Skip to main content

Direct Observation of Archaellar Motor Rotation by Single-Molecular Imaging Techniques

  • Protocol
  • First Online:
Bacterial and Archaeal Motility

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2646))

Abstract

Single-molecular techniques have characterized dynamics of molecular motors such as flagellum in bacteria and myosin, kinesin, and dynein in eukaryotes. We can apply these techniques to a motility machine of archaea, namely, the archaellum, composed of a thin helical filament and a rotary motor. Although the size of the motor hinders the characterization of its motor function under a conventional optical microscope, fluorescence-labeling techniques allow us to visualize the architecture and function of the archaellar filaments in real time. Furthermore, a tiny polystyrene bead attached to the filament enables the visualization of motor rotation through the bead rotation and quantification of biophysical properties such as speed and torque produced by the rotary motor imbedded in the cell membrane. In this chapter, I describe the details of the above biophysical method based on an optical microscope.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Veigel C, Schmidt CF (2011) Moving into the cell: single-molecule studies of molecular motors in complex environments. Nat Rev Mol Cell Biol 12(3):163–176. https://doi.org/10.1038/nrm3062

    Article  CAS  PubMed  Google Scholar 

  2. Miyata M, Robinson RC, Uyeda TQP et al (2020) Tree of motility – a proposed history of motility systems in the tree of life. Genes Cells 25(1):6–21. https://doi.org/10.1111/gtc.12737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kinosita Y, Nishizaka T (2018) Cross-kymography analysis to simultaneously quantify the function and morphology of the archaellum. Biophys Physicobiol 15:121–128. https://doi.org/10.2142/biophysico.15.0_121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Desmond E, Brochier-Armanet C, Gribaldo S (2007) Phylogenomics of the archaeal flagellum: rare horizontal gene transfer in a unique motility structure. BMC Evol Biol 7:106. https://doi.org/10.1186/1471-2148-7-106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schlesner M, Miller A, Streif S et al (2009) Identification of Archaea-specific chemotaxis proteins which interact with the flagellar apparatus. BMC Microbiol 9:56. https://doi.org/10.1186/1471-2180-9-56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Banerjee A, Tsai CL, Chaudhury P et al (2015) FlaF is a β-sandwich protein that anchors the archaellum in the archaeal cell envelope by binding the S-layer protein. Structure 23(5):863–872. https://doi.org/10.1016/j.str.2015.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tsai CL, Tripp P, Sivabalasarma S et al (2020) The structure of the periplasmic FlaG-FlaF complex and its essential role for archaellar swimming motility. Nat Microbiol 5(1):216–225. https://doi.org/10.1038/s41564-019-0622-3

    Article  CAS  PubMed  Google Scholar 

  8. Chaudhury P, Neiner T, D’Imprima E et al (2016) The nucleotide-dependent interaction of FlaH and FlaI is essential for assembly and function of the archaellum motor. Mol Microbiol 99(4):674–685. https://doi.org/10.1111/mmi.13260

    Article  CAS  PubMed  Google Scholar 

  9. Chaudhury P, van der Does C, Albers SV (2018) Characterization of the ATPase FlaI of the motor complex of the Pyrococcus furiosus archaellum and its interactions between the ATP-binding protein FlaH. PeerJ 6:e4984. https://doi.org/10.7717/peerj.4984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Reindl S, Ghosh A, Williams GJ et al (2013) Insights into FlaI functions in archaeal motor assembly and motility from structures, conformations, and genetics. Mol Cell 49(6):1069–1082. https://doi.org/10.1016/j.molcel.2013.01.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kinosita Y, Uchida N, Nakane D et al (2016) Direct observation of rotation and steps of the archaellum in the swimming halophilic archaeon Halobacterium salinarum. Nat Microbiol 1(11):16148. https://doi.org/10.1038/nmicrobiol.2016.148

    Article  CAS  PubMed  Google Scholar 

  12. Iwata S, Kinosita Y, Uchida N et al (2019) Motor torque measurement of Halobacterium salinarum archaellar suggests a general model for ATP-driven rotary motors. Commun Biol 2:199. https://doi.org/10.1038/s42003-019-0422-6

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kinosita Y, Mikami N, Li Z et al (2020) Motile ghosts of the halophilic archaeon, Haloferax volcanii. Proc Natl Acad Sci U S A 117(43):26766–26772. https://doi.org/10.1073/pnas.2009814117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kinosita Y, Ishida T, Yoshida M et al (2020) Distinct chemotactic behavior in the original Escherichia coli K-12 depending on forward-and-backward swimming, not on run-tumble movements. Sci Rep 10(1):15887. https://doi.org/10.1038/s41598-020-72429-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kinosita Y, Kikuchi Y, Mikami N et al (2018) Unforeseen swimming and gliding mode of an insect gut symbiont, Burkholderia sp. RPE64, with wrapping of the flagella around its cell body. ISME J 12(3):838–848. https://doi.org/10.1038/s41396-017-0010-z

    Article  PubMed  Google Scholar 

  16. Nishizaka T, Mizutani K, Masaike T (2007) Single-molecule observation of rotation of F1-ATPase through microbeads. Methods Mol Biol 392:171–181. https://doi.org/10.1007/978-1-59745-490-2_12

    Article  CAS  PubMed  Google Scholar 

  17. Li Z, Kinosita Y, Rodriguez-Franco M et al (2019) Positioning of the motility machinery in halophilic archaea. mBio 10:3. https://doi.org/10.1128/mBio.00377-19

    Article  CAS  Google Scholar 

  18. Kohori A, Chiwata R, Hossain MD et al (2011) Torque generation in F1-ATPase devoid of the entire amino-terminal helix of the rotor that fills half of the stator orifice. Biophys J 101(1):188–195. https://doi.org/10.1016/j.bpj.2011.05.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kinosita, Y. (2023). Direct Observation of Archaellar Motor Rotation by Single-Molecular Imaging Techniques. In: Minamino, T., Miyata, M., Namba, K. (eds) Bacterial and Archaeal Motility. Methods in Molecular Biology, vol 2646. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3060-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3060-0_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3059-4

  • Online ISBN: 978-1-0716-3060-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics