Skip to main content

Fetal Thymic Organ Culture and Negative Selection

  • Protocol
  • First Online:
T-Cell Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2580))

  • 1658 Accesses

Abstract

Negative selection removes potentially harmful T cell precursors from the conventional T cell pool. This process can involve the induction of apoptosis, anergy, receptor editing, or deviation into a regulatory T cell lineage. As such, this process is essential for the health of an organism through its contribution to central and peripheral tolerance. While a great deal is known about the process, the precise mechanisms that regulate these various forms of negative selection are not clear. Numerous models exist with the potential to address these questions in vitro and in vivo. This chapter describes fetal thymic organ culture methods designed to analyze the signals that determine these unique cell fates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Palmer E (2003) Negative selection--clearing out the bad apples from the T-cell repertoire. Nat Rev Immunol 3:383–391

    Article  CAS  PubMed  Google Scholar 

  2. Starr TK, Jameson SC, Hogquist KA (2003) Positive and negative selection of T cells. Annu Rev Immunol 21:139–176

    Article  CAS  PubMed  Google Scholar 

  3. Stritesky GL, Jameson SC, Hogquist KA (2011) Selection of self-reactive T cells in the thymus. Annu Rev Immunol 30:95

    Article  PubMed  PubMed Central  Google Scholar 

  4. Mariathasan S, Ho SS, Zakarian A, Ohashi PS (2000) Degree of ERK activation influences both positive and negative thymocyte selection. Eur J Immunol 30:1060–1068

    Article  CAS  PubMed  Google Scholar 

  5. Yu Q, Park J-H, Doan LL, Erman B, Feigenbaum L, Singer A (2006) Cytokine signal transduction is suppressed in preselection double-positive thymocytes and restored by positive selection. J Exp Med 203:165–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Baldwin TA, Hogquist KA, Jameson SC (2004) The fourth way? Harnessing aggressive tendencies in the thymus. J Immunol 173:6515–6520

    Article  CAS  PubMed  Google Scholar 

  7. Kurd N, Robey EA (2014) Unconventional intraepithelial gut T cells: the TCR says it all. Immunity 41:167–168

    Article  CAS  PubMed  Google Scholar 

  8. Kurd NS, Hoover A, Yoon J, Weist BM, Lutes L, Chan SW, Robey EA (2021) Factors that influence the thymic selection of CD8alphaalpha intraepithelial lymphocytes. Mucosal Immunol 14:68–79

    Article  CAS  PubMed  Google Scholar 

  9. Miller JF (1959) Role of the thymus in murine leukaemia. Nature 183:1069

    Article  CAS  PubMed  Google Scholar 

  10. Miller JF (1961a) Immunological function of the thymus. Lancet 2:748–749

    Article  CAS  PubMed  Google Scholar 

  11. Miller JF (1961b) Analysis of the thymus influence in leukaemogenesis. Nature 191:248–249

    Article  CAS  PubMed  Google Scholar 

  12. Petrie HT, Zuniga-Pflucker JC (2007) Zoned out: functional mapping of stromal signaling microenvironments in the thymus. Annu Rev Immunol 25:649–679

    Article  CAS  PubMed  Google Scholar 

  13. Davey GM, Schober SL, Endrizzi BT, Dutcher AK, Jameson SC, Hogquist KA (1998) Preselection thymocytes are more sensitive to T cell receptor stimulation than mature T cells. J Exp Med 188:1867–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lucas B, Stefanová I, Yasutomo K, Dautigny N, Germain RN (1999) Divergent changes in the sensitivity of maturing T cells to structurally related ligands underlies formation of a useful T cell repertoire. Immunity 10:367–376

    Article  CAS  PubMed  Google Scholar 

  15. Daniels MA, Devine L, Miller JD, Moser JM, Lukacher AE, Altman JD, Kavathas P, Hogquist KA, Jameson SC (2001) CD8 binding to MHC class I molecules is influenced by T cell maturation and glycosylation. Immunity 15:1051–1061

    Article  CAS  PubMed  Google Scholar 

  16. Xing Y, Wang X, Jameson SC, Hogquist KA (2016) Late stages of T cell maturation in the thymus involve NF-kappaB and tonic type I interferon signaling. Nat Immunol 17:565–573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Baldwin TA, Hogquist KA (2007) Transcriptional analysis of clonal deletion in vivo. J Immunol 179:837–844

    Article  CAS  PubMed  Google Scholar 

  18. McCaughtry TM, Baldwin TA, Wilken MS, Hogquist KA (2008) Clonal deletion of thymocytes can occur in the cortex with no involvement of the medulla. J Exp Med 205:2575–2584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Daniels MA, Schober SL, Hogquist KA, Jameson SC (1999) Cutting edge: a test of the dominant negative signal model for TCR antagonism. J Immunol 162:3761–3764

    CAS  PubMed  Google Scholar 

  20. Hogquist KA, Starr TK, Jameson SC (2003) Receptor sensitivity: when T cells lose their sense of self. Curr Biol 13:R239–R241

    Article  CAS  PubMed  Google Scholar 

  21. Griffith AV, Fallahi M, Nakase H, Gosink M, Young B, Petrie HT (2009) Spatial mapping of thymic stromal microenvironments reveals unique features influencing T lymphoid differentiation. Immunity 31:999–1009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rothenberg EV (2014) Transcriptional control of early T and B cell developmental choices. Annu Rev Immunol 32:283–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Plum J, De Smedt M, Verhasselt B, Kerre T, Vanhecke D, Vandekerckhove B, Leclercq G (2000) Human T lymphopoiesis. In vitro and in vivo study models. Ann N Y Acad Sci 917:724–731

    Article  CAS  PubMed  Google Scholar 

  24. Ueno T, Liu C, Nitta T, Takahama Y (2005) Development of T-lymphocytes in mouse fetal thymus organ culture. Methods Mol Biol 290:117–133

    PubMed  Google Scholar 

  25. Nitta T, Ohigashi I, Takahama Y (2013) The development of T lymphocytes in fetal thymus organ culture. Methods Mol Biol 946:85–102

    Article  CAS  PubMed  Google Scholar 

  26. Han J, Zuniga-Pflucker JC (2021) High-oxygen submersion fetal thymus organ cultures enable FOXN1-dependent and -independent support of T lymphopoiesis. Front Immunol 12:652665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Borgne ML, Ladi E, Dzhagalov I, Herzmark P, Liao YF, Chakraborty AK, Robey EA (2009) The impact of negative selection on thymocyte migration in the medulla. Nat Publ Group 10:823–830

    Google Scholar 

  28. Dzhagalov IL, Chen KG, Herzmark P, Robey EA (2013) Elimination of self-reactive T cells in the thymus: a timeline for negative selection. PLoS Biol 11:e1001566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hu Q, Sader A, Parkman JC, Baldwin TA (2009) Bim-mediated apoptosis is not necessary for thymic negative selection to ubiquitous self-antigens. J Immunol 183:7761–7767

    Article  CAS  PubMed  Google Scholar 

  30. Daniels MA, Teixeiro E, Gill J, Hausmann B, Roubaty D, Holmberg K, Werlen G, Holländer GA, Gascoigne NR, Palmer E (2006) Thymic selection threshold defined by compartmentalization of Ras/MAPK signalling. Nature 444:724–729

    Article  CAS  PubMed  Google Scholar 

  31. Teixeiro E, Daniels M (2009) ERK and cell death: ERK location and T cell selection. FEBS J 277:30–38

    Article  PubMed  Google Scholar 

  32. Teixeiro E, Daniels M, Hamilton S, Schrum A, Bragado R, Jameson S, Palmer E (2009) Different T cell receptor signals determine CD8+ memory versus effector development. Science 323:502

    Article  CAS  PubMed  Google Scholar 

  33. Schrum AG, Gil D, Dopfer EP, Wiest DL, Turka LA, Schamel WW, Palmer E (2007) High-sensitivity detection and quantitative analysis of native protein-protein interactions and multiprotein complexes by flow cytometry. Sci STKE 2007:pl2

    Article  PubMed  PubMed Central  Google Scholar 

  34. Smith SE, Neier SC, Reed BK, Davis TR, Sinnwell JP, Eckel-Passow JE, Sciallis GF, Wieland CN, Torgerson RR, Gil D, Neuhauser C, Schrum AG (2016) Multiplex matrix network analysis of protein complexes in the human TCR signalosome. Sci Signal 9:rs7

    Article  PubMed  PubMed Central  Google Scholar 

  35. Neier SC, Ferrer A, Wilton KM, Smith SEP, Kelcher AMH, Pavelko KD, Canfield JM, Davis TR, Stiles RJ, Chen Z, McCluskey J, Burrows SR, Rossjohn J, Hebrink DM, Carmona EM, Limper AH, Kappes DJ, Wettstein PJ, Johnson AJ, Pease LR, Daniels MA, Neuhauser C, Gil D, Schrum AG (2019) The early proximal alphabeta TCR signalosome specifies thymic selection outcome through a quantitative protein interaction network. Sci Immunol 4:eaal2201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Anderson G, Jenkinson EJ, Moore NC, Owen JJ (1993) MHC class II-positive epithelium and mesenchyme cells are both required for T-cell development in the thymus. Nature 362:70–73

    Article  CAS  PubMed  Google Scholar 

  37. Hogquist KA, Jameson SC, Bevan MJ (1994) The ligand for positive selection of T lymphocytes in the thymus. Curr Opin Immunol 6:273–278

    Article  CAS  PubMed  Google Scholar 

  38. Hogquist KA (2001) Assays of thymic selection. Fetal thymus organ culture and in vitro thymocyte dulling assay. Methods Mol Biol 156:219–232

    CAS  PubMed  Google Scholar 

  39. Kurd N, Robey EA (2016) T-cell selection in the thymus: a spatial and temporal perspective. Immunol Rev 271:114–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hernández-Hoyos G, Alberola-Ila J (2005) Analysis of T-cell development by using short interfering RNA to knock down protein expression. Methods Enzymol 392:199–217

    Article  PubMed  Google Scholar 

  41. Gong Y, Zhang R, Zhang J, Xu L, Zhang F, Xu W, Wang Y, Chu Y, Xiong S (2008) Alpha-dystroglycan is involved in positive selection of thymocytes by participating in immunological synapse formation. FASEB J 22:1426–1439

    Article  CAS  PubMed  Google Scholar 

  42. Jenkinson W, Jenkinson E, Anderson G (2008) Preparation of 2-dGuo-treated thymus organ cultures. J Vis Exp 18:e906

    Google Scholar 

  43. White A, Jenkinson E, Anderson G (2008) Reaggregate thymus cultures. J Vis Exp 18:e905

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Daniels .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Teixeiro, E., Daniels, M.A. (2023). Fetal Thymic Organ Culture and Negative Selection. In: Bosselut, R., Vacchio, M.S. (eds) T-Cell Development. Methods in Molecular Biology, vol 2580. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2740-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2740-2_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2739-6

  • Online ISBN: 978-1-0716-2740-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics