed  Google Scholar 

  627. Peng H, Du M, Diss TC, Isaacson PG, Pan L. Genetic evidence for a clonal link between low and high-grade components in gastric MALT B-cell lymphoma. Histopathology. 1997;30(5):425–9.

    Article  PubMed  CAS  Google Scholar 

  628. Starostik P, Greiner A, Schultz A, et al. Genetic aberrations common in gastric high-grade large B-cell lymphoma. Blood. 2000;95(4):1180–7.

    PubMed  CAS  Google Scholar 

  629. Peng H, Chen G, Du M, Singh N, Isaacson PG, Pan L. Replication error phenotype and p53 gene mutation in lymphomas of mucosa-associated lymphoid tissue. Am J Pathol. 1996;148(2):643–8.

    PubMed  CAS  Google Scholar 

  630. Ohashi S, Segawa K, Okamura S, et al. A clinicopathologic study of gastric mucosa-associated lymphoid tissue lymphoma. Cancer. 2000;88(10):2210–9.

    Article  PubMed  CAS  Google Scholar 

  631. Nakamura S, Akazawa K, Kinukawa N, Yao T, Tsuneyoshi M. Inverse correlation between the expression of bcl-2 and p53 proteins in primary gastric lymphoma. Hum Pathol. 1996;27(3):225–33.

    Article  PubMed  CAS  Google Scholar 

  632. Nardini E, Aiello A, Giardini R, Colnaghi MI, Menard S, Balsari A. Detection of aberrant isotype switch recombination in low-grade and high-grade gastric MALT lymphomas. Blood. 2000;95(3):1032–8.

    PubMed  CAS  Google Scholar 

  633. Wotherspoon AC, Doglioni C, de Boni M, Spencer J, Isaacson PG. Antibiotic treatment for low-grade gastric MALT lymphoma. Lancet. 1994;343(8911):1503.

    Article  PubMed  CAS  Google Scholar 

  634. Savio A, Franzin G, Wotherspoon AC, et al. Diagnosis and posttreatment follow-up of Helicobacter pylori-positive gastric lymphoma of mucosa-associated lymphoid tissue: histology, polymerase chain reaction, or both? Blood. 1996;87(4):1255–60.

    PubMed  CAS  Google Scholar 

  635. Roggero E, Zucca E, Pinotti G, et al. Eradication of Helicobacter pylori infection in primary low-grade gastric lymphoma of mucosa-associated lymphoid tissue. Ann Intern Med. 1995; 122(10):767–9.

    PubMed  CAS  Google Scholar 

  636. Neubauer A, Bayerdorfer E, Rudolph B. Treatment of early gastric MALT-lymphoma patients by Helicobacter Pylori (HP) eradication. German MALT lymphoma trial. Blood. 1994;84:519a.

    Google Scholar 

  637. Alpen B, Neubauer A, Dierlamm J, et al. Translocation t(11;18) absent in early gastric marginal zone B-cell lymphoma of MALT type responding to eradication of Helicobacter pylori infection. Blood. 2000;95(12):4014–5.

    PubMed  CAS  Google Scholar 

  638. Zucca E, Roggero E, Pinotti G. Lymphoma regression after eradication of H. pylori infection in primary low-grade gastric lymphoma of mucosa-associated lymphoid tissue (MALT) type. Blood. 1994;84:519a.

    Google Scholar 

  639. Thiede C, Wundisch T, Alpen B, et al. Long-term persistence of monoclonal B cells after cure of Helicobacter pylori infection and complete histologic remission in gastric mucosa-associated lymphoid tissue B-cell lymphoma. J Clin Oncol. 2001;19(6):1600–9.

    PubMed  CAS  Google Scholar 

  640. Morgner A, Miehlke S, Fischbach W, et al. Complete remission of primary high-grade B-cell gastric lymphoma after cure of Helicobacter pylori infection. J Clin Oncol. 2001;19(7):2041–8.

    PubMed  CAS  Google Scholar 

  641. Moslehi R, Devesa SS, Schairer C, Fraumeni Jr JF. Rapidly increasing incidence of ocular non-hodgkin lymphoma. J Natl Cancer Inst. 2006;98(13):936–9.

    Article  PubMed  Google Scholar 

  642. Ferreri AJ, Dolcetti R, Du MQ, et al. Ocular adnexal MALT lymphoma: an intriguing model for antigen-driven lymphomagenesis and microbial-targeted therapy. Ann Oncol. 2008;19(5):835–46.

    Article  PubMed  CAS  Google Scholar 

  643. Mannami T, Yoshino T, Oshima K, et al. Clinical, histopathological, and immunogenetic analysis of ocular adnexal lymphoproliferative disorders: characterization of malt lymphoma and reactive lymphoid hyperplasia. Mod Pathol. 2001;14(7):641–9.

    Article  PubMed  CAS  Google Scholar 

  644. Streubel B, Huber D, Wohrer S, Chott A, Raderer M. Frequency of chromosomal aberrations involving MALT1 in mucosa-associated lymphoid tissue lymphoma in patients with Sjogren’s syndrome. Clin Cancer Res. 2004;10(2):476–80.

    Article  PubMed  CAS  Google Scholar 

  645. Remstein ED, Kurtin PJ, James CD, Wang XY, Meyer RG, Dewald GW. Mucosa-associated lymphoid tissue lymphomas with t(11;18)(q21;q21) and mucosa-associated lymphoid tissue lymphomas with aneuploidy develop along different pathogenetic pathways. Am J Pathol. 2002;161(1):63–71.

    Article  PubMed  Google Scholar 

  646. Lietman T, Brooks D, Moncada J, Schachter J, Dawson C, Dean D. Chronic follicular conjunctivitis associated with Chlamydia psittaci or Chlamydia pneumoniae. Clin Infect Dis. 1998;26(6):1335–40.

    Article  PubMed  CAS  Google Scholar 

  647. Ponzoni M, Ferreri AJ, Guidoboni M, et al. Chlamydia infection and lymphomas: association beyond ocular adnexal lymphomas highlighted by multiple detection methods. Clin Cancer Res. 2008;14(18):5794–800.

    Article  PubMed  CAS  Google Scholar 

  648. Ferreri AJ, Dolcetti R, Dognini GP, et al. Chlamydophila psittaci is viable and infectious in the conjunctiva and peripheral blood of patients with ocular adnexal lymphoma: results of a single-center prospective case-control study. Int J Cancer. 2008;123(5): 1089–93.

    Article  PubMed  CAS  Google Scholar 

  649. Yoo C, Ryu MH, Huh J, et al. Chlamydia psittaci infection and clinicopathologic analysis of ocular adnexal lymphomas in Korea. Am J Hematol. 2007;82(9):821–3.

    Article  PubMed  Google Scholar 

  650. Aigelsreiter A, Leitner E, Deutsch AJ, et al. Chlamydia psittaci in MALT lymphomas of ocular adnexals: the Austrian experience. Leuk Res. 2008;32(8):1292–4.

    Article  PubMed  Google Scholar 

  651. Chan CC, Shen D, Mochizuki M, et al. Detection of Helicobacter pylori and Chlamydia pneumoniae genes in primary orbital lymphoma. Trans Am Ophthalmol Soc. 2006;104:62–70.

    PubMed  Google Scholar 

  652. Chanudet E, Adam P, Nicholson AG, et al. Chlamydiae and Mycoplasma infections in pulmonary MALT lymphoma. Br J Cancer. 2007;97(7):949–51.

    PubMed  CAS  Google Scholar 

  653. Garbe C, Stein H, Dienemann D, Orfanos CE. Borrelia burgdorferi-associated cutaneous B cell lymphoma: clinical and immunohistologic characterization of four cases. J Am Acad Dermatol. 1991;24(4):584–90.

    Article  PubMed  CAS  Google Scholar 

  654. Cerroni L, Zochling N, Putz B, Kerl H. Infection by Borrelia burgdorferi and cutaneous B-cell lymphoma. J Cutan Pathol. 1997;24(8):457–61.

    Article  PubMed  CAS  Google Scholar 

  655. Goodlad JR, Davidson MM, Hollowood K, et al. Primary cutaneous B-cell lymphoma and Borrelia burgdorferi infection in patients from the Highlands of Scotland. Am J Surg Pathol. 2000;24(9):1279–85.

    Article  PubMed  CAS  Google Scholar 

  656. Roggero E, Zucca E, Mainetti C, et al. Eradication of Borrelia burgdorferi infection in primary marginal zone B-cell lymphoma of the skin. Hum Pathol. 2000;31(2):263–8.

    Article  PubMed  CAS  Google Scholar 

  657. Kutting B, Bonsmann G, Metze D, Luger TA, Cerroni L. Borrelia burgdorferi-associated primary cutaneous B cell lymphoma: complete clearing of skin lesions after antibiotic pulse therapy or intralesional injection of interferon alfa-2a. J Am Acad Dermatol. 1997;36(2 Pt 2):311–4.

    Article  PubMed  CAS  Google Scholar 

  658. Shaye OS, Levine AM. Marginal zone lymphoma. J Natl Compr Canc Netw. 2006;4(3):311–8.

    PubMed  Google Scholar 

  659. Guidoboni M, Ferreri AJ, Ponzoni M, Doglioni C, Dolcetti R. Infectious agents in mucosa-associated lymphoid tissue-type lymphomas: pathogenic role and therapeutic perspectives. Clin Lymphoma Myeloma. 2006;6(4):289–300.

    Article  PubMed  Google Scholar 

  660. Schollkopf C, Melbye M, Munksgaard L, et al. Borrelia infection and risk of non-Hodgkin lymphoma. Blood. 2008;111(12): 5524–9.

    Article  PubMed  CAS  Google Scholar 

  661. Tothova SM, Bonin S, Trevisan G, Stanta G. Mycosis fungoides: is it a Borrelia burgdorferi-associated disease? Br J Cancer. 2006;94(6):879–83.

    Article  PubMed  CAS  Google Scholar 

  662. Martin IG, Aldoori MI. Immunoproliferative small intestinal disease: Mediterranean lymphoma and alpha heavy chain disease. Br J Surg. 1994;81(1):20–4.

    Article  PubMed  CAS  Google Scholar 

  663. Taylor AL, Marcus R, Bradley JA. Post-transplant lymphoproliferative disorders (PTLD) after solid organ transplantation. Crit Rev Oncol Hematol. 2005;56(1):155–67.

    Article  PubMed  Google Scholar 

  664. Gottschalk S, Rooney CM, Heslop HE. Post-transplant lymphoproliferative disorders. Annu Rev Med. 2005;56:29–44.

    Article  PubMed  CAS  Google Scholar 

  665. Penn I, Brunson ME. Cancers after cyclosporine therapy. Transplant Proc. 1988;20(3 Suppl 3):885–92.

    PubMed  CAS  Google Scholar 

  666. Penn I. Cancers following cyclosporine therapy. Transplant Proc. 1987;19:2211–3.

    PubMed  CAS  Google Scholar 

  667. Penn I. Cancers following cyclosporine therapy. Transplantation. 1987;43(1):32–5.

    Article  PubMed  CAS  Google Scholar 

  668. Penn I. Depressed immunity and the development of cancer. Clin Exp Immunol. 1981;46(3):459–74.

    PubMed  CAS  Google Scholar 

  669. Penn I. Cancer in the immunosuppressed organ recipient. Transplant Proc. 1991;23(2):1771–2.

    PubMed  CAS  Google Scholar 

  670. Penn I. Lymphomas complicating organ transplantation. Transplant. 1983;15:2790–7.

    Google Scholar 

  671. Hoover R, Fraumeni Jr JF. Risk of cancer in renal-transplant recipients. Lancet. 1973;2(7820):55–7.

    Article  PubMed  CAS  Google Scholar 

  672. Ghods AJ, Ossareh S. Lymphoma-the most common neoplasia in renal transplant recipients. Transplant Proc. 2000;32(3):585–6.

    Article  PubMed  CAS  Google Scholar 

  673. Nalesnik MA, Makowka L, Starzl TE. The diagnosis and treatment of posttransplant lymphoproliferative disorders. Curr Probl Surg. 1988;25(6):367–472.

    Article  PubMed  CAS  Google Scholar 

  674. Penn I. Donor transmitted disease: cancer. Transplant Proc. 1991;23(5):2629–31.

    PubMed  CAS  Google Scholar 

  675. Morrison VA, Dunn DL, Manivel JC, Gajl-Peczalska KJ, Peterson BA. Clinical characteristics of post-transplant lymphoproliferative disorders. Am J Med. 1994;97(1):14–24.

    Article  PubMed  CAS  Google Scholar 

  676. Hood IM, Mahendra P, McNeil K, Marcus RE. Hodgkin’s disease after cardiac transplant: a report of two cases. Clin Lab Haematol. 1996;18(2):115–6.

    Article  PubMed  CAS  Google Scholar 

  677. Garnier JL, Lebranchu Y, Dantal J, et al. Hodgkin’s disease after transplantation. Transplantation. 1996;61(1):71–6.

    Article  PubMed  CAS  Google Scholar 

  678. Bierman PJ, Vose JM, Langnas AN, et al. Hodgkin’s disease following solid organ transplantation. Ann Oncol. 1996;7(3):265–70.

    Article  PubMed  CAS  Google Scholar 

  679. Quinlan SC, Morton LM, Pfeiffer RM, et al. Increased risk for lymphoid and myeloid neoplasms in elderly solid-organ transplant recipients. Cancer Epidemiol Biomarkers Prev. 2010;19(5): 1229–37.

    Article  PubMed  CAS  Google Scholar 

  680. Opelz G, Henderson R. Incidence of non-Hodgkin lymphoma in kidney and heart transplant recipients. Lancet. 1993;342(8886–8887): 1514–6.

    Article  PubMed  CAS  Google Scholar 

  681. Wilkinson AH, Smith JL, Hunsicker LG, et al. Increased frequency of posttransplant lymphomas in patients treated with cyclosporine, azathioprine, and prednisone. Transplantation. 1989;47(2):293–6.

    Article  PubMed  CAS  Google Scholar 

  682. Armitage JM, Kormos RL, Stuart RS, et al. Posttransplant lymphoproliferative disease in thoracic organ transplant patients: ten years of cyclosporine-based immunosuppression. J Heart Lung Transplant. 1991;10(6):877–86. discussion 886-7.

    PubMed  CAS  Google Scholar 

  683. Smith JL, Wilkinson AH, Hunsicker LG, et al. Increased frequency of posttransplant lymphomas in patients treated with cyclosporin, azathioprine, and prednisone. Transplant Proc. 1989;21(1 Pt 3):3199–200.

    PubMed  CAS  Google Scholar 

  684. Cockburn I. Assessment of the risks of malignancy and lymphomas developing in patients using Sandimmune. Transplant Proc. 1987;19(1 Pt 2):1804–7.

    PubMed  CAS  Google Scholar 

  685. Swinnen LJ. Overview of posttransplant B-cell lymphoproliferative disorders. Sem Oncol. 1999;26 Suppl 14:21–5.

    CAS  Google Scholar 

  686. Egan J, Stewart J, Yonan N, Arrand J, Woodcock A. Non-Hodgkin lymphoma in heart/lung transplant recipients. Lancet. 1994;343(8895):481.

    Article  PubMed  CAS  Google Scholar 

  687. York LJ, Qualtiere LF. Cyclosporin abrogates virus-specific T-cell control of EBV-induced B-cell lymphoproliferation. Viral Immunol. 1990;3(2):127–36.

    Article  PubMed  CAS  Google Scholar 

  688. Walz G, Zanker B, Melton LB, Suthanthiran M, Strom TB. Possible association of the immunosuppressive and B cell lymphoma-promoting properties of cyclosporine. Transplantation. 1990;49(1):191–4.

    Article  PubMed  CAS  Google Scholar 

  689. Kelly GE, Meikle W, Sheil AG. Effects of immunosuppressive therapy on the induction of skin tumors by ultraviolet irradiation in hairless mice. Transplantation. 1987;44(3):429–34.

    Article  PubMed  CAS  Google Scholar 

  690. Calne RY, Rolles K, White DJ, et al. Cyclosporin A initially as the only immunosuppressant in 34 recipients of cadaveric organs: 32 kidneys, 2 pancreases, and 2 livers. Lancet. 1979;2(8151): 1033–6.

    Article  PubMed  CAS  Google Scholar 

  691. Bieber CP, Reitz BA, Jamieson SW, Oyer PE, Stinson EB. Malignant lymphoma in cyclosporin A treated allograft recipients. Lancet. 1980;1(8158):43.

    Article  PubMed  CAS  Google Scholar 

  692. Land W. Optimal use of cyclosporine in clinical organ transplantation. Transplant Proc. 1987;19(1 Pt 1):130–5.

    PubMed  CAS  Google Scholar 

  693. Gruber SA, Skjei KL, Sothern RB, et al. Cancer development in renal allograft recipients treated with conventional and cyclosporine immunosuppression. Transplant Proc. 1991;23(1 Pt 2):1104–5.

    PubMed  CAS  Google Scholar 

  694. Starzl TE, Porter KA, Francavilla A, Iwatsuki S. Reversal of hepatic alpha-1-antitrypsin deposition after portacaval shunt. Lancet. 1983;2(8347):424–6.

    Article  PubMed  CAS  Google Scholar 

  695. Swinnen LJ, Costanzo-Nordin MR, Fisher SG, et al. Increased incidence of lymphoproliferative disorder after immunosuppression with the monoclonal antibody OKT3 in cardiac-transplant recipients. N Engl J Med. 1990;323(25):1723–8.

    Article  PubMed  CAS  Google Scholar 

  696. Penn I. Immunosuppression and malignant disease. In: Twomey G, editor. Immunopathology of neoplasms. New York: Plenum; 1978. p. 223–7.

    Chapter  Google Scholar 

  697. Jamil B, Nicholls K, Becker GJ, Walker RG. Impact of acute rejection therapy on infections and malignancies in renal transplant recipients. Transplantation. 1999;68(10):1597–603.

    Article  PubMed  CAS  Google Scholar 

  698. Jones C, Bleau B, Buskard N, et al. Simultaneous development of diffuse immunoblastic lymphoma in recipients of renal transplants from a single cadaver donor: transmission of Epstein-Barr virus and triggering by OKT3. Am J Kidney Dis. 1994;23(1): 130–4.

    PubMed  CAS  Google Scholar 

  699. Cockfield SM, Preiksaitis J, Harvey E, et al. Is sequential use of ALG and OKT3 in renal transplants associated with an increased incidence of fulminant posttransplant lymphoproliferative disorder? Transplant Proc. 1991;23(1 Pt 2):1106–7.

    PubMed  CAS  Google Scholar 

  700. Ellis D, Jaffe R, Green M, et al. Epstein-Barr virus-related disorders in children undergoing renal transplantation with tacrolimus-based immunosuppression. Transplantation. 1999;68(7):997–1003.

    Article  PubMed  CAS  Google Scholar 

  701. Ciancio G, Siquijor AP, Burke GW, et al. Post-transplant lymphoproliferative disease in kidney transplant patients in the new immunosuppressive era. Clin Transplant. 1997;11(3):243–9.

    PubMed  CAS  Google Scholar 

  702. Swinnen LJ. Overview of posttransplant B-cell lymphoproliferative disorders. Semin Oncol. 1999;26(5 Suppl 14):21–5.

    PubMed  CAS  Google Scholar 

  703. Starzl TE, Nalesnik MA, Porter KA, et al. Reversibility of lymphomas and lymphoproliferative lesions developing under cyclosporin-steroid therapy. Lancet. 1984;1(8377):583–7.

    Article  PubMed  CAS  Google Scholar 

  704. Hanto DW, Sakamoto K, Purtilo DT, Simmons RL, Najarian JS. The Epstein-Barr virus in the pathogenesis of posttransplant lymphoproliferative disorders. Clinical, pathologic, and virologic correlation. Surgery. 1981;90(2):204–13.

    PubMed  CAS  Google Scholar 

  705. Hanto DW, Birkenbach M, Frizzera G, Gajl-Peczalska KJ, Simmons RL, Schubach WH. Confirmation of the heterogeneity of posttransplant Epstein-Barr virus-associated B cell proliferations by immunoglobulin gene rearrangement analyses. Transplantation. 1989;47(3):458–64.

    Article  PubMed  CAS  Google Scholar 

  706. Quintanilla-Martinez L, Lome-Maldonado C, Schwarzmann F, et al. Post-transplantation lymphoproliferative disorders in Mexico: an aggressive clonal disease associated with Epstein-Barr virus type A. Mod Pathol. 1998;11(2):200–8.

    PubMed  CAS  Google Scholar 

  707. Nalesnik MA. Clinicopathologic features of posttransplant lymphoproliferative disorders. Ann Transplant. 1997;2(4):33–40.

    PubMed  CAS  Google Scholar 

  708. Chadburn A, Cesarman E, Knowles DM. Molecular pathology of posttransplantation lymphoproliferative disorders. Semin Diagn Pathol. 1997;14(1):15–26.

    PubMed  CAS  Google Scholar 

  709. Chadburn A, Hyjeck E, Ying L. Epsteind Barr virus (EBV) gene expression in post-transplantation lymphoproliferative disorders (PT-LPDs). Mod Pathol. 1999;12:133a.

    Google Scholar 

  710. Biemer JJ. Malignant lymphomas associated with immunodeficiency states. Ann Clin Lab Sci. 1990;20(3):175–91.

    PubMed  CAS  Google Scholar 

  711. Cleary ML, Warnke R, Sklar J. Monoclonality of lymphoproliferative lesions in cardiac-transplant recipients. Clonal analysis based on immunoglobulin-gene rearrangements. N Engl J Med. 1984;310(8):477–82.

    Article  PubMed  CAS  Google Scholar 

  712. Seiden MV, Sklar J. Molecular genetic analysis of post-transplant lymphoproliferative disorders. Hematol Oncol Clin North Am. 1993;7(2):447–65.

    PubMed  CAS  Google Scholar 

  713. Patton DF, Wilkowski CW, Hanson CA, et al. Epstein-Barr virus–determined clonality in posttransplant lymphoproliferative disease. Transplantation. 1990;49(6):1080–4.

    Article  PubMed  CAS  Google Scholar 

  714. Cleary ML, Sklar J. Lymphoproliferative disorders in cardiac transplant recipients are multiclonal lymphomas. Lancet. 1984;2(8401):489–93.

    Article  PubMed  CAS  Google Scholar 

  715. Cleary ML, Nalesnik MA, Shearer WT, Sklar J. Clonal analysis of transplant-associated lymphoproliferations based on the structure of the genomic termini of the Epstein-Barr virus. Blood. 1988;72(1):349–52.

    PubMed  CAS  Google Scholar 

  716. Weintraub J, Warnke RA. Lymphoma in cardiac allotransplant recipients. Clinical and histological features and immunological phenotype. Transplantation. 1982;33(4):347–51.

    Article  PubMed  CAS  Google Scholar 

  717. Robertson L, Rice L, Riggs SA. Lymphomas after cardiac transplantation: Houston experience and successful therapy. Blood. 1990;76:369a.

    Google Scholar 

  718. Manning KR, Powell BL, Peacock JE. Effective combination chemotherapy for non-Hodgkin’s lymphoma after cardiac transplant. Blood. 1991;78:468a.

    Google Scholar 

  719. Lien YH, Schroter GP, Weil 3rd R, Robinson WA. Complete remission and possible immune tolerance after multidrug combination chemotherapy for cyclosporine-related lymphoma in a renal transplant recipient with acute pancreatitis. Transplantation. 1991;52(4):739–42.

    Article  PubMed  CAS  Google Scholar 

  720. Chadburn A, Chen JM, Hsu DT. The morphological and molecular genetic categories of posttransplantation lymphoproliferatived disorders are clinically relevant. Cancer. 1998;82:1978–87.

    Article  PubMed  CAS  Google Scholar 

  721. Wu H, Wasik MA, Przybylski G, et al. Hepatosplenic gamma-delta T-cell lymphoma as a late-onset posttransplant lymphoproliferative disorder in renal transplant recipients. Am J Clin Pathol. 2000;113(4):487–96.

    Article  PubMed  CAS  Google Scholar 

  722. van Gorp J, Doornewaard H, Verdonck LF, Klopping C, Vos PF, van den Tweel JG. Posttransplant T-cell lymphoma. Report of three cases and a review of the literature. Cancer. 1994;73(12):3064–72.

    Article  PubMed  Google Scholar 

  723. Hanson MN, Morrison VA, Peterson BA, et al. Posttransplant T-cell lymphoproliferative disorders–an aggressive, late complication of solid-organ transplantation. Blood. 1996;88(9):3626–33.

    PubMed  CAS  Google Scholar 

  724. Garvin AJ, Self S, Sahovic EA, Stuart RK, Marchalonis JJ. The occurrence of a peripheral T-cell lymphoma in a chronically immunosuppressed renal transplant patient. Am J Surg Pathol. 1988;12(1):64–70.

    Article  PubMed  CAS  Google Scholar 

  725. Dockrell DH, Strickler JG, Paya CV. Epstein-Barr virus-induced T cell lymphoma in solid organ transplant recipients. Clin Infect Dis. 1998;26(1):180–2.

    Article  PubMed  CAS  Google Scholar 

  726. Lin WC, Moore JO, Mann KP, Traweek ST, Smith C. Post transplant CD8+ gammadelta T-cell lymphoma associated with human herpes virus-6 infection. Leuk Lymphoma. 1999;33(3–4): 377–84.

    PubMed  CAS  Google Scholar 

  727. Euvrard S, Noble CP, Kanitakis J, et al. Brief report: successive occurrence of T-cell and B-cell lymphomas after renal transplantation in a patient with multiple cutaneous squamous-cell carcinomas. N Engl J Med. 1992;327(27):1924–6.

    Article  PubMed  CAS  Google Scholar 

  728. Wirnsberger GH, Ratschek M, Dimai HP, Holzer H, Mandal AK. Post-transplantation lymphoproliferative disorder of the T-cell/B-cell type: an unusual manifestation in a renal allograft. Oncol Rep. 1999;6(1):29–32.

    PubMed  CAS  Google Scholar 

  729. Mukai HY, Kojima H, Suzukawa K, et al. Nasal natural killer cell lymphoma in a post-renal transplant patient. Transplantation. 2000;69(7):1501–3.

    Article  PubMed  CAS  Google Scholar 

  730. Wotherspoon AC, Diss TC, Pan L, Singh N, Whelan J, Isaacson PG. Low grade gastric B-cell lymphoma of mucosa associated lymphoid tissue in immunocompromised patients. Histopathology. 1996;28(2):129–34.

    Article  PubMed  CAS  Google Scholar 

  731. Le Meur Y, Pontoizeau-Potelune N, Jaccard A, Paraf F, Leroux-Robert C. Regression of a gastric lymphoma of mucosa-associated lymphoid tissue after eradication of Helicobacter pylori in a kidney graft recipient. Am J Med. 1999;107(5):530.

    PubMed  Google Scholar 

  732. Hsi ED, Singleton TP, Swinnen L, Dunphy CH, Alkan S. Mucosa-associated lymphoid tissue-type lymphomas occurring in post-transplantation patients. Am J Surg Pathol. 2000;24(1):100–6.

    Article  PubMed  CAS  Google Scholar 

  733. Semakula B, Rittenbach JV, Wang J. Hodgkin lymphoma-like posttransplantation lymphoproliferative disorder. Arch Pathol Lab Med. 2006;130(4):558–60.

    PubMed  Google Scholar 

  734. Gentile TC, Hadlock KG, Uner AH, et al. Large granular lymphocyte leukaemia occurring after renal transplantation. Br J Haematol. 1998;101(3):507–12.

    Article  PubMed  CAS  Google Scholar 

  735. Papadaki HA, Stefanaki K, Kanavaros P, et al. Epstein-Barr virus-associated high-grade anaplastic plasmacytoma in a renal transplant patient. Leuk Lymphoma. 2000;36(3–4):411–5.

    Article  PubMed  CAS  Google Scholar 

  736. Grey M, Townsend N, Lappin D, et al. IgA myeloma of donor origin arising 7 years after allogeneic renal transplant. Br J Haematol. 2000;108(3):592–4.

    Article  PubMed  CAS  Google Scholar 

  737. Ducloux D, Carron P, Racadot E, et al. T-cell immune defect and B-cell activation in renal transplant recipients with monoclonal gammopathies. Transpl Int. 1999;12(4):250–3.

    Article  PubMed  CAS  Google Scholar 

  738. Yousem SA, Randhawa P, Locker J, et al. Posttransplant lymphoproliferative disorders in heart-lung transplant recipients: primary presentation in the allograft. Hum Pathol. 1989;20(4):361–9.

    Article  PubMed  CAS  Google Scholar 

  739. Spiro IJ, Yandell DW, Li C, et al. Brief report: lymphoma of donor origin occurring in the porta hepatis of a transplanted liver. N Engl J Med. 1993;329(1):27–9.

    Article  PubMed  CAS  Google Scholar 

  740. Leblond V, Sutton L, Dorent R, et al. Lymphoproliferative disorders after organ transplantation: a report of 24 cases observed in a single center. J Clin Oncol. 1995;13(4):961–8.

    PubMed  CAS  Google Scholar 

  741. Hjelle B, Evans-Holm M, Yen TS, Garovoy M, Guis M, Edman JC. A poorly differentiated lymphoma of donor origin in a renal allograft recipient. Transplantation. 1989;47(6):945–8.

    Article  PubMed  CAS  Google Scholar 

  742. Miller Jr WT, Siegel SG, Montone KT. Posttransplantation lymphoproliferative disorder: changing manifestations of disease in a renal transplant population. Crit Rev Diagn Imaging. 1997;38(6): 569–85.

    PubMed  Google Scholar 

  743. Weissmann DJ, Ferry JA, Harris NL, Louis DN, Delmonico F, Spiro I. Posttransplantation lymphoproliferative disorders in solid organ recipients are predominantly aggressive tumors of host origin. Am J Clin Pathol. 1995;103(6):748–55.

    PubMed  CAS  Google Scholar 

  744. Meduri G, Fromentin L, Vieillefond A, Fries D. Donor-related non-Hodgkin’s lymphoma in a renal allograft recipient. Transplant Proc. 1991;23(5):2649.

    PubMed  CAS  Google Scholar 

  745. Lucas KG, Pollok KE, Emanuel DJ. Post-transplant EBV induced lymphoproliferative disorders. Leuk Lymphoma. 1997;25(1–2):1–8.

    PubMed  CAS  Google Scholar 

  746. Gambacorta M, Bonacina E, Falini B, Sabattini E, Pileri S. Malignant lymphoma in the recipient of a heart transplant from a donor with malignant lymphoma. Lymphoma transplantation or de novo disease? Transplantation. 1991;51(4):920–2.

    Article  PubMed  CAS  Google Scholar 

  747. Cheung AN, Chan AC, Chung LP, Chan TM, Cheng IK, Chan KW. Post-transplantation lymphoproliferative disorder of donor origin in a sex-mismatched renal allograft as proven by chromosome in situ hybridization. Mod Pathol. 1998;11(1):99–102.

    Article  PubMed  CAS  Google Scholar 

  748. Capello D, Rossi D, Gaidano G. Post-transplant lymphoproliferative disorders: molecular basis of disease histogenesis and pathogenesis. Hematol Oncol. 2005;23(2):61–7.

    Article  PubMed  Google Scholar 

  749. Matas AJ, Simmons RL, Najarian JS. Chronic antigenic stimulation, herpesvirus infection, and cancer in transplant recipients. Lancet. 1975;1(7919):1277–9.

    Article  PubMed  CAS  Google Scholar 

  750. Anderson JL, Fowles RE, Bieber CP, Stinson EB. Idiopathic cardiomyopathy, age, and suppressor-cell dysfunction as risk determinants of lymphoma after cardiac transplantation. Lancet. 1978;2(8101):1174–7.

    Article  PubMed  CAS  Google Scholar 

  751. Filipovich AH, Mathur A, Kamat D. Primary immunodeficiencies: genetic risk factors for lymphoma. Cancer Res. 1992;52(Suppl):5465S–7S.

    PubMed  CAS  Google Scholar 

  752. Fischer A, Blanche S, Le Bidois J, et al. Anti-B-cell monoclonal antibodies in the treatment of severe B-cell lymphoproliferative syndrome following bone marrow and organ transplantation. N Engl J Med. 1991;324(21):1451–6.

    Article  PubMed  CAS  Google Scholar 

  753. Shapiro RS, McClain K, Frizzera G, et al. Epstein-Barr virus associated B cell lymphoproliferative disorders following bone marrow transplantation. Blood. 1988;71(5):1234–43.

    PubMed  CAS  Google Scholar 

  754. Suthanthiran M, Strom TB. Renal transplantation. N Engl J Med. 1994;331(6):365–76.

    Article  PubMed  CAS  Google Scholar 

  755. Lipinski M, Tursz T, Kreis H, Finale Y, Amiel JL. Dissociation of natural killer cell activity and antibody-dependent cell-mediated cytotoxicity in kidney allograft recipients receiving high-dose immunosuppressive therapy. Transplantation. 1980;29(3):214–8.

    Article  PubMed  CAS  Google Scholar 

  756. Tosato G, Seamon KB, Goldman ND, et al. Monocyte-derived human B-cell growth factor identified as interferon-beta 2 (BSF-2, IL-6). Science. 1988;239(4839):502–4.

    Article  PubMed  CAS  Google Scholar 

  757. Strauch B, Andrews LL, Siegel N, Miller G. Oropharyngeal excretion of Epstein-Barr virus by renal transplant recipients and other patients treated with immunosuppressive drugs. Lancet. 1974;1(7851):234–7.

    Article  PubMed  CAS  Google Scholar 

  758. Savoie A, Perpete C, Carpentier L, Joncas J, Alfieri C. Direct correlation between the load of Epstein-Barr virus-infected lymphocytes in the peripheral blood of pediatric transplant patients and risk of lymphoproliferative disease. Blood. 1994;83(9):2715–22.

    PubMed  CAS  Google Scholar 

  759. Riddler SA, Breinig MC, McKnight JL. Increased levels of circulating Epstein-Barr virus (EBV)-infected lymphocytes and decreased EBV nuclear antigen antibody responses are associated with the development of posttransplant lymphoproliferative disease in solid-organ transplant recipients. Blood. 1994;84(3):972–84.

    PubMed  CAS  Google Scholar 

  760. Randhawa PS, Jaffe R, Demetris AJ, et al. Expression of Epstein-Barr virus-encoded small RNA (by the EBER-1 gene) in liver specimens from transplant recipients with post-transplantation lymphoproliferative disease. N Engl J Med. 1992;327(24):1710–4.

    Article  PubMed  CAS  Google Scholar 

  761. Nagington J, Gray J. Cyclosporin A immunosuppression, Epstein-Barr antibody, and lymphoma. Lancet. 1980;1(8167):536–7.

    Article  PubMed  CAS  Google Scholar 

  762. Henle W, Henle G. Epstein-Barr virus-specific serology in immunologically compromised individuals. Cancer Res. 1981;41(11 Pt 1): 4222–5.

    PubMed  CAS  Google Scholar 

  763. Frank D, Cesarman E, Liu YF, Michler RE, Knowles DM. Posttransplantation lymphoproliferative disorders frequently contain type A and not type B Epstein-Barr virus. Blood. 1995;85(5): 1396–403.

    PubMed  CAS  Google Scholar 

  764. Ho M, Jaffe R, Miller G, et al. The frequency of Epstein-Barr virus infection and associated lymphoproliferative syndrome after transplantation and its manifestations in children. Transplantation. 1988;45(4):719–27.

    Article  PubMed  CAS  Google Scholar 

  765. Walker RC, Paya CV, Marshall WF, et al. Pretransplantation seronegative Epstein-Barr virus status is the primary risk factor for posttransplantation lymphoproliferative disorder in adult heart, lung, and other solid organ transplantations. J Heart Lung Transplant. 1995;14(2):214–21.

    PubMed  CAS  Google Scholar 

  766. Alfieri C, Tanner J, Carpentier L, et al. Epstein-Barr virus transmission from a blood donor to an organ transplant recipient with recovery of the same virus strain from the recipient’s blood and oropharynx. Blood. 1996;87(2):812–7.

    PubMed  CAS  Google Scholar 

  767. Schwab M, Boswald M, Korn K, Ruder H. Epstein-Barr virus in pediatric patients after renal transplantation. Clin Nephrol. 2000;53(2):132–9.

    PubMed  CAS  Google Scholar 

  768. Young L, Alfieri C, Hennessy K, et al. Expression of Epstein-Barr virus transformation-associated genes in tissues of patients with EBV lymphoproliferative disease. N Engl J Med. 1989;321(16): 1080–5.

    Article  PubMed  CAS  Google Scholar 

  769. Crawford DH, Thomas JA, Janossy G, et al. Epstein Barr virus nuclear antigen positive lymphoma after cyclosporin A treatment in patient with renal allograft. Lancet. 1980;1(8182):1355–6.

    Article  PubMed  CAS  Google Scholar 

  770. Hoon V, Fasy TM, Kheiri S, et al. Case report: fatal lymphoproliferative disease seven weeks after liver transplantation. Mt Sinai J Med. 1994;61(1):72–6.

    PubMed  CAS  Google Scholar 

  771. Ho M, Miller G, Atchison RW, et al. Epstein-Barr virus infections and DNA hybridization studies in posttransplantation lymphoma and lymphoproliferative lesions: the role of primary infection. J Infect Dis. 1985;152(5):876–86.

    Article  PubMed  CAS  Google Scholar 

  772. Berg LC, Copenhaver CM, Morrison VA, et al. B-cell lymphoproliferative disorders in solid-organ transplant patients: detection of Epstein-Barr virus by in situ hybridization. Hum Pathol. 1992;23(2):159–63.

    Article  PubMed  CAS  Google Scholar 

  773. Frias C, Lauzurica R, Vaquero M, Ribera JM. Detection of Epstein-Barr virus in posttransplantation T cell lymphoma in a kidney transplant recipient: case report and review. Clin Infect Dis. 2000;30(3):576–8.

    Article  PubMed  CAS  Google Scholar 

  774. Rooney CM, Rickinson AB, Moss DJ, Lenoir GM, Epstein MA. Paired Epstein-Barr virus-carrying lymphoma and lymphoblastoid cell lines from Burkitt’s lymphoma patients: comparative sensitivity to non-specific and to allo-specific cytotoxic responses in vitro. Int J Cancer. 1984;34(3):339–48.

    Article  PubMed  CAS  Google Scholar 

  775. Gaston JS, Rickinson AB, Epstein MA. Epstein-Barr-virus-specific T-cell memory in renal-allograft recipients under long-term immunosuppression. Lancet. 1982;1(8278):923–5.

    Article  PubMed  CAS  Google Scholar 

  776. Crawford DH, Sweny P, Edwards JM, Janossy G, Hoffbrand AV. Long-term T-cell-mediated immunity to Epstein-Barr virus in renal-allograft recipients receiving cyclosporin A. Lancet. 1981;1(8210):10–2.

    Article  PubMed  CAS  Google Scholar 

  777. Bird AG, McLachlan SM. Cyclosporin A and Epstein-Barr virus. Lancet. 1980;2(8191):418.

    Article  PubMed  CAS  Google Scholar 

  778. Cheeseman SH, Henle W, Rubin RH, et al. Epstein-Barr virus infection in renal transplant recipients. Effects of antithymocyte globulin and interferon. Ann Intern Med. 1980;93(1):39–42.

    PubMed  CAS  Google Scholar 

  779. Martin PJ, Shulman HM, Schubach WH, et al. Fatal Epstein-Barr-virus-associated proliferation of donor B cells after treatment of acute graft-versus-host disease with a murine anti-T-cell antibody. Ann Intern Med. 1984;101(3):310–5.

    PubMed  CAS  Google Scholar 

  780. Garnier JL, Blanc-Brunat N, Vivier G, Rousset F, Touraine JL. Interleukin-10 in Epstein-Barr virus-associated post-transplant lymphomas. Clin Transplant. 1999;13(4):305–12.

    Article  PubMed  CAS  Google Scholar 

  781. Birkeland SA, Bendtzen K, Moller B, Hamilton-Dutoit S, Andersen HK. Interleukin-10 and posttransplant lymphoproliferative disorder after kidney transplantation. Transplantation. 1999;67(6):876–81.

    Article  PubMed  CAS  Google Scholar 

  782. Cen H, Williams PA, McWilliams HP, Breinig MC, Ho M, McKnight JL. Evidence for restricted Epstein-Barr virus latent gene expression and anti-EBNA antibody response in solid organ transplant recipients with posttransplant lymphoproliferative disorders. Blood. 1993;81(5):1393–403.

    PubMed  CAS  Google Scholar 

  783. Rowe DT, Rowe M, Evan GI, Wallace LE, Farrell PJ, Rickinson AB. Restricted expression of EBV latent genes and T-lymphocyte-detected membrane antigen in Burkitt’s lymphoma cells. EMBO J. 1986;5(10):2599–607.

    PubMed  CAS  Google Scholar 

  784. Gregory CD, Murray RJ, Edwards CF, Rickinson AB. Downregulation of cell adhesion molecules LFA-3 and ICAM-1 in Epstein-Barr virus-positive Burkitt’s lymphoma underlies tumor cell escape from virus-specific T cell surveillance. J Exp Med. 1988;167(6):1811–24.

    Article  PubMed  CAS  Google Scholar 

  785. Tey SK, Marlton PV, Hawley CM, Norris D, Gill DS. Post-transplant hepatosplenic T-cell lymphoma successfully treated with HyperCVAD regimen. Am J Hematol. 2008;83(4): 330–3.

    Article  PubMed  CAS  Google Scholar 

  786. Frey NV, Tsai DE. The management of posttransplant lymphoproliferative disorder. Med Oncol. 2007;24(2):125–36.

    Article  PubMed  CAS  Google Scholar 

  787. Blaes AH, Peterson BA, Bartlett N, Dunn DL, Morrison VA. Rituximab therapy is effective for posttransplant lymphoproliferative disorders after solid organ transplantation: results of a phase II trial. Cancer. 2005;104(8):1661–7.

    Article  PubMed  CAS  Google Scholar 

  788. Rees L, Thomas A, Amlot PL. Disappearance of an Epstein-Barr virus-positive post-transplant plasmacytoma with reduction of immunosuppression. Lancet. 1998;352(9130):789.

    Article  PubMed  CAS  Google Scholar 

  789. Hanto DW, Frizzera G, Gajl-Peczalska K. Acyclovir therapy of Epstein-Barr virus-induced posttransplant lymphoproliferative disease. Transplant Proc. 1985;17:89–92.

    Google Scholar 

  790. Pirsch JD, Stratta RJ, Sollinger HW, et al. Treatment of severe Epstein-Barr virus-induced lymphoproliferative syndrome with ganciclovir: two cases after solid organ transplantation. Am J Med. 1989;86(2):241–4.

    Article  PubMed  CAS  Google Scholar 

  791. Blanche S, Le Deist F, Veber F, et al. Treatment of severe Epstein-Barr virus-induced polyclonal B-lymphocyte proliferation by anti-B-cell monoclonal antibodies. Two cases after HLA-mismatched bone marrow transplantation. Ann Intern Med. 1988;108(2):199–203.

    PubMed  CAS  Google Scholar 

  792. Lazarovits AI, Tibbles LA, Grant DR, et al. Anti-B cell antibodies for the treatment of monoclonal Epstein-Barr virus-induced lymphoproliferative syndrome after multivisceral transplantation. Clin Invest Med. 1994;17(6):621–5.

    PubMed  CAS  Google Scholar 

  793. Reynaud-Gaubert M, Stoppa AM, Gaubert J, Thomas P, Fuentes P. Anti-CD20 monoclonal antibody therapy in Epstein-Barr Virus-associated B cell lymphoma following lung transplantation. J Heart Lung Transplant. 2000;19(5):492–5.

    Article  PubMed  CAS  Google Scholar 

  794. Milpied N, Vasseur B, Parquet N, et al. Humanized anti-CD20 monoclonal antibody (Rituximab) in post transplant B-lymphoproliferative disorder: a retrospective analysis on 32 patients. Ann Oncol. 2000;11 Suppl 1:113–6.

    Article  PubMed  Google Scholar 

  795. Senderowicz AM, Vitetta E, Headlee D, et al. Complete sustained response of a refractory, post-transplantation, large B-cell lymphoma to an anti-CD22 immunotoxin. Ann Intern Med. 1997;126(11):882–5.

    PubMed  CAS  Google Scholar 

  796. Li PK, Tsang K, Szeto CC, et al. Effective treatment of high-grade lymphoproliferative disorder after renal transplantation using autologous lymphocyte activated killer cell therapy. Am J Kidney Dis. 1998;32(5):813–9.

    Article  PubMed  CAS  Google Scholar 

  797. Rooney CM, Smith CA, Ng CY, et al. Use of gene-modified virus-specific T lymphocytes to control Epstein-Barr-virus-related lymphoproliferation. Lancet. 1995;345(8941):9–13.

    Article  PubMed  CAS  Google Scholar 

  798. O’Reilly RJ, Small TN, Papadopoulos E, Lucas K, Lacerda J, Koulova L. Biology and adoptive cell therapy of Epstein-Barr virus-associated lymphoproliferative disorders in recipients of marrow allografts. Immunol Rev. 1997;157:195–216.

    Article  PubMed  Google Scholar 

  799. Brenner M. Adoptive therapy of posttransplant lymphoma. Cancer J. 2000;6 Suppl 3:S259–64.

    PubMed  Google Scholar 

  800. Swinnen LJ, Mullen GM, Carr TJ, Costanzo MR, Fisher RI. Aggressive treatment for postcardiac transplant lymphoproliferation. Blood. 1995;86(9):3333–40.

    PubMed  CAS  Google Scholar 

  801. Witherspoon RP, Fisher LD, Schoch G, et al. Secondary cancers after bone marrow transplantation for leukemia or aplastic anemia. N Engl J Med. 1989;321(12):784–9.

    Article  PubMed  CAS  Google Scholar 

  802. Socie G, Henry-Amar M, Bacigalupo A, et al. Malignant tumors occurring after treatment of aplastic anemia. European Bone Marrow Transplantation-Severe Aplastic Anaemia Working Party. N Engl J Med. 1993;329(16):1152–7.

    Article  PubMed  CAS  Google Scholar 

  803. Kolb HJ, Socie G, Duell T, et al. Malignant neoplasms in long-term survivors of bone marrow transplantation. Late Effects Working Party of the European Cooperative Group for Blood and Marrow Transplantation and the European Late Effect Project Group. Ann Intern Med. 1999;131(10):738–44.

    PubMed  CAS  Google Scholar 

  804. Deeg HJ, Socie G, Schoch G, et al. Malignancies after marrow transplantation for aplastic anemia and fanconi anemia: a joint Seattle and Paris analysis of results in 700 patients. Blood. 1996;87(1):386–92.

    PubMed  CAS  Google Scholar 

  805. Ohga S, Kanaya Y, Maki H, et al. Epstein-Barr virus-associated lymphoproliferative disease after a cord blood transplant for Diamond-Blackfan anemia. Bone Marrow Transplant. 2000;25(2): 209–12.

    Article  PubMed  CAS  Google Scholar 

  806. Hale G, Waldmann H. Risks of developing Epstein-Barr virus-related lymphoproliferative disorders after T-cell-depleted marrow transplants. CAMPATH Users. Blood. 1998;91(8):3079–83.

    PubMed  CAS  Google Scholar 

  807. Traweek ST, Slovak ML, Nademanee AP, Brynes RK, Niland JC, Forman SJ. Clonal karyotypic hematopoietic cell abnormalities occurring after autologous bone marrow transplantation for Hodgkin’s disease and non-Hodgkin’s lymphoma. Blood. 1994;84(3):957–63.

    PubMed  CAS  Google Scholar 

  808. Deeg HJ, Socie G. Malignancies after hematopoietic stem cell transplantation: many questions, some answers. Blood. 1998;91(6): 1833–44.

    PubMed  CAS  Google Scholar 

  809. Bhatia S, Ramsay NK, Steinbuch M, et al. Malignant neoplasms following bone marrow transplantation. Blood. 1996;87(9): 3633–9.

    PubMed  CAS  Google Scholar 

  810. Papadopoulos EB, Ladanyi M, Emanuel D, et al. Infusions of donor leukocytes to treat Epstein-Barr virus-associated lymphoproliferative disorders after allogeneic bone marrow transplantation. N Engl J Med. 1994;330(17):1185–91.

    Article  PubMed  CAS  Google Scholar 

  811. Shearer WT, Ritz J, Finegold MJ, et al. Epstein-Barr virus-associated B-cell proliferations of diverse clonal origins after bone marrow transplantation in a 12-year-old patient with severe combined immunodeficiency. N Engl J Med. 1985;312(18):1151–9.

    Article  PubMed  CAS  Google Scholar 

  812. Schubach WH, Hackman R, Neiman PE, Miller G, Thomas ED. A monoclonal immunoblastic sarcoma in donor cells bearing Epstein-Barr virus genomes following allogeneic marrow grafting for acute lymphoblastic leukemia. Blood. 1982;60(1):180–7.

    PubMed  CAS  Google Scholar 

  813. Niederwieser DW, Appelbaum FR, Gastl G, et al. Inadvertent transmission of a donor’s acute myeloid leukemia in bone marrow transplantation for chronic myelocytic leukemia. N Engl J Med. 1990;322(25):1794–6.

    Article  PubMed  CAS  Google Scholar 

  814. Klingemann HG, Storb R, Sanders J, Deeg HJ, Appelbaum FR, Thomas ED. Acute lymphoblastic leukaemia after bone marrow transplantation for aplastic anaemia. Br J Haematol. 1986;63(1):47–50.

    Article  PubMed  CAS  Google Scholar 

  815. Browne PV, Lawler M, Humphries P, McCann SR. Donor-cell leukemia after bone marrow transplantation for severe aplastic anemia. N Engl J Med. 1991;325(10):710–3.

    Article  PubMed  CAS  Google Scholar 

  816. Gustafsson A, Levitsky V, Zou JZ, et al. Epstein-Barr virus (EBV) load in bone marrow transplant recipients at risk to develop posttransplant lymphoproliferative disease: prophylactic infusion of EBV-specific cytotoxic T cells. Blood. 2000;95(3):807–14.

    PubMed  CAS  Google Scholar 

  817. Shapiro RS, Chauvenet A, McGuire W, et al. Treatment of B-cell lymphoproliferative disorders with interferon alfa and intravenous gamma globulin. N Engl J Med. 1988;318(20):1334.

    Article  PubMed  CAS  Google Scholar 

  818. Lieberman J, Buchsbaum RJ. Using T cells to treat B-cell cancers. N Engl J Med. 1994;330(17):1231–3.

    Article  PubMed  CAS  Google Scholar 

  819. Benkerrou M, Jais JP, Leblond V, et al. Anti-B-cell monoclonal antibody treatment of severe posttransplant B-lymphoproliferative disorder: prognostic factors and long-term outcome. Blood. 1998;92(9):3137–47.

    PubMed  CAS  Google Scholar 

  820. Kuehnle I, Huls MH, Liu Z, et al. CD20 monoclonal antibody (rituximab) for therapy of Epstein-Barr virus lymphoma after hemopoietic stem-cell transplantation. Blood. 2000;95(4): 1502–5.

    PubMed  CAS  Google Scholar 

  821. Waldmann TA, Misiti J, Nelson DL, Kraemer KH. Ataxia-telangiectasis: a multisystem hereditary disease with immunodeficiency, impaired organ maturation, x-ray hypersensitivity, and a high incidence of neoplasia. Ann Intern Med. 1983;99(3):367–79.

    PubMed  CAS  Google Scholar 

  822. Spector BD, Perry 3rd GS, Kersey JH. Genetically determined immunodeficiency diseases (GDID) and malignancy: report from the immunodeficiency–cancer registry. Clin Immunol Immunopathol. 1978;11(1):12–29.

    Article  PubMed  CAS  Google Scholar 

  823. Saffran DC, Parolini O, Fitch-Hilgenberg ME, et al. Brief report: a point mutation in the SH2 domain of Bruton’s tyrosine kinase in atypical X-linked agammaglobulinemia. N Engl J Med. 1994;330(21):1488–91.

    Article  PubMed  CAS  Google Scholar 

  824. Purtilo DT, Tatsumi E, Manolov G, et al. Epstein-Barr virus as an etiological agent in the pathogenesis of lymphoproliferative and aproliferative diseases in immune deficient patients. Int Rev Exp Pathol. 1985;27:113–83.

    PubMed  CAS  Google Scholar 

  825. Gatti RA, Good RA. Occurrence of malignancy in immunodeficiency diseases. A literature review. Cancer. 1971;28(1):89–98.

    Article  PubMed  CAS  Google Scholar 

  826. Buckley RH. Assessing inheritance of agammaglobulinemia. N Engl J Med. 1994;330(21):1526–8.

    Article  PubMed  CAS  Google Scholar 

  827. Auerbach AD, Rogatko A, Schroeder-Kurth TM. International Fanconi Anemia Registry: relation of clinical symptoms to diepoxybutane sensitivity. Blood. 1989;73(2):391–6.

    PubMed  CAS  Google Scholar 

  828. Allen RC, Armitage RJ, Conley ME, et al. CD40 ligand gene defects responsible for X-linked hyper-IgM syndrome. Science. 1993;259(5097):990–3.

    Article  PubMed  CAS  Google Scholar 

  829. Spector BD, Perry 3rd GS, Good RA. Immunodeficiency diseases and malignancies. In: Twomey G, editor. The immunopathology of lymphoreticular neoplasms. New York: Plenum; 1978. p. 203–22.

    Chapter  Google Scholar 

  830. Filipovich AH, Heinitz KJ, Robison LL, Frizzera G. The immunodeficiency cancer registry. A research resource. Am J Pediatr Hematol Oncol. 1987;9(2):183–4.

    Article  PubMed  CAS  Google Scholar 

  831. Ott MM, Ott G, Klinker H, Trunk MJ, Katzenberger T, Muller-Hermelink HK. Abdominal T-cell non-Hodgkin’s lymphoma of the gamma/delta type in a patient with selective immunoglobulin A deficiency. Am J Surg Pathol. 1998;22(4):500–6.

    Article  PubMed  CAS  Google Scholar 

  832. Gottesman SR, Haas D, Ladanyi M, Amorosi EL. Peripheral T cell lymphoma in a patient with common variable immunodeficiency disease: case report and literature review. Leuk Lymphoma. 1999;32(5–6):589–95.

    PubMed  CAS  Google Scholar 

  833. Goldsby RE, Perkins SL, Virshup DM, Brothman AR, Bruggers CS. Lymphoblastic lymphoma and excessive toxicity from chemotherapy: an unusual presentation for Fanconi anemia. J Pediatr Hematol Oncol. 1999;21(3):240–3.

    Article  PubMed  CAS  Google Scholar 

  834. Sato T, Tatsuzawa O, Koike Y, et al. B-cell lymphoma associated with DiGeorge syndrome. Eur J Pediatr. 1999;158(7):609.

    Article  PubMed  CAS  Google Scholar 

  835. Seidemann K, Henze G, Beck JD, et al. Non-Hodgkin’s lymphoma in pediatric patients with chromosomal breakage syndromes (AT and NBS): experience from the BFM trials. Ann Oncol. 2000;11 Suppl 1:141–5.

    Article  PubMed  Google Scholar 

  836. Chrzanowska KH, Kleijer WJ, Krajewska-Walasek M, et al. Eleven Polish patients with microcephaly, immunodeficiency, and chromosomal instability: the Nijmegen breakage syndrome. Am J Med Genet. 1995;57(3):462–71.

    Article  PubMed  CAS  Google Scholar 

  837. Zenone T, Souquet PJ, Cunningham-Rundles C, Bernard JP. Hodgkin’s disease associated with IgA and IgG subclass deficiency. J Intern Med. 1996;240(2):99–102.

    Article  PubMed  CAS  Google Scholar 

  838. Perry 3rd GS, Spector BD, Schuman LM, et al. The Wiskott-Aldrich syndrome in the United States and Canada (1892–1979). J Pediatr. 1980;97(1):72–8.

    Article  PubMed  Google Scholar 

  839. Irsfeld H, Korholz D, Janssen G, Wahn V, Schroten H. Fatal outcome in two girls with hodgkin disease complicating ataxia-telangiectasia (Louis-Bar syndrome) despite favorable response to modified-dose chemotherapy. Med Pediatr Oncol. 2000;34(1):62–4.

    Article  PubMed  CAS  Google Scholar 

  840. Cotelingam JD, Witebsky FG, Hsu SM, Blaese RM, Jaffe ES. Malignant lymphoma in patients with the Wiskott-Aldrich syndrome. Cancer Invest. 1985;3(6):515–22.

    Article  PubMed  CAS  Google Scholar 

  841. Washington K, Stenzel TT, Buckley RH, Gottfried MR. Gastrointestinal pathology in patients with common variable immunodeficiency and X-linked agammaglobulinemia. Am J Surg Pathol. 1996;20(10):1240–52.

    Article  PubMed  CAS  Google Scholar 

  842. Snover DC, Frizzera G, Spector BD, Perry 3rd GS, Kersey JH. Wiskott-Aldrich syndrome: histopathologic findings in the lymph nodes and spleens of 15 patients. Hum Pathol. 1981;12(9): 821–31.

    Article  PubMed  CAS  Google Scholar 

  843. Taylor AM, Metcalfe JA, Oxford JM, Harnden DG. Is chromatid-type damage in ataxia telangiectasia after irradiation at G0 a consequence of defective repair? Nature. 1976;260(5550):441–3.

    Article  PubMed  CAS  Google Scholar 

  844. Taylor AM, Harnden DG, Arlett CF, et al. Ataxia telangiectasia: a human mutation with abnormal radiation sensitivity. Nature. 1975;258(5534):427–9.

    Article  PubMed  CAS  Google Scholar 

  845. Paterson MC, Smith BP, Lohman PH, Anderson AK, Fishman L. Defective excision repair of gamma-ray-damaged DNA in human (ataxia telangiectasia) fibroblasts. Nature. 1976;260(5550): 444–7.

    Article  PubMed  CAS  Google Scholar 

  846. Savitsky K, Bar-Shira A, Gilad S, et al. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science. 1995;268(5218):1749–53.

    Article  PubMed  CAS  Google Scholar 

  847. Gatti RA, Berkel I, Boder E, et al. Localization of an ataxia-telangiectasia gene to chromosome 11q22-23. Nature. 1988;336(6199):577–80.

    Article  PubMed  CAS  Google Scholar 

  848. Meyn MS. Ataxia-telangiectasia and cellular responses to DNA damage. Cancer Res. 1995;55(24):5991–6001.

    PubMed  CAS  Google Scholar 

  849. Vanasse GJ, Concannon P, Willerford DM. Regulated genomic instability and neoplasia in the lymphoid lineage. Blood. 1999;94(12):3997–4010.

    PubMed  CAS  Google Scholar 

  850. Taylor AM, Metcalfe JA, Thick J, Mak YF. Leukemia and lymphoma in ataxia telangiectasia. Blood. 1996;87(2):423–38.

    PubMed  CAS  Google Scholar 

  851. Sherrington PD, Fisch P, Taylor AM, Rabbitts TH. Clonal evolution of malignant and non-malignant T cells carrying t(14;14) and t(X;14) in patients with ataxia telangiectasia. Oncogene. 1994;9(8):2377–81.

    PubMed  CAS  Google Scholar 

  852. Johnson JP, Gatti RA, Sears TS, White RL. Inverted duplication of JH associated with chromosome 14 translocation and T-cell leukemia in ataxia-telangiectasia. Am J Hum Genet. 1986;39(6): 787–96.

    PubMed  CAS  Google Scholar 

  853. Metcalfe JA, Parkhill J, Campbell L, et al. Accelerated telomere shortening in ataxia telangiectasia. Nat Genet. 1996;13(3):350–3.

    Article  PubMed  CAS  Google Scholar 

  854. Swift M, Morrell D, Massey RB, Chase CL. Incidence of cancer in 161 families affected by ataxia-telangiectasia. N Engl J Med. 1991;325(26):1831–6.

    Article  PubMed  CAS  Google Scholar 

  855. Lipkowitz S, Stern MH, Kirsch IR. Hybrid T cell receptor genes formed by interlocus recombination in normal and ataxia-telangiectasis lymphocytes. J Exp Med. 1990;172(2):409–18.

    Article  PubMed  CAS  Google Scholar 

  856. Carbonari M, Cherchi M, Paganelli R, et al. Relative increase of T cells expressing the gamma/delta rather than the alpha/beta receptor in ataxia-telangiectasia. N Engl J Med. 1990;322(2):73–6.

    Article  PubMed  CAS  Google Scholar 

  857. Vorechovsky I, Luo L, Dyer MJ, et al. Clustering of missense mutations in the ataxia-telangiectasia gene in a sporadic T-cell leukaemia. Nat Genet. 1997;17(1):96–9.

    Article  PubMed  CAS  Google Scholar 

  858. Stilgenbauer S, Winkler D, Ott G, et al. Molecular characterization of 11q deletions points to a pathogenic role of the ATM gene in mantle cell lymphoma. Blood. 1999;94(9):3262–4.

    PubMed  CAS  Google Scholar 

  859. Schaffner C, Stilgenbauer S, Rappold GA, Dohner H, Lichter P. Somatic ATM mutations indicate a pathogenic role of ATM in B-cell chronic lymphocytic leukemia. Blood. 1999;94(2): 748–53.

    PubMed  CAS  Google Scholar 

  860. Cuneo A, Bigoni R, Rigolin GM, et al. Acquired chromosome 11q deletion involving the ataxia teleangiectasia locus in B-cell non-Hodgkin’s lymphoma: correlation with clinicobiologic features. J Clin Oncol. 2000;18(13):2607–14.

    PubMed  CAS  Google Scholar 

  861. Kaneko H, Inoue R, Yamada Y, Kasahara K, Takami T, Kondo N. Ataxia telangiectasia syndrome with B cell lymphoma. Clin Genet. 1996;49(6):331–2.

    Article  PubMed  CAS  Google Scholar 

  862. Setlow RB. Repair deficient human disorders and cancer. Nature. 1978;271(5647):713–7.

    Article  PubMed  CAS  Google Scholar 

  863. Gianneli F, Benson PF, Pawsey SA, Polani PE. Ultraviolet light sensitivity and delayed DNA-chain maturation in Bloom’s syndrome fibroblasts. Nature. 1977;265(5593):466–9.

    Article  PubMed  CAS  Google Scholar 

  864. German J. Bloom’s syndrome. Dermatol Clin. 1995;13(1):7–18.

    PubMed  CAS  Google Scholar 

  865. Straughen J, Ciocci S, Ye TZ, et al. Physical mapping of the bloom syndrome region by the identification of YAC and P1 clones from human chromosome 15 band q26.1. Genomics. 1996;35(1): 118–28.

    Article  PubMed  CAS  Google Scholar 

  866. Ellis NA, German J. Molecular genetics of Bloom’s syndrome. Hum Mol Genet 1996;5 Spec No:1457-63.

    Google Scholar 

  867. Ellis NA, Groden J, Ye TZ, et al. The Bloom’s syndrome gene product is homologous to RecQ helicases. Cell. 1995;83(4): 655–66.

    Article  PubMed  CAS  Google Scholar 

  868. Stankovic T, Kidd AM, Sutcliffe A, et al. ATM mutations and phenotypes in ataxia-telangiectasia families in the British Isles: expression of mutant ATM and the risk of leukemia, lymphoma, and breast cancer. Am J Hum Genet. 1998;62(2):334–45.

    Article  PubMed  CAS  Google Scholar 

  869. Chen J, Birkholtz GG, Lindblom P, Rubio C, Lindblom A. The role of ataxia-telangiectasia heterozygotes in familial breast cancer. Cancer Res. 1998;58(7):1376–9.

    PubMed  CAS  Google Scholar 

  870. Rawlings SL, Crooks GM, Bockstoce D, Barsky LW, Parkman R, Weinberg KI. Spontaneous apoptosis in lymphocytes from patients with Wiskott-Aldrich syndrome: correlation of accelerated cell death and attenuated bcl-2 expression. Blood. 1999;94(11): 3872–82.

    PubMed  CAS  Google Scholar 

  871. Derry JM, Ochs HD, Francke U. Isolation of a novel gene mutated in Wiskott-Aldrich syndrome. Cell. 1994;78(4):635–44.

    Article  PubMed  CAS  Google Scholar 

  872. Cory GO, MacCarthy-Morrogh L, Banin S, et al. Evidence that the Wiskott-Aldrich syndrome protein may be involved in lymphoid cell signaling pathways. J Immunol. 1996;157(9):3791–5.

    PubMed  CAS  Google Scholar 

  873. Shcherbina A, Rosen FS, Remold-O’Donnell E. WASP levels in platelets and lymphocytes of wiskott-aldrich syndrome patients correlate with cell dysfunction. J Immunol. 1999;163(11): 6314–20.

    PubMed  CAS  Google Scholar 

  874. Schwaber JF, Klein G, Ernberg I, Rosen A, Lazarus H, Rosen FS. Deficiency of Epstein-Barr virus (EBV) receptors on B lymphocytes from certain patients with common varied agammaglobulinemia. J Immunol. 1980;124(5):2191–6.

    PubMed  CAS  Google Scholar 

  875. Sullivan JL, Byron KS, Brewster FE, Baker SM, Ochs HD. X-linked lymphoproliferative syndrome. Natural history of the immunodeficiency. J Clin Invest. 1983;71(6):1765–78.

    Article  PubMed  CAS  Google Scholar 

  876. Nichols KE, Harkin DP, Levitz S, et al. Inactivating mutations in an SH2 domain-encoding gene in X-linked lymphoproliferative syndrome. Proc Natl Acad Sci USA. 1998;95(23):13765–70.

    Article  PubMed  CAS  Google Scholar 

  877. Coffey AJ, Brooksbank RA, Brandau O, et al. Host response to EBV infection in X-linked lymphoproliferative disease results from mutations in an SH2-domain encoding gene. Nat Genet. 1998;20(2):129–35.

    Article  PubMed  CAS  Google Scholar 

  878. Brandau O, Schuster V, Weiss M, et al. Epstein-Barr virus-negative boys with non-Hodgkin lymphoma are mutated in the SH2D1A gene, as are patients with X-linked lymphoproliferative disease (XLP). Hum Mol Genet. 1999;8(13):2407–13.

    Article  PubMed  CAS  Google Scholar 

  879. Purtilo DT, Grierson HL, Ochs H, Skare J. Detection of X-linked lymphoproliferative disease using molecular and immunovirologic markers. Am J Med. 1989;87(4):421–4.

    Article  PubMed  CAS  Google Scholar 

  880. Saemundsen AK, Berkel AI, Henle W, et al. Epstein-Barr-virus-carrying lymphoma in a patient with ataxia-telangiectasia. Br Med J (Clin Res Ed). 1981;282(6262):425–7.

    Article  CAS  Google Scholar 

  881. Strahm B, Rittweiler K, Duffner U, et al. Recurrent B-cell non-Hodgkin’s lymphoma in two brothers with X-linked lymphoproliferative disease without evidence for Epstein-Barr virus infection. Br J Haematol. 2000;108(2):377–82.

    Article  PubMed  CAS  Google Scholar 

  882. Saemundsen AK, Purtilo DT, Sakamoto K, et al. Documentation of Epstein-Barr virus infection in immunodeficient patients with life-threatening lymphoproliferative diseases by Epstein-Barr virus complementary RNA/DNA and viral DNA/DNA hybridization. Cancer Res. 1981;41(11 Pt 1):4237–42.

    PubMed  CAS  Google Scholar 

  883. Joncas J, Lapointe N, Gervais F, Leyritz M. Unusual prevalence of Epstein-Barr virus early antigen (EBV-EA) antibodies in ataxia telangiectasia. J Immunol. 1977;119(5):1857–9.

    PubMed  CAS  Google Scholar 

  884. Berkel AI, Henle W, Henle G, Klein G, Ersoy F, Sanal O. Epstein-Barr virus-related antibody patterns in ataxia-telangiectasia. Clin Exp Immunol. 1979;35(2):196–201.

    PubMed  CAS  Google Scholar 

  885. Yoshida K, Minegishi Y, Okawa H, et al. Epstein-Barr virus-­associated malignant lymphoma with macroamylasemia and monoclonal gammopathy in a patient with Wiskott-Aldrich ­syndrome. Pediatr Hematol Oncol. 1997;14(1):85–9.

    Article  PubMed  CAS  Google Scholar 

  886. Jensen MK, Koch-Henriksen N, Johansen P, Varming K, Christiansen CB, Knudsen F. EBV-positive primary central ­nervous system lymphomas in monozygote twins with common variable immunodeficiency and suspected multiple sclerosis. Leuk Lymphoma. 1997;28(1–2):187–93.

    PubMed  CAS  Google Scholar 

  887. Vowels MR, Tang RL, Berdoukas V, et al. Brief report: correction of X-linked lymphoproliferative disease by transplantation of cord-blood stem cells. N Engl J Med. 1993;329(22):1623–5.

    Article  PubMed  CAS  Google Scholar 

  888. Joncas JH, Russo P, Brochu P, et al. Epstein-Barr virus polymorphic B-cell lymphoma associated with leukemia and with congenital immunodeficiencies. J Clin Oncol. 1990;8(3):378–84.

    PubMed  CAS  Google Scholar 

  889. Fishleder A, Tubbs R, Hesse B, Levine H. Uniform detection of immunoglobulin-gene rearrangement in benign lymphoepithelial lesions. N Engl J Med. 1987;316(18):1118–21.

    Article  PubMed  CAS  Google Scholar 

  890. Anderson LG, Talal N. The spectrum of benign to malignant lymphoproliferation in Sjogren’s syndrome. Clin Exp Immunol. 1972;10(2):199–221.

    PubMed  CAS  Google Scholar 

  891. Sutcliffe N, Inanc M, Speight P, Isenberg D. Predictors of lymphoma development in primary Sjogren’s syndrome. Semin Arthritis Rheum. 1998;28(2):80–7.

    Article  PubMed  CAS  Google Scholar 

  892. Zulman J, Jaffe R, Talal N. Evidence that the malignant lymphoma of Sjogren’s syndrome is a monoclonal B-cell neoplasm. N Engl J Med. 1978;299(22):1215–20.

    Article  PubMed  CAS  Google Scholar 

  893. Diss TC, Peng H, Wotherspoon AC, Pan L, Speight PM, Isaacson PG. Brief report: a single neoplastic clone in sequential biopsy specimens from a patient with primary gastric-mucosa-associated lymphoid-tissue lymphoma and Sjogren’s syndrome. N Engl J Med. 1993;329(3):172–5.

    Article  PubMed  CAS  Google Scholar 

  894. Klussmann JP, Muller A, Wagner M, et al. Human herpesvirus type 8 in salivary gland tumors. J Clin Virol. 2000;16(3):239–46.

    Article  PubMed  CAS  Google Scholar 

  895. Wyburn-Mason R. S.L.E. and lymphoma. Lancet. 1979; 1(8108):156.

    Article  PubMed  CAS  Google Scholar 

  896. Lewis RB, Castor CW, Knisley RE, Bole GG. Frequency of neoplasia in systemic lupus erythematosus and rheumatoid arthritis. Arthritis Rheum. 1976;19(6):1256–60.

    Article  PubMed  CAS  Google Scholar 

  897. Symmons DP. Neoplasia in rheumatoid arthritis. J Rheumatol. 1988;15(9):1319–22.

    PubMed  CAS  Google Scholar 

  898. Isomaki HA, Hakulinen T, Joutsenlahti U. Excess risk of lymphomas, leukemia and myeloma in patients with rheumatoid arthritis. J Chronic Dis. 1978;31(11):691–6.

    Article  PubMed  CAS  Google Scholar 

  899. Gridley G, McLaughlin JK, Ekbom A, et al. Incidence of cancer among patients with rheumatoid arthritis. J Natl Cancer Inst. 1993;85(4):307–11.

    Article  PubMed  CAS  Google Scholar 

  900. Kinlen LJ. Malignancy in autoimmune diseases. J Autoimmun. 1992;5(Suppl A):363–71.

    Article  PubMed  Google Scholar 

  901. Prior P. Cancer and rheumatoid arthritis: epidemiologic considerations. Am J Med. 1985;78(1):15–21.

    Article  PubMed  CAS  Google Scholar 

  902. Porter D, Madhok R, Capell H. Non-Hodgkin’s lymphoma in rheumatoid arthritis. Ann Rheum Dis. 1991;50(5):275–6.

    Article  PubMed  CAS  Google Scholar 

  903. Gridley G, Klippel JH, Hoover RN, Fraumeni Jr JF. Incidence of cancer among men with the Felty syndrome. Ann Intern Med. 1994;120(1):35–9.

    PubMed  CAS  Google Scholar 

  904. Weir 3rd AB, Herrod HG, Lester EP, Holbert J. Diffuse large-cell lymphoma of B-cell origin and deficient T-cell function in a patient with rheumatoid arthritis. Arch Intern Med. 1989;149(7): 1688–90.

    Article  PubMed  Google Scholar 

  905. Natkunam Y, Elenitoba-Johnson KS, Kingma DW, Kamel OW. Epstein-Barr virus strain type and latent membrane protein 1 gene deletions in lymphomas in patients with rheumatic diseases. Arthritis Rheum. 1997;40(6):1152–6.

    Article  PubMed  CAS  Google Scholar 

  906. Zijlmans JM, van Rijthoven AW, Kluin PM, Jiwa NM, Dijkmans BA, Kluin-Nelemans JC. Epstein-Barr virus-associated lymphoma in a patient with rheumatoid arthritis treated with cyclosporine. N Engl J Med. 1992;326(20):1363.

    PubMed  CAS  Google Scholar 

  907. Sutcliffe N, Smith C, Speight PM, Isenberg DA. Mucosa-associated lymphoid tissue lymphomas in two patients with rheumatoid arthritis on second-line agents, and secondary Sjogren’s syndrome. Rheumatology (Oxford). 2000;39(2):185–8.

    Article  CAS  Google Scholar 

  908. Mellemkjaer L, Andersen V, Linet MS, Gridley G, Hoover R, Olsen JH. Non-Hodgkin’s lymphoma and other cancers among a cohort of patients with systemic lupus erythematosus. Arthritis Rheum. 1997;40(4):761–8.

    Article  PubMed  CAS  Google Scholar 

  909. Magro CM, Crowson AN, Harrist TJ. Atypical lymphoid infiltrates arising in cutaneous lesions of connective tissue disease. Am J Dermatopathol. 1997;19(5):446–55.

    Article  PubMed  CAS  Google Scholar 

  910. Doria R, Jekel JF, Cooper DL. Thyroid lymphoma. The case for combined modality therapy. Cancer. 1994;73(1):200–6.

    Article  PubMed  CAS  Google Scholar 

  911. Derringer GA, Thompson LD, Frommelt RA, Bijwaard KE, Heffess CS, Abbondanzo SL. Malignant lymphoma of the thyroid gland: a clinicopathologic study of 108 cases. Am J Surg Pathol. 2000;24(5):623–39.

    Article  PubMed  CAS  Google Scholar 

  912. Pedersen RK, Pedersen NT. Primary non-Hodgkin’s lymphoma of the thyroid gland: a population based study. Histopathology. 1996;28(1):25–32.

    Article  PubMed  CAS  Google Scholar 

  913. Burke JS, Butler JJ, Fuller LM. Malignant lymphomas of the thyroid: a clinical pathologic study of 35 patients including ultrastructural observations. Cancer. 1977;39(4):1587–602.

    Article  PubMed  CAS  Google Scholar 

  914. Matsuzuka F, Fukata S, Kuma K, Miyauchi A, Kakudo K, Sugawara M. Gene rearrangement of immunoglobulin as a marker of thyroid lymphoma. World J Surg. 1998;22(6):558–61.

    Article  PubMed  CAS  Google Scholar 

  915. Hsi ED, Singleton TP, Svoboda SM, Schnitzer B, Ross CW. Characterization of the lymphoid infiltrate in Hashimoto thyroiditis by immunohistochemistry and polymerase chain reaction for immunoglobulin heavy chain gene rearrangement. Am J Clin Pathol. 1998;110(3):327–33.

    PubMed  CAS  Google Scholar 

  916. Isaacson PG. The MALT lymphoma concept updated. Ann Oncol. 1995;6(4):319–20.

    PubMed  CAS  Google Scholar 

  917. Yamaguchi M, Ohno T, Kita K. gamma/delta T-cell lymphoma of the thyroid gland. N Engl J Med. 1997;336(19):1391–2.

    Article  PubMed  CAS  Google Scholar 

  918. Abdul-Rahman ZH, Gogas HJ, Tooze JA, et al. T-cell lymphoma in Hashimoto’s thyroiditis. Histopathology. 1996;29(5):455–9.

    Article  PubMed  CAS  Google Scholar 

  919. Takahashi K, Kashima K, Daa T, Yokoyama S, Nakayama I, Noguchi S. Contribution of Epstein-Barr virus to development of malignant lymphoma of the thyroid. Pathol Int. 1995;45(5): 366–74.

    Article  PubMed  CAS  Google Scholar 

  920. Mathus-Vliegen EM, Van Halteren H, Tytgat GN. Malignant lymphoma in coeliac disease: various manifestations with distinct symptomatology and prognosis? J Intern Med. 1994;236(1):43–9.

    Article  PubMed  CAS  Google Scholar 

  921. Wright DH. Enteropathy associated T cell lymphoma. Cancer Surv. 1997;30:249–61.

    PubMed  CAS  Google Scholar 

  922. Egan LJ, Walsh SV, Stevens FM, Connolly CE, Egan EL, McCarthy CF. Celiac-associated lymphoma. A single institution experience of 30 cases in the combination chemotherapy era. J Clin Gastroenterol. 1995;21(2):123–9.

    Article  PubMed  CAS  Google Scholar 

  923. Gale J, Simmonds PD, Mead GM, Sweetenham JW, Wright DH. Enteropathy-type intestinal T-cell lymphoma: clinical features and treatment of 31 patients in a single center. J Clin Oncol. 2000;18(4):795–803.

    PubMed  CAS  Google Scholar 

  924. Greenstein AJ, Mullin GE, Strauchen JA, et al. Lymphoma in inflammatory bowel disease. Cancer. 1992;69(5):1119–23.

    Article  PubMed  CAS  Google Scholar 

  925. Collins WJ. Malignant lymphoma complicating regional enteritis. Case report and review of the literature. Am J Gastroenterol. 1977;68(2):177–81.

    PubMed  CAS  Google Scholar 

  926. Rappaport H, Ramot B, Hulu N, Park JK. The pathology of so-called Mediterranean abdominal lymphoma with malabsorption. Cancer. 1972;29(6):1502–11.

    Article  PubMed  CAS  Google Scholar 

  927. Renton P, Blackshaw AJ. Colonic lymphoma complicating ulcerative colitis. Br J Surg. 1976;63(7):542–5.

    Article  PubMed  CAS  Google Scholar 

  928. Larvol L, Soule JC, Le Tourneau A. Reversible lymphoma in the setting of azathioprine therapy for Crohn’s disease. N Engl J Med. 1994;331(13):883–4.

    Article  PubMed  CAS  Google Scholar 

  929. Mariette X, Tubach F, Bagheri H, et al. Lymphoma in patients treated with anti-TNF: results of the 3-year prospective French RATIO registry. Ann Rheum Dis. 2010;69(2):400–8.

    Article  PubMed  CAS  Google Scholar 

  930. Salloum E, Cooper DL, Howe G, et al. Spontaneous regression of lymphoproliferative disorders in patients treated with methotrexate for rheumatoid arthritis and other rheumatic diseases. J Clin Oncol. 1996;14(6):1943–9.

    PubMed  CAS  Google Scholar 

  931. Kamel OW, van de Rijn M, Weiss LM, et al. Brief report: reversible lymphomas associated with Epstein-Barr virus occurring during methotrexate therapy for rheumatoid arthritis and dermatomyositis. N Engl J Med. 1993;328(18):1317–21.

    Article  PubMed  CAS  Google Scholar 

  932. Diak P, Siegel J, La Grenade L, Choi L, Lemery S, McMahon A. Tumor necrosis factor alpha blockers and malignancy in children: forty-eight cases reported to the Food and Drug Administration. Arthritis Rheum. 2010;62(8):2517–24.

    Article  PubMed  Google Scholar 

  933. Gronbaek K, Straten PT, Ralfkiaer E, et al. Somatic Fas mutations in non-Hodgkin’s lymphoma: association with extranodal disease and autoimmunity. Blood. 1998;92(9):3018–24.

    PubMed  CAS  Google Scholar 

  934. Straus SE, Sneller M, Lenardo MJ, Puck JM, Strober W. An inherited disorder of lymphocyte apoptosis: the autoimmune lymphoproliferative syndrome. Ann Intern Med. 1999;130(7):591–601.

    PubMed  CAS  Google Scholar 

  935. Rieux-Laucat F, Le Deist F, Hivroz C, et al. Mutations in Fas associated with human lymphoproliferative syndrome and autoimmunity. Science. 1995;268(5215):1347–9.

    Article  PubMed  CAS  Google Scholar 

  936. Fisher RI, Dahlberg S, Nathwani BN, Banks PM, Miller TP, Grogan TM. A clinical analysis of two indolent lymphoma entities: mantle cell lymphoma and marginal zone lymphoma (including the mucosa-associated lymphoid tissue and monocytoid B-cell subcategories): a Southwest Oncology Group study. Blood. 1995;85(4):1075–82.

    PubMed  CAS  Google Scholar 

  937. Drappa J, Vaishnaw AK, Sullivan KE, Chu JL, Elkon KB. Fas gene mutations in the Canale-Smith syndrome, an inherited lymphoproliferative disorder associated with autoimmunity. N Engl J Med. 1996;335(22):1643–9.

    Article  PubMed  CAS  Google Scholar 

  938. Ramenghi U, Bonissoni S, Migliaretti G, et al. Deficiency of the Fas apoptosis pathway without Fas gene mutations is a familial trait predisposing to development of autoimmune diseases and cancer. Blood. 2000;95(10):3176–82.

    PubMed  CAS  Google Scholar 

  939. Meyn MS. High spontaneous intrachromosomal recombination rates in ataxia-telangiectasia. Science. 1993;260(5112):1327–30.

    Article  PubMed  CAS  Google Scholar 

  940. LeBien TW. Fates of human B-cell precursors. Blood. 2000;96(1):9–23.

    PubMed  CAS  Google Scholar 

  941. van Dijken PJ, Verwijs W. Diamond-Blackfan anemia and malignancy. A case report and a review of the literature. Cancer. 1995;76(3):517–20.

    Article  PubMed  Google Scholar 

  942. Hayashi AK, Kang YS, Smith BM. Non-Hodgkin’s lymphoma in a patient with Diamond-Blackfan anemia. AJR Am J Roentgenol. 1999;173(1):117–8.

    PubMed  CAS  Google Scholar 

  943. Wiernik PH, Hu X, Ratech H, et al. Non-Hodgkin’s lymphoma in women with breast cancer. Cancer J. 2000;6:336–42.

    PubMed  CAS  Google Scholar 

  944. Etkind PR, Stewart AFR, Dorai T, et al. Clonal isolation of different strains of mouse mammary tumor virus-like DNA sequences from both the breast tumors and non-Hodgkin’s lymphomas of individual patients diagnosed with both malignancies. Clin Cancer Res. 2004;10:5656–64.

    Article  PubMed  CAS  Google Scholar 

  945. Bhadra S, Lozano MM, Dudley JP. Conversion of mouse mammary tumor virus to a lymphomagenic virus. J Virol. 2005;79: 12592–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in its entirety by the Intramural Research Program, National Institute on Aging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan L. Longo M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ershler, W.B., Dunn, B.K., Longo, D.L. (2013). Lymphoma in Other Diseases. In: Wiernik, P., Goldman, J., Dutcher, J., Kyle, R. (eds) Neoplastic Diseases of the Blood. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3764-2_49

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3764-2_49

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3763-5

  • Online ISBN: 978-1-4614-3764-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics