Skip to main content

Mover Problems

  • Chapter
  • First Online:
Thirty Essays on Geometric Graph Theory

Abstract

Leo Moser asked what is the region of largest area that can be moved around a right-angled corner in a corridor of unit width? Similarly, what is the region of largest area that can be reversed in a T junction made up of roads of unit width? Can a specific 3-dimensional object pass through a given door? Our survey aims at showing that mover problems are no less challenging even if there are no obstacles other than the objects themselves, but there are many objects to move. We survey some recent results on motion planning and reconfiguration for systems of multiple objects and for modular systems with applications in robotics, and collect some open problems coming out of this line of research.

Supported in part by NSF CAREER grant CCF-0444188 and NSF grant DMS-1001667.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Z. Abel, S.D. Kominers, Pushing hypercubes around. Preprint (2008). arXiv:0802.3414v2

    Google Scholar 

  2. M. Abellanas, S. Bereg, F. Hurtado, A.G. Olaverri, D. Rappaport, J. Tejel, Moving coins. Comput. Geom.: Theor. Appl. 34(1), 35–48 (2006)

    Google Scholar 

  3. N. Alon, J. Spencer, The Probabilistic Method, 2nd edn. (Wiley, New York, 2000)

    Book  MATH  Google Scholar 

  4. G. Aloupis, S. Collette, M. Damian, E.D. Demaine, R.Y. Flatland, S. Langerman, J. O’Rourke, S. Ramaswami, V. Sacristán Adinolfi, S. Wuhrer, Linear reconfiguration of cube-style modular robots. Comput. Geom.: Theor. Appl. 42(6–7), 652–663 (2009)

    Google Scholar 

  5. V. Auletta, A. Monti, M. Parente, P. Persiano, A linear-time algorithm for the feasibility of pebble motion in trees. Algorithmica 23, 223–245 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. R. Bar-Yehuda, One for the price of two: a unified approach for approximating covering problems. Algorithmica 27, 131–144 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. S. Bereg, A. Dumitrescu, The lifting model for reconfiguration. Discr. Comput. Geom. 35(4), 653–669 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. S. Bereg, A. Dumitrescu, J. Pach, Sliding disks in the plane. Int. J. Comput. Geom. Appl. 15(8), 373–387 (2008)

    Article  MathSciNet  Google Scholar 

  9. K. Böröczky, Über stabile Kreis- und Kugelsysteme. Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 7, 79–82 (1964) [in German]

    Google Scholar 

  10. P. Bose, V. Dujmović, F. Hurtado, P. Morin, Connectivity-preserving transformations of binary images. Comput. Vis. Image Understand. 113, 1027–1038 (2009)

    Article  Google Scholar 

  11. P. Braß, W. Moser, J. Pach, Research Problems in Discrete Geometry (Springer, New York, 2005)

    MATH  Google Scholar 

  12. N.G. de Bruijn, Aufgaben 17 and 18. Nieuw Archief voor Wiskunde 2, 67 (1954) (in Dutch)

    Google Scholar 

  13. Z. Butler, K. Kotay, D. Rus, K. Tomita, Generic decentralized control for a class of self-reconfigurable robots, in Proceedings of the 2002 IEEE International Conference on Robotics and Automation (ICRA’02), Washington, DC, May 2002, pp. 809–816

    Google Scholar 

  14. A. Casal, M. Yim, Self-reconfiguration planning for a class of modular robots, in Proceedings of the Symposium on Intelligent Systems and Advanced Manufacturing (SPIE’99), 1999, pp. 246–256

    Google Scholar 

  15. A. Castano, P. Will, A polymorphic robot team, in Robot Teams: From diversity to Polymorphism, ed. by T. Balch, L.E. Parker (A K Peters, 2002), pp. 139–160

    Google Scholar 

  16. G. Călinescu, A. Dumitrescu, J. Pach, Reconfigurations in graphs and grids. SIAM J. Discr. Math. 22(1), 124–138 (2008)

    Article  MATH  Google Scholar 

  17. B. Chazelle, T.A. Ottmann, E. Soisalon-Soininen, D. Wood, The complexity and decidability of separation, in Proceedings of the 11th International Colloquium on Automata, Languages and Programming (ICALP ’84). LNCS, vol. 172 (Springer-Verlag, New York, 1984), pp. 119–127

    Google Scholar 

  18. G. Chirikjian, A. Pamecha, I. Ebert-Uphoff, Evaluating efficiency of self-reconfiguration in a class of modular robots. J. Robot. Syst. 13(5), 317–338 (1996)

    Article  MATH  Google Scholar 

  19. H.T. Croft, K.J. Falconer, R.K. Guy, Unsolved Problems in Geometry (Springer-Verlag, New York, 1991)

    Book  MATH  Google Scholar 

  20. E.D. Demaine, R.A. Hearn, Games, puzzles and computation. A K Peters: I-IX, 1–237 (2009)

    Google Scholar 

  21. R. Diestel, Graph Theory, 2nd edn., Graduate Texts in Mathematics, vol. 173 (Springer-Verlag, New York, 2000)

    Google Scholar 

  22. G. Dudek, M. Jenkin, E. Milios, A taxonomy of multirobot systems, in Robot Teams: From diversity to Polymorphism, ed. by T. Balch, L.E. Parker (A K Peters, 2002), pp. 3–22

    Google Scholar 

  23. A. Dumitrescu, Motion planning and reconfiguration for systems of multiple objects, in Mobile Robots: Perception & Navigation, ed. by S. Kolski. Advanced Robotic Systems, Kirchengasse 43/3, A-1070 Vienna, Austria, EU, 523–542 (2007)

    Google Scholar 

  24. A. Dumitrescu, M. Jiang, On reconfiguration of disks in the plane and other related problems, in Proceedings of the 23rd International Symposium on Algorithms and Data Structures (WADS’09), Banff, Alberta, Canada, August 2009. LNCS, vol. 5664 (Springer, New York, 2009), pp. 254–265

    Google Scholar 

  25. A. Dumitrescu, J. Pach, Pushing squares around. Graphs Comb. 22(1), 37–50 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. A. Dumitrescu, I. Suzuki, M. Yamashita, Motion planning for metamorphic systems: feasibility, decidability and distributed reconfiguration. IEEE Trans. Robot. Autom. 20(3), 409–418 (2004)

    Article  Google Scholar 

  27. A. Dumitrescu, I. Suzuki, M. Yamashita, Formations for fast locomotion of metamorphic robotic systems. Int. J. Robot. Res. 23(6), 583–593 (2004)

    Article  Google Scholar 

  28. M. Erdmann, T. Lozano-Pérez, On multiple moving objects. Algorithmica 2(1–4), 477–521 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  29. L. Fejes Tóth, A. Heppes, Über stabile Körpersysteme. Compos. Math. 15, 119–126 (1963) [in German]

    Google Scholar 

  30. A. García, C. Huemer, F. Hurtado, J. Tejel, Moving rectangles, in Proceedings of the VII Jornadas de Matemática Discreta y Algorítmica, Santander, 2010

    Google Scholar 

  31. L. Guibas, F.F. Yao, On translating a set of rectangles, in Computational Geometry, ed. by F. Preparata. Advances in Computing Research, vol. 1 (JAI Press, London, 1983), pp. 61–67

    Google Scholar 

  32. Y. Hwuang, N. Ahuja, Gross motion planning—a survey. ACM Comput. Surv. 25(3), 219–291 (1992)

    Article  Google Scholar 

  33. W.W. Johnson, Notes on the 15 puzzle. I. Am. J. Math. 2, 397–399 (1879)

    Article  Google Scholar 

  34. K. Kedem, M. Sharir, An efficient motion-planning algorithm for a convex polygonal object. Discr. Comput. Geom. 5, 43–75 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  35. D. Kornhauser, G. Miller, P. Spirakis, Coordinating pebble motion on graphs, the diameter of permutation groups, and applications, in Proceedings of the 25th Symposium on Foundations of Computer Science (FOCS’84), Singer Island, FL, pp. 241–250 (1984)

    Google Scholar 

  36. L. Moser, Problem 66–11. SIAM Rev. 8, 381 (1966)

    Article  Google Scholar 

  37. S. Murata, H. Kurokawa, S. Kokaji, Self-assembling machine, in Proceedings of IEEE International Conference on Robotics and Automation (ICRA’94), San Diego, CA, USA, pp. 441–448 (1994)

    Google Scholar 

  38. A. Nguyen, L.J. Guibas, M. Yim, Controlled module density helps reconfiguration planning, in Proceedings of IEEE International Workshop on Algorithmic Foundations of Robotics (WAFR’00), Dartmouth College Hanover, NH (2000)

    Google Scholar 

  39. J. Pach, M. Sharir, Combinatorial Geometry and Its Algorithmic Applications—The Alcalá Lectures (American Mathematical Society, Providence, RI, 2009)

    MATH  Google Scholar 

  40. A. Pamecha, I. Ebert-Uphoff, G. Chirikjian, Useful metrics for modular robot motion planning. IEEE Trans. Robot. Autom. 13(4), 531–545 (1997)

    Article  Google Scholar 

  41. C. Papadimitriou, P. Raghavan, M. Sudan, H. Tamaki, Motion planning on a graph, in Proceedings of the 35th Symposium on Foundations of Computer Science (FOCS’94), pp. 511–520

    Google Scholar 

  42. D. Rappaport, Communication at the 16th Canadian Conference on Computational Geometry (CCCG’04), August 2004

    Google Scholar 

  43. D. Ratner, M. Warmuth, Finding a shortest solution for the (N ×N)-extension of the 15-puzzle is intractable. J. Symb. Comput. 10, 111–137 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  44. J. O’Rourke, Computational Geometry in C, 2nd edn. (Cambridge University Press, Cambridge, 1998)

    Book  MATH  Google Scholar 

  45. D. Rus, M. Vona, Crystalline robots: self-reconfiguration with compressible unit modules. Autonomous Robots 10, 107–124 (2001)

    Article  MATH  Google Scholar 

  46. J.T. Schwartz, M. Sharir, On the “piano mover’s” problem, I. Commun. Pure Appl. Math. 36, 345–398 (1983); II. Adv. Appl. Math. 4, 298–351 (1983); III. Int. J. Robot. Res. 2, 46–75 (1983); V. Commun. Pure Appl. Math. 37, 815–848 (1984)

    Google Scholar 

  47. W.E. Story, Notes on the 15 puzzle. II. Am. J. Math. 2, 399–404 (1879)

    Google Scholar 

  48. J.E. Walter, J.L. Welch, N.M. Amato, Distributed reconfiguration of metamorphic robot chains, in Proceedings of the 19th ACM Symposium on Principles of Distributed Computing (PODC’00), July 2000, Portland, Oregon, pp. 171–180

    Google Scholar 

  49. J.E. Walter, J.L. Welch, N.M. Amato, Reconfiguration of hexagonal metamorphic robots in two dimensions, in Sensor Fusion and Decentralized Control in Robotic Systems III, ed. by G.T. McKee, P.S. Schenker. Proceedings of the Society of Photo-Optical Instrumentation Engineers, vol. 4196, 2000, pp. 441–453

    Google Scholar 

  50. X. Wei, W. Shi-gang, J. Huai-wei, Z. Zhi-zhou, H. Lin, Strategies and methods of constructing self-organizing metamorphic robots, in Mobile Robots: New Research, ed. by J.X. Liu (Nova Science, 2005), pp. 1–38

    Google Scholar 

  51. R.M. Wilson, Graph puzzles, homotopy, and the alternating group. J. Comb. Theor. Ser. B 16, 86–96 (1974)

    Article  MATH  Google Scholar 

  52. M. Yim, Y. Zhang, J. Lamping, E. Mao, Distributed control for 3D metamorphosis. Autonomous Robots 10, 41–56 (2001)

    Article  MATH  Google Scholar 

  53. E. Yoshida, S. Murata, A. Kamimura, K. Tomita, H. Kurokawa, S. Kokaji, A motion planning method for a self-reconfigurable modular robot, in Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems, Springer, Berlin, Germany (2001)

    Google Scholar 

Download references

Acknowledgements

The author is grateful to his collaborators, S. Bereg, G. Călinescu, M. Jiang, J. Pach, I. Suzuki, and M. Yamashita, for allowing him to borrow some material from their respective joint works.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Dumitrescu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dumitrescu, A. (2013). Mover Problems. In: Pach, J. (eds) Thirty Essays on Geometric Graph Theory. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0110-0_11

Download citation

Publish with us

Policies and ethics