Skip to main content

Construction of Xylose-Utilizing Cyanobacterial Chassis for Bioproduction Under Photomixotrophic Conditions

  • Protocol
  • First Online:
Synthetic Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2760))

Abstract

Xylose is a major component of lignocellulose and the second most abundant sugar present in nature after glucose; it, therefore, has been considered to be a promising renewable resource for the production of biofuels and chemicals. However, no natural cyanobacterial strain is known capable of utilizing xylose. Here, we take the fast-growing cyanobacteria Synechococcus elongatus UTEX 2973 as an example to develop the synthetic biology-based methodology of constructing a new xylose-utilizing cyanobacterial chassis with increased acetyl-CoA for bioproduction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Atsumi S, Higashide W, Liao JC (2009) Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nat Biotechnol 27(12):1177–1180. https://doi.org/10.1038/nbt.1586

    Article  CAS  PubMed  Google Scholar 

  2. Gao X, Gao F, Liu D et al (2016) Engineering the methylerythritol phosphate pathway in cyanobacteria for photosynthetic isoprene production from CO2. Energy Environ Sci 9(4):1400–1411. https://doi.org/10.1039/C5EE03102H

    Article  CAS  Google Scholar 

  3. Liu X, Miao R, Lindberg P et al (2019) Modular engineering for efficient photosynthetic biosynthesis of 1-butanol from CO2 in cyanobacteria. Energy Environ Sci 12(9):2765–2777. https://doi.org/10.1039/C9EE01214A

    Article  Google Scholar 

  4. Mulkidjanian AY, Koonin EV, Makarova KS et al (2006) The cyanobacterial genome core and the origin of photosynthesis. Proc Natl Acad Sci U S A 103(35):13126–13131. https://doi.org/10.1073/pnas.0605709103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang B, Pugh S, Nielsen DR et al (2014) Engineering cyanobacteria for photosynthetic production of 3-hydroxybutyrate directly from CO2. Metab Eng 21:1–1. https://doi.org/10.1016/j.ymben.2013.10.008

    Article  CAS  Google Scholar 

  6. Wang X, Liu W, Xin CP et al (2016) Enhanced limonene production in cyanobacteria reveals photosynthesis limitations. Proc Natl Acad Sci U S A 113(50):14225–14230. https://doi.org/10.1073/pnas.1613340113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang Y, Sun T, Gao X et al (2016) Biosynthesis of platform chemical 3-hydroxypropionic acid (3-HP) directly from CO2 in cyanobacterium Synechocystis sp. PCC 6803. Metab Eng 34:60–70. https://doi.org/10.1016/j.ymben.2015.10.008

    Article  CAS  PubMed  Google Scholar 

  8. Angermayr SA, Gorchs Rovira A, Hellingwerf KJ (2015) Metabolic engineering of cyanobacteria for the synthesis of commodity products. Trends Biotechnol 33(6):352–361. https://doi.org/10.1016/j.tibtech.2015.03.009

    Article  CAS  PubMed  Google Scholar 

  9. Yu H, Jia S, Dai Y (2009) Growth characteristics of the cyanobacterium Nostoc flagelliforme in photoautotrophic, mixotrophic and heterotrophic cultivation. J Appl Phycol 21(1):127–133. https://doi.org/10.1007/s10811-008-9341-5

    Article  CAS  Google Scholar 

  10. Wang Y, Li Y, Shi D et al (2002) Characteristics of mixotrophic growth of Synechocystis sp. in an enclosed photobioreactor. Biotechnol Lett 24(19):1593–1597. https://doi.org/10.1023/A:1020384029168

    Article  CAS  Google Scholar 

  11. Yoshikawa K, Hirasawa T, Ogawa K et al (2013) Integrated transcriptomic and metabolomic analysis of the central metabolism of Synechocystis sp. PCC 6803 under different trophic conditions. Biotechnol J 8(5):571–580. https://doi.org/10.1002/biot.201200235

    Article  CAS  PubMed  Google Scholar 

  12. Van Dyk J, Pletschke B (2012) A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes-factors affecting enzymes, conversion and synergy. Biotechnol Adv 30(6):1458–1480. https://doi.org/10.1016/j.biotechadv.2012.03.002

    Article  CAS  PubMed  Google Scholar 

  13. Zhao Z, Xian M, Liu M et al (2020) Biochemical routes for uptake and conversion of xylose by microorganisms. Biotechnol Biofuels 13:21. https://doi.org/10.1186/s13068-020-1662-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Davis E, Henderson P (1987) The cloning and DNA sequence of the gene xylE for xylose-proton symport in Escherichia coli K12. J Biol Chem 262(29):13928–13932. https://doi.org/10.1016/s0021-9258(18)47883-0

    Article  CAS  PubMed  Google Scholar 

  15. Jojima T, Omumasaba CA, Inui M et al (2010) Sugar transporters in efficient utilization of mixed sugar substrates: current knowledge and outlook. Appl Microbiol Biotechnol 85(3):471–480. https://doi.org/10.1007/s00253-009-2292-1

    Article  CAS  PubMed  Google Scholar 

  16. McEwen JT, Machado IM, Connor MR et al (2013) Engineering Synechococcus elongatus PCC 7942 for continuous growth under diurnal conditions. Appl Environ Microbiol 79(5):1668–1675. https://doi.org/10.1128/AEM.03326-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lee TC, Xiong W, Paddock T et al (2015) Engineered xylose utilization enhances bio-products productivity in the cyanobacterium Synechocystis sp. PCC 6803. Metab Eng 30:179–189. https://doi.org/10.1016/j.ymben.2015.06.002

    Article  CAS  PubMed  Google Scholar 

  18. Yao J, Wang J, Ju Y et al (2022) Engineering a xylose-utilizing Synechococcus elongatus UTEX 2973 chassis for 3-hydroxypropionic acid biosynthesis under photomixotrophic conditions. ACS Synth Biol 11(2):678–688. https://doi.org/10.1021/acssynbio.1c00364

    Article  CAS  PubMed  Google Scholar 

  19. Mueller TJ, Ungerer JL, Pakrasi HB et al (2017) Identifying the metabolic differences of a fast-growth phenotype in Synechococcus UTEX 2973. Sci Rep 7:41569. https://doi.org/10.1038/srep41569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ungerer J, Wendt KE, Hendry JI et al (2018) Comparative genomics reveals the molecular determinants of rapid growth of the cyanobacterium Synechococcus elongatus UTEX 2973. Proc Natl Acad Sci U S A 115(50):201814912. https://doi.org/10.1073/pnas.1814912115

    Article  CAS  Google Scholar 

  21. Yu J, Liberton M, Cliften PF et al (2015) Synechococcus elongatus UTEX 2973, a fast growing cyanobacterial chassis for biosynthesis using light and CO2. Sci Rep 5:8132. https://doi.org/10.1038/srep08132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Song K, Tan X, Liang Y et al (2016) The potential of Synechococcus elongatus UTEX 2973 for sugar feedstock production. Appl Microbiol Biotechnol 100(18):7865–7875. https://doi.org/10.1007/s00253-016-7510-z

    Article  CAS  PubMed  Google Scholar 

  23. Ducat DC, Avelar-Rivas JA, Way JC et al (2012) Rerouting carbon flux to enhance photosynthetic productivity. Appl Environ Microbiol 78(8):2660–2668. https://doi.org/10.1128/AEM.07901-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lin P-C, Zhang F, Pakrasi HB (2020) Enhanced production of sucrose in the fast-growing cyanobacterium Synechococcus elongatus UTEX 2973. Sci Rep 10(1):390. https://doi.org/10.1038/s41598-019-57319-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hr A, Jsl A, Hong I et al (2021) Improved CO2-derived polyhydroxybutyrate (PHB) production by engineering fast-growing cyanobacterium Synechococcus elongatus UTEX 2973 for potential utilization of flue gas. Bioresour Technol 327:124789. https://doi.org/10.1016/j.biortech.2021.124789

    Article  CAS  Google Scholar 

  26. Choi YN, Lee JW, Kim JW et al (2020) Acetyl-CoA-derived biofuel and biochemical production in cyanobacteria: a mini review. J Appl Phycol 5991. https://doi.org/10.1007/s10811-020-02128-x

  27. Song X, Diao J, Yao J et al (2021) Engineering a central carbon metabolism pathway to increase the intracellular acetyl-CoA pool in Synechocystis sp. PCC 6803 grown under photomixotrophic conditions. ACS Synth Biol 10(4):836–846. https://doi.org/10.1021/acssynbio.0c00629

    Article  CAS  PubMed  Google Scholar 

  28. Abernathy MH, Yu J, Ma F et al (2017) Deciphering cyanobacterial phenotypes for fast photoautotrophic growth via isotopically nonstationary metabolic flux analysis. Biotechnol Biofuels 10:273. https://doi.org/10.1186/s13068-017-0958-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kumar V, Ashok S, Park S (2013) Recent advances in biological production of 3-hydroxypropionic acid. Biotechnol Adv 31(6):945–961. https://doi.org/10.1016/j.biotechadv.2013.02.008

    Article  CAS  PubMed  Google Scholar 

  30. Li S, Sun T, Xu C et al (2018) Development and optimization of genetic toolboxes for a fast-growing cyanobacterium Synechococcus elongatus UTEX 2973. Metab Eng 48:163–174. https://doi.org/10.1016/j.ymben.2018.06.002

    Article  CAS  PubMed  Google Scholar 

  31. Cui J, Sun T, Li S et al (2020) Improved salt tolerance and metabolomics analysis of Synechococcus elongatus UTEX 2973 by overexpressing Mrp antiporters. Front Bioeng Biotechnol 8:500. https://doi.org/10.3389/fbioe.2020.00500

    Article  PubMed  PubMed Central  Google Scholar 

  32. Cui J, Good NM, Bo H et al (2016) Metabolomics revealed an association of metabolite changes and defective growth in methylobacterium extorquens AM1 overexpressing ecm during growth on methanol. PLoS One 11(4):e0154043. https://doi.org/10.1371/journal.pone.0154043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Day JG, Achilles‐Day U, Brown S et al (2007) Cultivation of algae and protozoa. Manual of environmental microbiology 79–92. https://doi.org/10.1128/9781555815882.ch7

  34. Li S, Sun T, Chen L et al (2021) Designing and constructing artificial small RNAs for gene regulation and carbon flux redirection in photosynthetic cyanobacteria. Manual of Environmental Microbiology 2290:229–252. https://doi.org/10.1007/978-1-0716-1323-8_16

  35. Berg M, Undisz K, Thiericke R et al (2001) Evaluation of liquid handling conditions in microplates. Journal of biomolecular screening 6(1):47–56. https://doi.org/10.1177/108705710100600107

  36. Battino R, Clever HL (1996) The solubility of gases in liquids. Chemical Reviews 66(4):395–463. https://doi.org/10.1021/cr60242a003

Download references

Acknowledgments

This chapter was supported by grants from the National Key Research and Development Program of China (Grant Nos. 2019YFA0904600, 2018YFA0903000, 2018YFA0903600, and 2020YFA0906800) and the National Natural Science Foundation of China (Grant Nos. 31901016, 31770035, 31972931, 32270091, and 21621004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiwen Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Song, X., Ju, Y., Chen, L., Zhang, W. (2024). Construction of Xylose-Utilizing Cyanobacterial Chassis for Bioproduction Under Photomixotrophic Conditions. In: Braman, J.C. (eds) Synthetic Biology. Methods in Molecular Biology, vol 2760. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3658-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3658-9_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3657-2

  • Online ISBN: 978-1-0716-3658-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics