Skip to main content

Biology of Metastatic Liver Tumors

  • Chapter
  • First Online:
Molecular Pathology of Liver Diseases

Part of the book series: Molecular Pathology Library ((MPLB,volume 5))

  • 3636 Accesses

Abstract

The liver is the organ most frequently involved in metastases, to the point that cancer found in this organ is more likely to be a metastatic nodule than a hepatic neoplasia. Almost all cancers metastasize with some frequency to the liver, with this dissemination often being a harbinger of impending mortality. This includes not only carcinomas, with colorectal, breast, and lung cancers frequently disseminating to the liver, but also mesenchymally-derived tumors, with melanomas being prominent among liver metastases. This wide variety of involved tumors begs the question of the special attributes of this organ that cause it to be hospitable “soil” for so many different types of tumor “seeds” [1]. Speculation as to why the liver serves as such, in the absence of tested hypotheses in the literature, will be the topic of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fidler IJ. The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer. 2003;3:453–8.

    Article  PubMed  CAS  Google Scholar 

  2. Ewing J, editor. Tumors of the prostate. In: Neoplastic diseases. 2nd ed. Philadelphia: W B Saunders; 1922. p. 784–5.

    Google Scholar 

  3. Pouessel D, Gallet B, Bibeau F, et al. Liver metastases in prostate carcinoma: clinical characteristics and outcome. Br J Urol. 2006;99:807–11.

    Google Scholar 

  4. Christiansen JJ, Rajasekaran AK. Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis. Cancer Res. 2006;66(17):8319–26.

    Article  PubMed  CAS  Google Scholar 

  5. Hugo H, Ackland ML, Blick T, et al. Epithelial–mesenchymal and mesenchymal–epithelial transitions in carcinoma progression. J Cell Physiol. 2007;213:374–83.

    Article  PubMed  CAS  Google Scholar 

  6. Thompson EW, Newgreen DF. Carcinoma invasion and metastasis: a role for epithelial-mesenchymal transition. Cancer Res. 2005;65(14):5991–5.

    Article  PubMed  CAS  Google Scholar 

  7. Tarin D. The fallacy of epithelial mesenchymal transition in neoplasia. Cancer Res. 2005;65(14):5996–6000.

    Article  PubMed  CAS  Google Scholar 

  8. Kim H, Turner T, Kassis J, Souto J, Wells A. EGF receptor signaling in prostate development. Histol Histopathol. 1999;14:1175–82.

    PubMed  CAS  Google Scholar 

  9. Wang W, Goswami S, Sahai E, Wyckoff JB, Segall JE, Condeelis JS. Tumor cells caught in the act of invading: their strategy for enhanced cell motility. Trends Cell Biol. 2005;15(3):138–45.

    Article  PubMed  CAS  Google Scholar 

  10. Wolf K, Wu YI, Liu Y, et al. Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nat Cell Biol. 2007;9(8):893–904.

    Article  PubMed  CAS  Google Scholar 

  11. Friedl P, Gilmour D. Collective cell migration in morphogenesis, regeneration and cancer. Nat Rev Mol Cell Biol. 2009;10:445–57.

    Article  PubMed  CAS  Google Scholar 

  12. Goswami S, Sahai E, Wyckoff JB, et al. Macrophages promote the invasion of breast carcinoma cells via a colony-stimulating factor-1/epidermal growth factor paracrine loop. Cancer Res. 2005;65(12):5278–83.

    Article  PubMed  CAS  Google Scholar 

  13. Cristofanilli M, Budd GT, Ellis MJ, et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. NEJM. 2004;351(8):781–91.

    Article  PubMed  CAS  Google Scholar 

  14. Luzzi KJ, MacDonald IC, Schmidt EE, et al. Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. AJP. 1998;153(3):865–73.

    PubMed  CAS  Google Scholar 

  15. Mook OR, VanMarle J, Vreeling-Sindelarova H, Jonges R, Frederks WM, VanNoorden CJ. Visualization of early events in tumor formation of eGFR-transfected rat colon cancer cells in liver. Hepatology. 2003;38(2):395–404.

    Article  Google Scholar 

  16. Panorchan P, Thompson MS, Davis KJ, Tseng Y, Konstantopoulos K, Wirtz D. Single-molecule analysis of cadherin-mediated cell-cell adhesion. J Cell Sci. 2006;119:66–74.

    Article  PubMed  CAS  Google Scholar 

  17. Hulit J, Suyama K, Chung S, et al. N-cadherin signaling potentiates mammary tumor metastasis via enhanced extracellular signal-regulated kinase activation. Cancer Res. 2007;67(7):3106–16.

    Article  PubMed  CAS  Google Scholar 

  18. Koop S, Schmidt EE, MacDonald IC, et al. Independence of metastatic ability and extravasation: metastatic ras-transformed and control fibroblasts extravaste equally well. PNAS. 1996;93(20):11080–4.

    Article  PubMed  CAS  Google Scholar 

  19. Wells A, Yates C, Shepard CR. E-cadherin as an indicator of mesenchymal to epithelial reverting transitions during the metastatic seeding of disseminated carcinomas. Clin Exp Metastasis. 2008;25:621–8.

    Article  PubMed  CAS  Google Scholar 

  20. Guan-Zhen Y, Ying C, Can-Rong N, Guo-Dong W, Jian-Xin Q, Jie-Jun W. Reduced expression of metastasis-related genes (nm23, KISS1, KAI1 and p53) in lymph node and liver metastases of gastric cancer. Int J Exp Pathol. 2007;88(3):175–83.

    Article  PubMed  Google Scholar 

  21. Pavlidis N, Briasoulis E, Hainsworth J, Greco FA. Diagnostic and therapeutic management of cancer of an unknown primary. Eur J Cancer. 2003;39(14):1990–2005.

    Article  PubMed  CAS  Google Scholar 

  22. Stessels F, VandenEynden G, VanderAuwera I, et al. Breast adenocarcinoma liver metastases, in contrast to colorectal liver metastases, display a non-angiogenic growth pattern that preserves the stroma and lacks hypoxia. Br J Cancer. 2004;90(7):1429–36.

    Article  PubMed  CAS  Google Scholar 

  23. Yates CC, Shepard CR, Stolz DB, Wells A. Co-culturing human prostate carcinoma cells with hepatocytes leads to increased expression of E-cadherin. Br J Cancer. 2007;96:1246–52.

    Article  PubMed  CAS  Google Scholar 

  24. Kaihara T, Kawamata H, Imura J, et al. Redifferentiation and ZO-1 reexpression in liver-metastatized colorectal cancer: possible association with epidermal growth factor receptor-induced tyrosine phosphorylation of ZO-1. Cancer Sci. 2003;94(2):166–72.

    Article  PubMed  CAS  Google Scholar 

  25. Putz E, Witter K, Offner S, et al. Phenotypic characteristics of cell lines derived from disseminated cancer cells in bone marrow of patients with solid epithelial tumors: establishment of working models for human micrometastases. Cancer Res. 1999;59(1):241–8.

    PubMed  CAS  Google Scholar 

  26. Zucchi I, Astigiano S, Bertalot G, et al. Distinct populations of tumor-initiating cells dervied from a tumor generated by rat mammary cancer stem cells. PNAS. 2008;105(44):16940–5.

    Article  PubMed  CAS  Google Scholar 

  27. Shepard CR, Yates CC, Chao YL, Wells A. Signaling pathway activation upon re-expression of E-cadherin in invasive breast cancer cells and interaction with ectopic normal epithelial cells. 2009:submitted.

    Google Scholar 

  28. Guarino M, Rubino B, Ballabio G. The role of epithelial-mesenchymal transition in cancer pathology. Pathology. 2007;39(3):305–18.

    Article  PubMed  CAS  Google Scholar 

  29. Babu M, Wells A. Dermal-epidermal communication in wound healing. Wounds. 2001;13:183–9.

    Google Scholar 

  30. Rodenhiser DI. Epigenetic contributions to cancer metastasis. Clin Exp Metastasis. 2009;26(1):5–18.

    Article  PubMed  CAS  Google Scholar 

  31. Yang J, Mani SA, Donaher JL, et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell. 2004;117:927–39.

    Article  PubMed  CAS  Google Scholar 

  32. Onder TT, Gupta PB, Mani SA, Yang J, Lander ES, Weinberg RA. Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res. 2008;68(10):3645–54.

    Article  PubMed  CAS  Google Scholar 

  33. Jechlinger M, Sommer A, Morriggl R, et al. Autocrine PDGFR signaling promotes mammary cancer metastasis. J Clin Investig. 2006;116(6):1561–70.

    Article  PubMed  CAS  Google Scholar 

  34. Grunert S, Jechlinger M, Beug H. Diverse cellular and molecular mechanisms contribute to epithelial plasticity and metastasis. Nat Rev Mol Cell Biol. 2003;4(8):657–65.

    Article  PubMed  Google Scholar 

  35. Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet. 2002;3:415–28.

    Article  PubMed  CAS  Google Scholar 

  36. Wells A. Tumor invasion: role of growth factor-induced cell motility. Adv Cancer Res. 2000;78:31–101.

    Article  PubMed  CAS  Google Scholar 

  37. Aaronson SA. Growth factors and cancer. Science. 1991;254:1146–53.

    Article  PubMed  CAS  Google Scholar 

  38. Yates C, Wells A, Turner T. Luteinizing hormone releasing hormone (LHRH) analog reverses the cell adhesion profile of DU-145 human prostate carcinoma. Br J Cancer. 2005;92:366–75.

    PubMed  CAS  Google Scholar 

  39. Birchmeier C, Birchmeier W, Gherardi E, VandeWoude GF. Met, metastasis, motility and more. Nat Rev Mol Cell Biol. 2003;4:915–25.

    Article  PubMed  CAS  Google Scholar 

  40. Jenndahl LE, Isakson P, Baeckstrom D. c-erbB2-induced epithelial-mesenchymal transition in mammary epithelial cells is suppressed by cell-cell contact and initiated prior to E-cadherin downregulation. Int J Oncol. 2005;27(2):439–48.

    PubMed  CAS  Google Scholar 

  41. Cao Q, Yu J, Dhanasekaran SM, et al. Repression of E-cadherin by the polycomb group protein EZH2 in cancer. Oncogene. 2008;27:7274–84.

    Article  PubMed  CAS  Google Scholar 

  42. Graff JR, Gabrielson E, Fujii H, Baylin SB, Herman JG. Methylation patterns of the E-cadherin 5′CpG island are unstable and reflect the dynamic, heterogeneous loss of E-cadherin expression during metastatic progression. JBC. 2000;275(4):2727–32.

    Article  CAS  Google Scholar 

  43. Dumont N, Wilson MB, Crawford YG, Renolds PA, Sigaroudinia M, Tlsty TD. Sustained induction of epithelial to mesenchymal transition activates DNA methylation of genes silenced in basal-like breast cancers. PNAS. 2008;105(39):14867–72.

    Article  PubMed  CAS  Google Scholar 

  44. Nass SJ, Herman JG, Gabrielson E, et al. Aberrant methylation of the estrogen receptor and E-cadherin 5′ CpG islands increases with malignant progression in human breast cancer. Cancer Res. 2000;60:4346–8.

    PubMed  CAS  Google Scholar 

  45. Kallakury BV, Sheehan CE, Winn-Deen E, et al. Decreased expression of catenins (alpha and beta), p120 CTN, and E-cadherin cell adhesion proteins and E-cadherin gene promoter methylation in prostatic adenocarcinomas. Cancer. 2001;92(11):2786–95.

    Article  PubMed  CAS  Google Scholar 

  46. Albini A, Sporn MB. The tumour microenvironment as a target for chemoprevention. Nat Rev Cancer. 2007;7:139–47.

    Article  PubMed  CAS  Google Scholar 

  47. Meads MB, Gatenby RA, Dalton WS. Environment-mediated drug resistance: a major contributor to minimal residual disease. Nat Rev Cancer. 2009;9(9):665–74.

    Article  PubMed  CAS  Google Scholar 

  48. Mueller MM, Fusenig NE. Friends or foes – bipolar effects of the tumour stroma in cancer. Nat Rev Cancer. 2004;4:839–49.

    Article  PubMed  CAS  Google Scholar 

  49. Erler JT, Weaver VM. Three-dimensional context regulation of metastasis. Clin Exp Metastasis. 2009;26(1):35–49.

    Article  PubMed  Google Scholar 

  50. Wyckoff J, Wang W, Lin EY, et al. A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Res. 2004;64:7022–9.

    Article  PubMed  CAS  Google Scholar 

  51. Kim J, Mori T, Chen SL, et al. Chemokine receptor CXCR4 expression in patients with melanoma and colorectal cancer liver metastases and the association with disease outcome. Ann Surg. 2006;244(1):113–20.

    Article  PubMed  Google Scholar 

  52. Yates C, Shepard CR, Papworth G, et al. Novel three-dimensional organotypic liver bioreactor to directly visualize early events in metastatic progression. Adv Cancer Res. 2007;97:225–46.

    Article  PubMed  Google Scholar 

  53. Moustafa AS, Nicolson GL. Breast cancer metastasis-associated genes: prognostic significance and therapeutic implications. Oncol Res. 1997;9(10):505–25.

    PubMed  CAS  Google Scholar 

  54. Oestreicher N, Ramsey SD, Linden HM, et al. Gene expression profiling and breast cancer care: what are the potential benefits and policy implications. Genet Med. 2005;7(6):380–9.

    Article  PubMed  Google Scholar 

  55. Naumov GN, MacDonald IC, Weinmesiter PM, et al. Persistence of solitary mammary carcinoma cells in a secondary site: a possible contributor to dormancy. Cancer Res. 2002;62(7):2162–8.

    PubMed  CAS  Google Scholar 

  56. Kang H-G, Jenabi JM, Zhang J, et al. E-cadherin cell-cell adhesion in Ewing tumor cells mediates suppression of anoikis through activation of the ErbB4 tyrosine kinase. Cancer Res. 2007;67(7):3094–105.

    Article  PubMed  CAS  Google Scholar 

  57. Reddy P, Liu L, Ren C, et al. Formation of E-cadherin mediated cell-cell adhesion activates Akt and mitogen activated protein kinase (MAPK) via phosphatidylinositol 3 kinase and ligand-independent action of epidermal growth factor (EGF) receptor in ovarian cancer cells. Mol Endocrinol. 2005;19(10):2564–78.

    Article  PubMed  CAS  Google Scholar 

  58. Toker A, Yoeli-Lerner M. Akt signaling and cancer: surviving but not moving on. Cancer Res. 2006;66(8):3963–6.

    Article  PubMed  CAS  Google Scholar 

  59. Erin N, Wang N, Xin P, et al. Altered gene expression in breast cancer liver metastases. IJC. 2009;124:1503–16.

    CAS  Google Scholar 

  60. Mamoune A, Kassis J, Kharait S, et al. DU145 human prostate carcinoma invasiveness is modulated by urokinase receptor (uPAR) downstream of epidermal growth factor receptor (EGFR) signaling. Exp Cell Res. 2004;299:91–100.

    Article  PubMed  CAS  Google Scholar 

  61. Kopstein L, Christofori G. Metastasis: cell autonomous mechanisms versus contributions by the tumor microenvironment. Cell Mol Life Sci. 2006;63:449–68.

    Article  Google Scholar 

  62. de Jong GM, Aarts F, Hendriks T, Boerman OC, Bleichrodt RP. Animal models for liver metastases of colorectal cancer: research review of preclinical studies in rodents. J Surg Res. 2009;154:167–76.

    Article  PubMed  Google Scholar 

  63. Condeelis J, Segall JE. Intravital imaging of cell movement in tumours. Nat Rev Cancer. 2003;3(12):921–30.

    Article  PubMed  CAS  Google Scholar 

  64. Chambers AF, MacDonald IC, Schmidt EE, et al. Steps in tumor metastasis: new concepts from intravital videomicroscopy. Cancer Metastasis Rev. 1995;14:279–301.

    Article  PubMed  CAS  Google Scholar 

  65. Martin I, Wendt D, Heberer M. The role of bioreactors in tissue engineering. Trends Biotechnol. 2004;22(2):80–6.

    Article  PubMed  CAS  Google Scholar 

  66. Jasmund I, Bader A. Bioreactor developments for tissue engineering applications by the example of the bioartificial liver. Adv Biochem Eng Biotechnol. 2002;74:99–109.

    PubMed  CAS  Google Scholar 

  67. Jessup JM, Samara R, Battle P, Laguinge MM. Carcinoembryonic antigen promotes tumor cell survival in liver through an IL-10-dependent pathway. Clin Exp Metastasis. 2004;21(8):709–17.

    Article  PubMed  CAS  Google Scholar 

  68. Powers MJ, Domansky K, Capitano A, et al. A microarray perfusion bioreactor for 3D liver culture. Biotechnol Bioeng. 2002;78(3):257–69.

    Article  PubMed  CAS  Google Scholar 

  69. Sivaraman A, Leach JK, Townsend S, et al. A microscale in vitro physiological model of the liver: predictive screens for drug metabolism and enzyme induction. Curr Drug Metab. 2005;6(6):569–91.

    Article  PubMed  CAS  Google Scholar 

  70. Klein CA. The metastatic cascade. Science. 2008;321:1785–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Eric Lagasse (University of Pittsburgh) and other members of Wells (University of Pittsburgh) and Griffith (MIT) laboratory for discussions and feedback. Studies surrounding this topic have been supported by a VA Merit Award and DoD Predoctoral Fellowships from the CDMRP on Breast Cancer. The human specimen shown in Fig. 58.2 was obtained under Exemption 4e (de-identified excess pathological specimen) as determined by the University of Pittsburgh IRB, from the Cooperative Human Tissue Network. The authors have no conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Wells .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wells, A., Chao, Y., Wu, Q. (2011). Biology of Metastatic Liver Tumors. In: Monga, S. (eds) Molecular Pathology of Liver Diseases. Molecular Pathology Library, vol 5. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7107-4_58

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7107-4_58

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-7106-7

  • Online ISBN: 978-1-4419-7107-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics