Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Moving into the cell: single-molecule studies of molecular motors in complex environments

Key Points

  • Single-molecule approaches for studying the dynamic properties of motor proteins have come of age. Recent technical developments allow us to see more details of molecular motions and of the forces that molecules generate.

  • Atomic force microscopy provides the highest available resolution, of about one nanometre, for imaging soft and dynamic motor proteins in action. Recently, significant progress has been made in imaging fragile samples and in high-speed imaging, with rates of up to 25 frames per second being achieved; for example, it is possible to image kinesin motors on top of microtubules with low forces while still being able to resolve single domains of the motor proteins.

  • Fluorescence microscopy is unbeaten in achieving molecular specificity of imaging. Progress has been rapid, especially in single-molecule fluorescence methods. Detectors, which are mostly charged coupled device cameras, are constantly getting more efficient and less noisy. Methods for restricting the sample volume to suppress background noise are becoming increasingly sophisticated. Last, but not least, chemical fluorophores, genetically encoded fluorescent proteins and fluorescent nanoparticles are becoming more versatile, bright and stable.

  • Single-molecule fluorescence experiments in cells remain challenging. Crowding and background fluorescence are difficult to avoid. High hopes are resting on newly developed bright and stable dyes, as well as on fluorescent nanoparticles, especially in the near-infrared spectral range, where cellular background fluorescence is minimal.

  • Optical trapping has been firmly established as a tool of choice when measuring steps or power strokes of motor proteins as well as forces generated by single motors. Optical trapping is being implemented in increasingly sophisticated and powerful ways. The resolution of sub-nanometre steps is possible, time resolution can be as good as microseconds, and controlled forces of piconewtons can be exerted on single molecules in well-controlled geometries.

  • It remains a challenge to apply optical tweezers in cells. Specificity of trapping, as opposed to indiscriminate trapping of various intracellular objects, is hard to achieve, and it is difficult to calibrate force and displacement measurements in cells. Promising developments include the trapping of distinct high-index cellular components, such as lipid droplets, and the use of externally introduced high-index particles, such as gold nanobeads, as well as the exploration of resonantly enhanced trapping.

Abstract

Much has been learned in the past decades about molecular force generation. Single-molecule techniques, such as atomic force microscopy, single-molecule fluorescence microscopy and optical tweezers, have been key in resolving the mechanisms behind the power strokes, 'processive' steps and forces of cytoskeletal motors. However, it remains unclear how single force generators are integrated into composite mechanical machines in cells to generate complex functions such as mitosis, locomotion, intracellular transport or mechanical sensory transduction. Using dynamic single-molecule techniques to track, manipulate and probe cytoskeletal motor proteins will be crucial in providing new insights.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cytoskeletal motor structures and functions.
Figure 2: Using AFM to study single motor proteins.
Figure 3: Single-molecule fluorescence microscopy to study motor proteins.
Figure 4: Optical tweezers to study single motor proteins.
Figure 5: Optical tweezers to study movement of dimeric motors and power strokes of single motor heads.
Figure 6: Optical tweezers used to measure force fluctuations of cells.

Similar content being viewed by others

References

  1. Howard, J. Mechanics of Motor Proteins and the Cytoskeleton (Sinauer Associates Inc., Sunderland, Massachusetts, 2001).

    Google Scholar 

  2. Hirokawa, N., Noda, Y., Tanaka, Y. & Niwa, S. Kinesin superfamily motor proteins and intracellular transport. Nature Rev. Mol. Cell Biol. 10, 682–696 (2009).

    Article  CAS  Google Scholar 

  3. Kardon, J. R. & Vale, R. D. Regulators of the cytoplasmic dynein motor. Nature Rev. Mol. Cell Biol. 10, 854–865 (2009).

    CAS  Google Scholar 

  4. Spudich, J. A. & Sivaramakrishnan, S. Myosin VI: an innovative motor that challenged the swinging lever arm hypothesis. Nature Rev. Mol. Cell Biol. 11, 128–137 (2010).

    CAS  Google Scholar 

  5. Verhey, K. J. & Hammond, J. W. Traffic control: regulation of kinesin motors. Nature Rev. Mol. Cell Biol. 10, 765–777 (2009).

    CAS  Google Scholar 

  6. Vicente-Manzanares, M., Ma, X. F., Adelstein, R. S. & Horwitz, A. R. Non-muscle myosin II takes centre stage in cell adhesion and migration. Nature Rev. Mol. Cell Biol. 10, 778–790 (2009).

    CAS  Google Scholar 

  7. Kull, F. J. & Endow, S. A. Kinesin: switch I & II and the motor mechanism. J. Cell Sci. 115, 15–23 (2002).

    CAS  PubMed  Google Scholar 

  8. Geeves, M. A. & Holmes, K. C. in Advances in Protein Chemistry Vol. 71 (Fibrous Proteins: Muscle and Molecular Motors) 161–193 (Elsevier Academic Press Inc., San Diego, 2005).

    Google Scholar 

  9. Kikkawa, M. The role of microtubules in processive kinesin movement. Trends Cell Biol. 18, 128–135 (2008).

    CAS  PubMed  Google Scholar 

  10. Rice, S. et al. A structural change in the kinesin motor protein that drives motility. Nature 402, 778–784 (1999). A classic study that provides evidence for the kinesin neck linker conformational change by using electron paramagnetic resonance, FRET, kinetics and electron microscopy.

    CAS  PubMed  Google Scholar 

  11. Rayment, I. et al. Three-dimensional structure of myosin subfragment-1: a molecular motor. Science 261, 50–58 (1993). Presented the first X-ray crystallography structure of a myosin motor domain, which strongly advanced our understanding of motor function.

    CAS  PubMed  Google Scholar 

  12. Schröder, R. R. et al. Three-dimensional atomic model of F-actin decorated with Dictyostelium myosin S1. Nature 364, 171–174 (1993).

    PubMed  Google Scholar 

  13. Dominguez, R., Freyzon, Y., Trybus, K. M. & Cohen, C. Crystal structure of a vertebrate smooth muscle myosin motor domain and its complex with the essential light chain: visualization of the pre-power stroke state. Cell 94, 559–571 (1998).

    CAS  PubMed  Google Scholar 

  14. Houdusse, A., Kalbokis, V. N., Himmel, D., Szent-Gyorgyi, A. G. & Cohen, C. Atomic structure of scallop myosin subfragment S1 complexed with MgADP: a novel conformation of the myosin head. Cell 97, 459–470 (1999).

    CAS  PubMed  Google Scholar 

  15. Burgess, S. et al. The prepower stroke conformation of myosin V. J. Cell Biol. 159, 983–991 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Walker, M. L. et al. Two-headed binding of a processive myosin to F-actin. Nature 405, 804–807 (2000).

    CAS  PubMed  Google Scholar 

  17. Sweeney, H. L. & Houdusse, A. Structural and functional insights into the myosin motor mechanism. Annu. Rev. Biophys. 39, 539–57 (2010).

    CAS  PubMed  Google Scholar 

  18. Finer, J. T., Simmons, R. M. & Spudich, J. A. Single myosin molecule mechanics-piconewton forces and nanometer steps. Nature 368, 113–119 (1994). Describes the three-bead single-molecule assay for myosin for the first time and is also the first report of myosin power strokes and single-molecule forces.

    CAS  PubMed  Google Scholar 

  19. De La Cruz, E. M. & Ostap, E. M. in Methods in Enzymology Vol. 455, (Biothermodynamics Part A) (Eds Johnson, M. L., Holt, J. M. & Ackers, G. K) 157–192 (Elsevier Academic Press Inc., San Diego, 2009).

    Google Scholar 

  20. Zeng, W. et al. Dynamics of actomyosin interactions in relation to the cross-bridge cycle. Phil. Trans. R. Soc. B 359, 1843–1855 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Marx, A., Muller, J. & Mandelkow, E. in Advances in Protein Chemistry Vol. 71 (Fibrous Proteins: Muscle and Molecular Motors) 299–344 (Elsevier Academic Press Inc., San Diego, 2005).

    Google Scholar 

  22. Sweeney, H. L. & Houdusse, A. in Annual Review of Biophysics Vol. 39 539–557 (Annual Reviews, Palo Alto, 2010).

    Google Scholar 

  23. Terrak, M., Rebowski, G., Lu, R. C., Grabarek, Z. & Dominguez, R. Structure of the light chain-binding domain of myosin V. Proc. Natl Acad. Sci. USA 102, 12718–12723 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Bosch, J. et al. Structure of the MTIP–MyoA complex, a key component of the malaria parasite invasion motor. Proc. Natl Acad. Sci. USA 103, 4852–4857 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Vinogradova, M. V., Malanina, G. G., Reddy, A. S. N. & Fletterick, R. J. Structure of the complex of a mitotic kinesin with its calcium binding regulator. Proc. Natl Acad. Sci. USA 106, 8175–8179 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Li, H. L., DeRosier, D. J., Nicholson, W. V., Nogales, E. & Downing, K. H. Microtubule structure at 8 Å Resolution. Structure 10, 1317–1328 (2002).

    CAS  PubMed  Google Scholar 

  27. Milligan, R. A., Whittaker, M. & Safer, D. Molecular structure of F-actin and location of surface binding sites. Nature 348, 217–221 (1990).

    CAS  PubMed  Google Scholar 

  28. Rayment, I. et al. Structure of the actin–myosin complex and its implications for muscle-contraction. Science 261, 58–65 (1993).

    CAS  PubMed  Google Scholar 

  29. Mandelkow, E. M., Mandelkow, E. & Milligan, R. A. Microtubule dynamics and microtubule caps: a time-resolved cryo-electron microscopy study. J. Cell Biol. 114, 977–991 (1991).

    CAS  PubMed  Google Scholar 

  30. Hirose, K., Lockhart, A., Cross, R. A. & Amos, L. A. Three-dimensional cryoelectron microscopy of dimeric kinesin and ncd motor domains on microtubules. Proc. Natl Acad. Sci. USA 93, 9539–9544 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Burgess, S. A., Walker, M. L., Sakakibara, H., Knight, P. J. & Oiwa, K. Dynein structure and power stroke. Nature 421, 715–718 (2003).

    CAS  PubMed  Google Scholar 

  32. Bodey, A. J., Kikkawa, M. & Moores, C. A. 9-Ångström structure of a microtubule-bound mitotic motor. J. Mol. Biol. 388, 218–224 (2009).

    CAS  PubMed  Google Scholar 

  33. Thirumurugan, K., Sakamoto, T., Hammer, J. A., Sellers, J. R. & Knight, P. J. The cargo-binding domain regulates structure and activity of myosin 5. Nature 442, 212–215 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu, J., Taylor, D. W., Krementsova, E. B., Trybus, K. M. & Taylor, K. A. Three-dimensional structure of the myosin V inhibited state by cryoelectron tomography. Nature 442, 208–211 (2006).

    CAS  PubMed  Google Scholar 

  35. Al-Bassam, J. et al. Distinct conformations of the kinesin Unc104 neck regulate a monomer to dimer motor transition. J. Cell Biol. 163, 743–753 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Stock, M. F. et al. Formation of the compact confomer of kinesin requires a COOH-terminal heavy chain domain and inhibits microtubule-stimulated ATPase activity. J. Biol. Chem. 274, 14617–14623 (1999).

    CAS  PubMed  Google Scholar 

  37. Dietrich, K. A. et al. The Kinesin-1 motor protein is regulated by a direct interaction of its head and tail. Proc. Natl Acad. Sci. USA 105, 8938–8943 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Lucic, V., Forster, F. & Baumeister, W. Structural studies by electron tomography: from cells to molecules. Annu. Rev. Biochem. 74, 833–865 (2005).

    CAS  PubMed  Google Scholar 

  39. Sheetz, M. P. & Spudich, J. A. Movement of myosin-coated fluorescent beads on actin cables in vitro. Nature 303, 31–35 (1983).

    CAS  PubMed  Google Scholar 

  40. Kishino, A. & Yanagida, T. Force measurements by micromanipulation of a single actin filament by glass needles. Nature 334, 74–76 (1988).

    CAS  PubMed  Google Scholar 

  41. Yanagida, T., Nakase, M., Nishiyama, K. & Oosawa, F. Direct observation of motion of single F-actin filaments in the presence of myosin. Nature 307, 58–60 (1984).

    CAS  PubMed  Google Scholar 

  42. Kron, S. J. & Spudich, J. A. Fluorescent actin-filaments move on myosin fixed to a glass surface Proc. Natl Acad. Sci. USA 83, 6272–6276 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Molloy, J. E., Burns, J. E., Kendrick-Jones, J., Tregear, R. T. & White, D. C. S. Movement and force produced by a single myosin head. Nature 378, 209–212 (1995). A careful study of power strokes of single myosin dimers, which properly takes into account thermal fluctuations and gives the most accurate estimate of power-stroke amplitude.

    CAS  PubMed  Google Scholar 

  44. Wendt, T. G. et al. Microscopic evidence for a minus-end-directed power stroke in the kinesin motor ncd. EMBO J. 21, 5969–5978 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. deCastro, M. J., Fondecave, R. M., Clarke, L. A., Schmidt, C. F. & Stewart, R. J. Working strokes by single molecules of the kinesin-related microtubule motor ncd. Nature Cell Biol. 2, 724–729 (2000).

    CAS  PubMed  Google Scholar 

  46. Endow, S. A. & Higuchi, H. A mutant of the motor protein kinesin that moves in both directions on microtubules. Nature 406, 913–916 (2000).

    CAS  PubMed  Google Scholar 

  47. Svoboda, K., Schmidt, C. F., Schnapp, B. J. & Block, S. M. Direct observation of kinesin stepping by optical trapping interferometry. Nature 365, 721–727 (1993). The first report on the steps and stall forces of single kinesin motors, which were measured by optical trapping.

    CAS  PubMed  Google Scholar 

  48. Mehta, A. D. et al. Myosin-V is a processive actin-based motor. Nature 400, 590–593 (1999).

    CAS  PubMed  Google Scholar 

  49. Hirakawa, E., Higuchi, H. & Toyoshima, Y. Y. Processive movement of single 22S dynein molecules occurs only at low ATP concentrations. Proc. Natl Acad. Sci. USA 97, 2533–2537 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Reck-Peterson, S. L. et al. Single-molecule analysis of dynein processivity and stepping behavior. Cell 126, 335–348 (2006). A landmark paper using quantum dots to perform single-molecule experiments with dimeric dynein, and showing processive stepping behaviour.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Toba, S., Watanabe, T. M., Yamaguchi-Okimoto, L., Toyoshima, Y. Y. & Higuchi, H. Overlapping hand-over-hand mechanism of single molecular motility of cytoplasmic dynein. Proc. Natl Acad. Sci. USA 103, 5741–5745 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Joo, C., Balci, H., Ishitsuka, Y., Buranachai, C. & Ha, T. Advances in single-molecule fluorescence methods for molecular biology. Annu. Rev. Biochem. 77, 51–76 (2008).

    CAS  PubMed  Google Scholar 

  53. Moffitt, J. R., Chemla, Y. R., Smith, S. B. & Bustamante, C. Recent advances in optical tweezers. Annu. Rev. Biochem. 77, 205–228 (2008).

    CAS  PubMed  Google Scholar 

  54. Greenleaf, W. J., Woodside, M. T. & Block, S. M. High-resolution, single-molecule measurements of biomolecular motion. Annu. Rev. Biophys. Biomol. Struct. 36, 171–190 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Block, S. M. Kinesin motor mechanics: binding, stepping, tracking, gating, and limping. Biophys. J. 92, 2986–2995 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Gennerich, A. & Vale, R. D. Walking the walk: how kinesin and dynein coordinate their steps. Curr. Opin. Cell Biol. 21, 59–67 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Sellers, J. R. & Veigel, C. Walking with myosin V. Curr. Opin. Cell Biol. 18, 68–73 (2006).

    CAS  PubMed  Google Scholar 

  58. Altman, D., Sweeney, H. L. & Spudich, J. A. The mechanism of myosin VI translocation an its load-induced anchoring. Cell 116, 737–749 (2004).

    CAS  PubMed  Google Scholar 

  59. Gennerich, A., Carter, A. P., Reck-Peterson, S. L. & Vale, R. D. Force-induced bidirectional stepping of cytoplasmic dynein. Cell 131, 952–965 (2007). Showed, in a single-molecule assay, that the processive myosin V motor takes a step in two phases and, further, that it needs a thermal fluctuation to reach its next binding site.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Svoboda, K. & Block, S. M. Force and velocity measured for single kinesin molecules. Cell 77, 773–784 (1994).

    CAS  PubMed  Google Scholar 

  61. Veigel, C., Wang, F., Bartoo, M. L., Sellers, J. R. & Molloy, J. E. The gated gait of the processive molecular motor, myosin V. Nature Cell Biol. 4, 59–65 (2002).

    CAS  PubMed  Google Scholar 

  62. Schnitzer, M. J. & Block, S. M. Kinesin hydrolyses one ATP per 8-nm step. Nature 388, 386–390 (1997). A landmark paper that proves, from the statistical analysis of single-molecule data, that kinesin uses one ATP molecule per 8 nm step.

    CAS  PubMed  Google Scholar 

  63. Sakamoto, T., Webb, M. R., Forgacs, E., White, H. D. & Sellers, J. R. Direct observation of the mechanochemical coupling in myosin Va during processive movement. Nature 455, 128–132 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Veigel, C. et al. The motor protein myosin-I produces its working stroke in two steps. Nature 398, 530–533 (1999).

    CAS  PubMed  Google Scholar 

  65. Uemura, S., Higuchi, H., Olivares, A. O., De La Cruz, E. M. & Ishiwata, S. Mechanochemical coupling of two substeps in a single myosin V motor. Nature Struct. Mol. Biol. 11, 877–883 (2004).

    CAS  Google Scholar 

  66. Cappello, G. et al. Myosin V stepping mechanism. Proc. Natl Acad. Sci. USA 104, 15328–15333 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Sellers, J. R. & Veigel, C. Direct observation of the myosin-Va power stroke and its reversal. Nature Struct. Mol. Biol. 17, 590–595 (2010). The first direct evidence that the myosin power stroke can be physically reversed, which has important implications for motor regulation in cells.

    CAS  Google Scholar 

  68. Veigel, C., Schmitz, S., Wang, F. & Sellers, J. R. Load-dependent kinetics of myosin-V can explain its high processivity. Nature Cell Biol. 7, 861–869 (2005).

    CAS  PubMed  Google Scholar 

  69. Veigel, C., Molloy, J. E., Schmitz, S. & Kendrick-Jones, J. Load-dependent kinetics of force production by smooth muscle myosin measured with optical tweezers. Nature Cell Biol. 5, 980–986 (2003).

    CAS  PubMed  Google Scholar 

  70. Kon, T. et al. Helix sliding in the stalk coiled coil of dynein couples ATPase and microtubule binding. Nature Struct. Mol. Biol. 16, 325–333 (2009).

    CAS  Google Scholar 

  71. Asbury, C. L., Fehr, A. N. & Block, S. M. Kinesin moves by an asymmetric hand-over-hand mechanism. Science 302, 2130–2134 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Yildiz, A. et al. Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science 300, 2061–2065 (2003).

    CAS  PubMed  Google Scholar 

  73. Yildiz, A., Tomishige, M., Vale, R. D. & Selvin, P. R. Kinesin walks hand-over-hand. Science 303, 676–678 (2004).

    CAS  PubMed  Google Scholar 

  74. Warshaw, D. M. et al. Differential labeling of myosin V heads with quantum dots allows direct visualization of hand-over-hand processivity. Biophys. J. 88, L30–L32 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Guydosh, N. R. & Block, S. M. Direct observation of the binding state of the kinesin head to the microtubule. Nature 461, 125–128 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Gebhardt, J. C. M., Clemen, A. E. M., Jaud, J. & Rief, M. Myosin-V is a mechanical ratchet. Proc. Natl Acad. Sci. USA 103, 8680–8685 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Carter, N. J. & Cross, R. A. Mechanics of the kinesin step. Nature 435, 308–312 (2005).

    CAS  PubMed  Google Scholar 

  78. Engel, A. & Gaub, H. E. Structure and mechanics of membrane proteins. Annu. Rev. Biochem. 77, 127–148 (2008).

    CAS  PubMed  Google Scholar 

  79. Bornschlögl, T., Woehlke, G. & Rief, M. Single molecule mechanics of the kinesin neck. Proc. Natl Acad. Sci. USA 106, 6992–6997 (2009).

    PubMed  PubMed Central  Google Scholar 

  80. Schaap, I. A. T., de Pablo, P. J. & Schmidt, C. F. Resolving the molecular structure of microtubules under physiological conditions with scanning force microscopy. Eur. Biophys. J. 33, 462–467 (2004).

    CAS  PubMed  Google Scholar 

  81. Schaap, I. A. T., Carrasco, C., de Pablo, P. J., MacKintosh, F. C. & Schmidt, C. F. Elastic response, buckling, and instability of microtubules under radial indentation. Biophys. J. 91, 1521–1531 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Schaap, I. A. T., Hoffmann, B., Carrasco, C., Merkel, R. & Schmidt, C. F. Tau protein binding forms a 1 nm thick layer along protofilaments without affecting the radial elasticity of microtubules. J. Struct. Biol. 158, 282–292 (2007).

    CAS  PubMed  Google Scholar 

  83. Schaap, I. A. T. et al. Cytoskeletal filaments and their associated proteins studied with atomic force microscopy. Biophys. J. (Suppl) 309A (2007).

    Google Scholar 

  84. Kodera, N., Yamamoto, D., Ishikawa, R. & Ando, T. Video imaging of walking myosin V by high-speed atomic force microscopy. Nature 468, 72–76 (2010).

    CAS  PubMed  Google Scholar 

  85. Yamashita, H. et al. Tip-sample distance control using photothermal actuation of a small cantilever for high-speed atomic force microscopy. Rev. Sci. Instr. 78, 083702 (2007).

    Google Scholar 

  86. Huang, B., Bates, M. & Zhuang, X. W. Super-resolution fluorescence microscopy. Annu. Rev. Biochem. 78, 993–1016 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Hayden, J. H. & Allen, R. D. Detection of single microtubules in living cells - particle transport can occur in both directions along the same microtubule. J. Cell Biol. 99, 1785–1793 (1984).

    CAS  PubMed  Google Scholar 

  88. Schnapp, B. J., Vale, R. D., Sheetz, M. P. & Reese, T. S. Single microtubules from squid axoplams support bidirectional movement of organelles. Cell 40, 455–462 (1985).

    CAS  PubMed  Google Scholar 

  89. Burcik, E. & Plankenhorn, B. The demonstration of bacterial flagella by means of the phase microscope. Arch. Mikrobiol. 19, 435–437 (1953).

    CAS  PubMed  Google Scholar 

  90. Horio, T. & Hotani, H. Visualization of the dynamic instability of individual microtubules by dark-field microscopy. Nature 321, 605–607 (1986).

    CAS  PubMed  Google Scholar 

  91. Stemmer, A. Individual actin-filaments visualized by DIC (Nomarski) microscopy. Biol. Bull. 183, 360–361 (1992).

    CAS  PubMed  Google Scholar 

  92. Levene, M. J. et al. Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299, 682–686 (2003).

    CAS  PubMed  Google Scholar 

  93. Woodside, M. T., García-García, C. & Block, S. M. Folding and unfolding single RNA molecules under tension. Curr. Opin. Chem. Biol. 12, 640–646 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Chang, W. S., Ha, J. W., Slaughter, L. S. & Link, S. Plasmonic nanorod absorbers as orientation sensors. Proc. Natl Acad. Sci. USA 107, 2781–2786 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Dunn, A. R. & Spudich, J. A. Dynamics of the unbound head during myosin V processive translocation. Nature Struct. Mol. Biol. 14, 246–248 (2007).

    CAS  Google Scholar 

  96. Schultz, S., Smith, D. R., Mock, J. J. & Schultz, D. A. Single-target molecule detection with nonbleaching multicolor optical immunolabels. Proc. Natl Acad. Sci. USA 97, 996–1001 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Axelrod, D., Thompson, N. L. & Burghardt, T. P. Total internal reflection fluorescent microscopy. J. Microsc. 129, 19–28 (1983).

    CAS  PubMed  Google Scholar 

  98. Molloy, J. E. & Veigel, C. Myosin motors walk the walk. Science 300, 2045–2046 (2003).

    CAS  PubMed  Google Scholar 

  99. Churchman, L. S., Okten, Z., Rock, R. S., Dawson, J. F. & Spudich, J. A. Single molecule high-resolution colocalization of Cy3 and Cy5 attached to macromolecules measures intramolecular distances through time. Proc. Natl Acad. Sci. USA 102, 1419–1423 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Nishikawa, S. et al. Switch between large hand-over-hand and small inchworm-like steps in myosin VI. Cell 142, 879–888 (2010).

    CAS  PubMed  Google Scholar 

  101. Komori, Y., Iwane, A. H. & Yanagida, T. Myosin-V makes two brownian 90° rotations per 36-nm step. Nature Struct. Mol. Biol. 14, 968–973 (2007).

    CAS  Google Scholar 

  102. Gordon, M. P., Ha, T. & Selvin, P. R. Single-molecule high-resolution imaging with photobleaching. Proc. Natl Acad. Sci. USA 101, 6462–6465 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Qu, X. H., Wu, D., Mets, L. & Scherer, N. F. Nanometer-localized multiple single-molecule fluorescence microscopy. Proc. Natl Acad. Sci. USA 101, 11298–11303 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Balci, H., Ha, T., Sweeney, H. L. & Selvin, P. R. Interhead distance measurements in myosin VI via SHRImP support a simplified hand-over-hand model. Biophys. J. 89, 413–417 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Mori, T., Vale, R. D. & Tomishige, M. How kinesin waits between steps. Nature 450, 750–754 (2007). An important study that applied single-molecule FRET to analyse the relative position of the two heads of a kinesin motor during processive movement.

    CAS  PubMed  Google Scholar 

  106. Sick, B., Hecht, B. & Novotny, L. Orientational imaging of single molecules by annular illumination. Phys. Rev. Lett. 85, 4482–4485 (2000).

    CAS  PubMed  Google Scholar 

  107. Toprak, E. et al. Defocused orientation and position imaging (DOPI) of myosin V. Proc. Natl Acad. Sci. USA 103, 6495–6499 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Sosa, H., Peterman, E. J. G., Moerner, W. E. & Goldstein, L. S. B. ADP-induced rocking of the kinesin motor domain revealed by single-molecule fluorescence polarization microscopy. Nature Struct. Biol. 8, 540–544 (2001).

    CAS  PubMed  Google Scholar 

  109. Corrie, J. E. T. et al. Dynamic measurement of myosin light-chain-domain tilt and twist in muscle contraction. Nature 400, 425–430 (1999).

    CAS  PubMed  Google Scholar 

  110. Forkey, J. N., Quinlan, M. E., Shaw, M. A., Corrie, J. E. T. & Goldman, Y. E. Three-dimensional structural dynamics of myosin V by single-molecule fluorescence polarization. Nature 422, 399–404 (2003).

    CAS  PubMed  Google Scholar 

  111. Shiroguchi, K. & Kinosita, K. Myosin V walks by lever action and Brownian motion. Science 316, 1208–1212 (2007).

    CAS  PubMed  Google Scholar 

  112. Webb, M. R., Reid, G. P., Munasinghe, V. R. N. & Corrie, J. E. T. A series of related nucleotide analogues that aids optimization of fluorescence signals in probing the mechanism of P-loop ATPases, such as actomyosin. Biochemistry 43, 14463–14471 (2004).

    CAS  PubMed  Google Scholar 

  113. Ishijima, A. et al. Simultaneous observation of individual ATPase and mechanical events by a single myosin molecule during interaction with actin. Cell 92, 161–171 (1998).

    CAS  PubMed  Google Scholar 

  114. van Dijk, M. A., Kapitein, L. C., van Mameren, J., Schmidt, C. F. & Peterman, E. J. G. Combining optical trapping and single-molecule fluorescence spectroscopy: enhanced photobleaching of fluorophores. J. Phys. Chem. B 108, 6479–6484 (2004).

    CAS  Google Scholar 

  115. Lang, M. J., Fordyce, P. M., Engh, A. M., Neuman, K. C. & Block, S. M. Simultaneous, coincident optical trapping and single-molecule fluorescence. Nature Methods 1, 133–139 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Brau, R. R., Tarsa, P. B., Ferrer, J. M., Lee, P. & Lang, M. J. Interlaced optical force-fluorescence measurements for single molecule biophysics. Biophys. J. 91, 1069–1077 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Boyer, D., Tamarat, P., Maali, A., Lounis, B. & Orrit, M. Photothermal imaging of nanometer-sized metal particles among scatterers. Science 297, 1160–1163 (2002).

    CAS  PubMed  Google Scholar 

  118. Mashanov, G. I. & Molloy, J. E. Automatic detection of single fluorophores in live cells. Biophys. J. 92, 2199–2211 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Mortensen, K. I., Churchman, L. S., Spudich, J. A. & Flyvbjerg, H. Optimized localization analysis for single-molecule tracking and super-resolution microscopy. Nature Methods 7, 377–381 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Helenius, J., Brouhard, G., Kalaidzidis, Y., Diez, S. & Howard, J. The depolymerizing kinesin MCAK uses lattice diffusion to rapidly target microtubule ends. Nature 441, 115–119 (2006). Describes a single-molecule fluorescence assay that showed that the microtubule-depolymerizing Kinesin-13 MCAK (mitotic centromere-associated kinesin; also known as KIF2C) uses 1D diffusion to reach the microtubule ends.

    CAS  PubMed  Google Scholar 

  121. Okada, Y. & Hirokawa, N. A processive single-headed motor: kinesin superfamily protein KIF1A. Science 283, 1152–1157 (1999).

    CAS  PubMed  Google Scholar 

  122. Okada, Y. & Hirokawa, N. Mechanism of the single-headed processivity: diffusional anchoring between the K-loop of kinesin and the C terminus of tubulin. Proc. Natl Acad. Sci. USA 97, 640–645 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Lu, H. L., Ali, M. Y., Bookwalter, C. S., Warshaw, D. M. & Trybus, K. M. Diffusive movement of processive Kinesin-1 on microtubules. Traffic 10, 1429–1438 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Ali, M. Y. et al. Myosin Va maneuvers through actin intersections and diffuses along microtubules. Proc. Natl Acad. Sci. USA 104, 4332–4336 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Ali, M. Y., Lu, H. L., Bookwalter, C. S., Warshaw, D. M. & Trybus, K. M. Myosin V and kinesin act as tethers to enhance each others' processivity. Proc. Natl Acad. Sci. USA 105, 4691–4696 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Varga, V., Leduc, C., Bormuth, V., Diez, S. & Howard, J. Kinesin-8 motors act cooperatively to mediate length-dependent microtubule depolymerization. Cell 138, 1174–1183 (2009).

    CAS  PubMed  Google Scholar 

  127. Kapitein, L. C. et al. Microtubule-driven multimerization recruits ase1p onto overlapping microtubules. Curr. Biol. 18, 1713–1717 (2008).

    CAS  PubMed  Google Scholar 

  128. Kapitein, L. C. et al. The bipolar mitotic kinesin Eg5 moves on both microtubules that it crosslinks. Nature 435, 114–118 (2005).

    CAS  PubMed  Google Scholar 

  129. van den Wildenberg, S. et al. The homotetrameric Kinesin-5 KLP61F preferentially crosslinks microtubules into antiparallel orientations. Curr. Biol. 18, 1860–1864 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Kwok, B. H. et al. Allosteric inhibition of Kinesin-5 modulates its processive directional motility. Nature Chem. Biol. 2, 480–485 (2006).

    CAS  Google Scholar 

  131. Lakämper, S. et al. The effect of monastrol on the processive motility of a dimeric Kinesin-5 head/Kinesin-1 stalk chimera. J. Mol. Biol. 399, 1–8 (2010).

    PubMed  Google Scholar 

  132. Kapitein, L. C. et al. Microtubule cross-linking triggers the directional motility of Kinesin-5. J. Cell Biol. 182, 421–428 (2008). Single-molecule fluorescence was used here to observe the cargo-dependent switching on and off of a bipolar mitotic kinesin motor.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Harms, G. S., Cognet, L., Lommerse, P. H. M., Blab, G. A. & Schmidt, T. Autofluorescent proteins in single-molecule research: applications to live cell imaging microscopy. Biophys. J. 80, 2396–2408 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Sako, Y. & Yanagida, T. Single-molecule visualization in cell biology. Nature Rev. Mol. Cell Biol. 4, SS1–SS5 (2003).

    Google Scholar 

  135. Mashanov, G. I., Tacon, D., Peckham, M. & Molloy, J. E. The spatial and temporal dynamics of pleckstrin homology domain binding at the plasma membrane measured by imaging single molecules in live mouse myoblasts. J. Biol. Chem. 279, 15274–15280 (2004).

    CAS  PubMed  Google Scholar 

  136. Kural, C. et al. Kinesin and dynein move a peroxisome in vivo: a tug-of-war or coordinated movement? Science 308, 1469–1472 (2005).

    CAS  PubMed  Google Scholar 

  137. Nan, X. L., Sims, P. A., Chen, P. & Xie, X. S. Observation of individual microtubule motor steps in living cells with endocytosed quantum dots. J. Phys. Chem. B 109, 24220–24224 (2005).

    CAS  PubMed  Google Scholar 

  138. Leduc, C., Ruhnow, F., Howard, J. & Diez, S. Detection of fractional steps in cargo movement by the collective operation of Kinesin-1 motors. Proc. Natl Acad. Sci. USA 104, 10847–10852 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Pierobon, P. et al. Velocity, processivity, and individual steps of single myosin V molecules in live cells. Biophys. J. 96, 4268–4275 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Nelson, S. R., Ali, M. Y., Trybus, K. M. & Warshaw, D. M. Random walk of processive, quantum dot-labeled myosin Va molecules within the actin cortex of COS-7 Cells. Biophys. J. 97, 509–518 (2009). References 139 and 140 are landmark papers reporting the single-molecule observation of quantum-dot-labelled myosin V in cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Cai, D. W., Verhey, K. J. & Meyhofer, E. Tracking single kinesin molecules in the cytoplasm of mammalian cells. Biophys. J. 92, 4137–4144 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Svoboda, K. & Block, S. M. Biological applications of optical forces. Annu. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994).

    CAS  PubMed  Google Scholar 

  143. Knight, A. E., Veigel, C., Chambers, C. & Molloy, J. E. Analysis of single-molecule mechanical recordings: application to acto-myosin interactions. Prog. Biophys. Mol. Biol. 77, 45–72 (2001).

    CAS  PubMed  Google Scholar 

  144. Molloy, J. E. & Padgett, M. J. Lights, action: optical tweezers. Contemp. Phys. 43, 241–258 (2002).

    CAS  Google Scholar 

  145. Simmons, R. M., Finer, J. T., Chu, S. & Spudich, J. A. Quantitative measurements of force and displacement using an optical trap. Biophys. J. 70, 1813–1822 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Dupuis, D. E., Guilford, W. H., Wu, J. & Warshaw, D. M. Actin filament mechanics in the laser trap. J. Muscle Res. Cell Motil. 18, 17–30 (1997).

    CAS  PubMed  Google Scholar 

  147. Mehta, A. D., Finer, J. T. & Spudich, J. A. Detection of single-molecule interactions using correlated thermal diffusion. Proc. Natl Acad. Sci. USA 94, 7927–7931 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. van Mameren, J., Vermeulen, K. C., Gittes, F. & Schmidt, C. F. Leveraging single protein polymers to measure flexural rigidity. J. Phys. Chem. B 113, 3837–3844 (2009).

    CAS  PubMed  Google Scholar 

  149. Veigel, C., Bartoo, M. L., White, D. C. S., Sparrow, J. C. & Molloy, J. E. The stiffness of rabbit skeletal actomyosin cross-bridges determined with an optical tweezers transducer. Biophys. J. 75, 1424–1438 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Steffen, W., Smith, D., Simmons, R. & Sleep, J. Mapping the actin filament with myosin. Proc. Natl Acad. Sci. USA 98, 14949–14954 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Takagi, Y., Homsher, E. E., Goldman, Y. E. & Shuman, H. Force generation in single conventional actomyosin complexes under high dynamic load. Biophys. J. 90, 1295–1307 (2006).

    CAS  PubMed  Google Scholar 

  152. Visscher, K., Brakenhoff, G. J. & Krol, J. J. Micromanipulation by multiple optical traps created by a single fast scanning trap integrated with the bilateral confocal scanning laser microscope. Cytometry 14, 105–114 (1993).

    CAS  PubMed  Google Scholar 

  153. Valentine, M. T. et al. Precision steering of an optical trap by electro-optic deflection. Opt. Lett. 33, 599–601 (2008).

    PubMed  PubMed Central  Google Scholar 

  154. Visscher, K., Schnitzer, M. J. & Block, S. M. Single kinesin molecules studied with a molecular force clamp. Nature 400, 184–189 (1999). The application of a single-molecule force clamp in an optical trap assay made it possible for these authors to study the force-dependence of the kinesin cycle with unprecedented accuracy.

    CAS  PubMed  Google Scholar 

  155. Valentine, M. T., Fordyce, P. M., Krzysiak, T. C., Gilbert, S. P. & Block, S. M. Individual dimers of the mitotic kinesin motor Eg5 step processively and support substantial loads in vitro. Nature Cell Biol. 8, 470–476 (2006).

    CAS  PubMed  Google Scholar 

  156. Block, S. M., Asbury, C. L., Shaevitz, J. W. & Lang, M. J. Probing the kinesin reaction cycle with a 2D optical force clamp. Proc. Natl Acad. Sci. USA 100, 2351–2356 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Rief, M. et al. Myosin-V stepping kinetics: a molecular model for processivity. Proc. Natl Acad. Sci. USA 97, 9482–9486 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Wang, M. D. et al. Force and velocity measured for single molecules of RNA polymerase. Science 282, 902–907 (1998).

    CAS  PubMed  Google Scholar 

  159. Greenleaf, W. J., Woodside, M. T., Abbondanzieri, E. A. & Block, S. M. Passive all-optical force clamp for high-resolution laser trapping. Phys. Rev. Lett. 95, 208102 (2005).

    PubMed  PubMed Central  Google Scholar 

  160. Abbondanzieri, E. A., Greenleaf, W. J., Shaevitz, J. W., Landick, R. & Block, S. M. Direct observation of base-pair stepping by RNA polymerase. Nature 438, 460–465 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Greenleaf, W. J., Frieda, K. L., Foster, D. A. N., Woodside, M. T. & Block, S. M. Direct observation of hierarchical folding in single riboswitch aptamers. Science 319, 630–633 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Woodside, M. T. et al. Direct measurement of the full, sequence-dependent folding landscape of a nucleic acid. Science 314, 1001–1004 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Gittes, F. & Schmidt, C. F. Thermal noise limitations on micromechanical experiments. Eur. Biophys. J. 27, 75–81 (1998).

    CAS  Google Scholar 

  164. Gittes, F. & Schmidt, C. F. in Methods in Cell Biology, Vol. 55 (Laser Tweezers in Cell Biology) (Ed. M. P. Sheetz) 129–156 (Academic Press Inc., San Diego, 1998). A basic introduction to the analysis of single-molecule optical-trap data and a discussion of relevant noise sources.

    Google Scholar 

  165. Smith, D. A., Steffen, W., Simmons, R. M. & Sleep, J. Hidden-Markov methods for the analysis of single-molecule actomyosin displacement data: the variance-Hidden-Markov method. Biophys. J. 81, 2795–2816 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Capitanio, M. et al. Two independent mechanical events in the interaction cycle of skeletal muscle myosin with actin. Proc. Natl Acad. Sci. USA 103, 87–92 (2006).

    CAS  PubMed  Google Scholar 

  167. Lewalle, A., Steffen, W., Stevenson, O., Ouyang, Z. Q. & Sleep, J. Single-molecule measurement of the stiffness of the rigor myosin head. Biophys. J. 94, 2160–2169 (2008).

    CAS  PubMed  Google Scholar 

  168. Lister, I. et al. A monomeric myosin VI with a large working stroke. EMBO J. 23, 1729–1738 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Laakso, J. M., Lewis, J. H., Shuman, H. & Ostap, E. M. Myosin I can act as a molecular force sensor. Science 321, 133–136 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Gebhardt, J. C. M., Okten, Z. & Rief, M. The lever arm effects a mechanical asymmetry of the myosin-V–actin bond. Biophys. J. 98, 277–281 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Oguchi, Y. et al. Robust processivity of myosin V under off-axis loads. Nature Chem. Biol. 6, 300–305 (2010).

    CAS  Google Scholar 

  172. Uemura, S. & Ishiwata, S. Loading direction regulates the affinity of ADP for kinesin. Nature Struct. Biol. 10, 308–311 (2003).

    CAS  PubMed  Google Scholar 

  173. Ashkin, A., Schutze, K., Dziedzic, J. M., Euteneuer, U. & Schliwa, M. Force generation of organelle transport measured in vivo by an infrared laser trap. Nature 348, 346–348 (1990).

    CAS  PubMed  Google Scholar 

  174. Welte, M. A., Gross, S. P., Postner, M., Block, S. M. & Wieschaus, E. F. Developmental regulation of vesicle transport in Drosophila embryos: forces and kinetics. Cell 92, 547–557 (1998).

    CAS  PubMed  Google Scholar 

  175. Shubeita, G. T. et al. Consequences of motor copy number on the intracellular transport of Kinesin-1-driven lipid droplets. Cell 135, 1098–1107 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Agayan, R. R., Gittes, F., Kopelman, R. & Schmidt, C. F. Optical trapping near resonance absorption. Appl. Opt. 41, 2318–2327 (2002).

    CAS  PubMed  Google Scholar 

  177. Laib, J. A., Marin, J. A., Bloodgood, R. A. & Guilford, W. H. The reciprocal coordination and mechanics of molecular motors in living cells. Proc. Natl Acad. Sci. USA 106, 3190–3195 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Mizuno, D., Bacabac, R., Tardin, C., Head, D. & Schmidt, C. F. High-resolution probing of cellular force transmission. Phys. Rev. Lett. 102, 168102 (2009).

    PubMed  Google Scholar 

  179. Mizuno, D., Tardin, C., Schmidt, C. F. & MacKintosh, F. C. Nonequilibrium mechanics of active cytoskeletal networks. Science 315, 370–373 (2007).

    CAS  PubMed  Google Scholar 

  180. Bobroff, N. Position measurement with a resolution and noise-limited instrument. Rev. Sci. Instr. 57, 1152–1157 (1986).

    Google Scholar 

  181. Thompson, R. E., Larson, D. R. & Webb, W. W. Precise nanometer localization analysis for individual fluorescent probes. Biophys. J. 82, 2775–2783 (2002). A fundamental discussion of attainable accuracy in localizing single fluorescent molecules in a microscope.

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Dillingham, M. S. & Wallace, M. I. Protein modification for single molecule fluorescence microscopy. Org. Biomol. Chem. 6, 3031–3037 (2008).

    CAS  PubMed  Google Scholar 

  183. Fu, C. C. et al. Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. Proc. Natl Acad. Sci. USA 104, 727–732 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Tisler, J. et al. Fluorescence and spin properties of defects in single digit nanodiamonds. ACS Nano 3, 1959–1965 (2009).

    CAS  PubMed  Google Scholar 

  185. Bachilo, S. M. et al. Structure-assigned optical spectra of single-walled carbon nanotubes. Science 298, 2361–2366 (2002).

    CAS  PubMed  Google Scholar 

  186. Vale, R. D. & Milligan, R. A. The way things move: looking under the hood of molecular motor proteins. Science 288, 88–95 (2000).

    CAS  PubMed  Google Scholar 

  187. Ando, T. et al. High-speed atomic force microscopy for capturing dynamic behavior of protein molecules at work. e-J. Surf. Sci. Nanotech. 3, 384–392 (2005).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank the Medical Research Council, UK (C.V.) and the Deutsche Forschungsgemeinschaft (Center for Molecular Physiology of the Brain, (CMPB)) (C.F.S.) for financial support.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Claudia Veigel's homepage

Christoph F. Schmidt's homepage

Glossary

Förster resonance energy transfer

Non-radiative energy transfer from an excited donor fluorophore to an acceptor fluorophore in the immediate vicinity can be used to measure nanometre distances owing to the strong distance-dependence of the effect.

Piezo actuator

A piezoelectric crystal driven by a DC voltage to perform length changes in the Ångström to micrometre range.

Quantum dot

A nanometre-sized fluorescent semiconductor particle, the fluorescent properties of which depend on its shape and size.

Total internal reflection fluorescence

Excitation of fluorescence by the evanescent light field of a laser beam that is totally internally reflected at an interface between a medium of higher and one of lower index of refraction.

Point spread function

The point spread function characterizes the diffractive properties of an imaging system and is equal to the image of a point source of light through this imaging system.

Epi-illumination

Microscope illumination through the objective, commonly used for fluorescence excitation.

Back-focal-plane interferometry

Laser interferometric detection of the displacement of optically trapped particles from the focus; uses imaging of the back focal plane of the microscope condenser, typically onto a quadrant photodiode.

Blinking

The switching of single fluorophores between bright and dark states, which hinders their use in time-resolved experiments.

Polarization interference contrast

A technique that is similar to differential interference contrast and that allows the sensitive detection of slight optical phase changes, induced by local heating owing to an absorbing nanoparticle, by interference with a slightly offset reference beam.

Kymograph

A graphical representation of movement along one axis over time, assembled by laterally adjoining linear slices out of consecutive video frames.

Gaussian bell curve

The most common probability density function of a random variable, defined by

where μ is the mean and σ2 is the variance of the distribution.

Isometric force

The force that is generated by a muscle contracting without changing length.

Trap force

The force that is imposed by optical tweezers on a trapped particle.

Viscous drag

The frictional force on objects moving in a viscous fluid. The viscous drag force is proportional to the velocity of the moving object. For small spherical objects moving slowly through a viscous fluid (that is, at a low Reynolds number) the viscous drag coefficient is β = 6πηr, where r is the Stokes radius of the particle and η the viscosity of the fluid.

Boltzmann constant

This constant relates the average thermal energy of a microscopic particle to temperature.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veigel, C., Schmidt, C. Moving into the cell: single-molecule studies of molecular motors in complex environments. Nat Rev Mol Cell Biol 12, 163–176 (2011). https://doi.org/10.1038/nrm3062

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3062

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing