Skip to main content

Northern Blotting Technique for Detection and Expression Analysis of mRNAs and Small RNAs

  • Protocol
  • First Online:
RNA Abundance Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2170))

Abstract

Northern analysis is a conventional but gold standard method for detection and quantification of gene expression changes. It not only detects the presence of a transcript but also indicates size and relative comparison of transcript abundance on a single membrane. In recent years it has been aptly adapted to validate and study the size and expression of small noncoding RNAs. Here, we describe protocols employed in our laboratory for conventional northern analysis with total RNA/mRNA to study gene expression and validation of small noncoding RNAs using low molecular weight fraction of RNAs. A brief account on the recent advancements for improving the sensitivity and efficiency of northern blot detection is also included in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hsieh LC et al (2009) Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing. Plant Physiol 151:2120–2132

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zhu QH et al (2008) A diverse set of microRNAs and microRNA-like small RNAs in developing rice grains. Genome Res 18:1456–1465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bo W et al (2009) Novel microRNAs uncovered by deep sequencing of small RNA transcriptomes in bread wheat (Triticum aestivum L.) and Brachypodium distachyon (L.) Beauv. Funct Integr Genomics 9:499–511

    Article  Google Scholar 

  5. Lee H et al (2010) Genetic framework for flowering-time regulation by ambient temperature-responsive miRNAs in Arabidopsis. Nucleic Acids Res 38:3081–3093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Moldovan D et al (2009) Hypoxia-responsive microRNAs and trans-acting small interfering RNAs in Arabidopsis. J Exp Bot 61:165–177

    Article  PubMed Central  Google Scholar 

  7. Marin E et al (2010) miR390, Arabidopsis TAS3 tasiRNAs, and their AUXIN RESPONSE FACTOR targets define an autoregulatory network quantitatively regulating lateral root growth. Plant Cell 22:1104–1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gao P et al (2010) Over-expression of Osa-MIR396c decreases salt and alkali stress tolerance. Planta 231:991–1001

    Article  CAS  PubMed  Google Scholar 

  9. Priyanka B et al (2010) Characterization of expressed sequence tags (ESTs) of pigeon pea (Cajanus cajan L.) and functional validation of selected genes for abiotic stress tolerance in Arabidopsis thaliana. Mol Gen Genomics 283:273–287

    Article  CAS  Google Scholar 

  10. Wu T et al (2010) Transcriptome profile analysis of floral sex determination in cucumber. J Plant Physiol 167:905–913

    Article  CAS  PubMed  Google Scholar 

  11. Zang Q et al (2010) Isolation and characterization of a gene encoding a polyethylene glycol-induced cysteine protease in common wheat. J Biosci 35:379–388

    Article  CAS  PubMed  Google Scholar 

  12. Moldovan D et al (2009) Hypoxia-responsive microRNAs and trans-acting small interfering RNAs in Arabidopsis. J Exp Bot 61:65–177

    Google Scholar 

  13. Katiyar-Agrawal S et al (2006) A pathogen-inducible endogenous siRNA in plant immunity. Proc Natl Acad Sci U S A 103:18002–18007

    Article  Google Scholar 

  14. Katiyar-Agarwal S, Gao S, Vivian-Smith A (2007) A novel class of bacteria-induced small RNAs in Arabidopsis. Genes Dev 21:3123–3134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Katiyar-Agarwal S, Jin H (2007) Discovery of pathogen-regulated small RNAs in plants. In: Methods in enzymology, vol 427. Elsevier Incorporation, Amsterdam

    Google Scholar 

  16. Pall GS et al (2007) Carbodiimide-mediated cross-linking of RNA to nylon membranes improves the detection of siRNA, miRNA and piRNA by northern blot. Nucleic Acids Res 35:e60

    Article  PubMed  PubMed Central  Google Scholar 

  17. Beckmann BM et al (2010) Northern blot detection of endogenous small RNAs (~14 nt) in bacterial total RNA extracts. Nucleic Acids Res 38:e147

    Article  PubMed  PubMed Central  Google Scholar 

  18. Buhtz A et al (2010) Phloem small RNAs, nutrient stress responses, and systemic mobility. BMC Plant Biol 10:64

    Article  PubMed  PubMed Central  Google Scholar 

  19. Xin M et al (2010) Diverse set of microRNAs are responsive to powdery mildew infection and heat stress in wheat (Triticum aestivum L.). BMC Plant Biol 10:123

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lu C et al (2008) Genome-wide analysis for discovery of rice microRNAs reveals natural antisense microRNAs (nat-miRNAs). Proc Natl Acad Sci U S A 105:4951–4956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim SW et al (2010) A sensitive non-radioactive northern blot method to detect small RNAs. Nucleic Acids Res 38:e98

    Article  PubMed  PubMed Central  Google Scholar 

  22. Petersen M, Wengel J (2003) LNA: a versatile tool for therapeutics and genomics. Trends Biotechnol 21:74–81

    Article  CAS  PubMed  Google Scholar 

  23. Zou X et al (2010) Identification of transcriptome induced in roots of maize seedlings at the late stage of waterlogging. BMC Plant Biol 10:189

    Article  PubMed  PubMed Central  Google Scholar 

  24. Jin H (2010) Screening of genes induced by salt stress from alfalfa. Mol Biol Rep 37:745–753

    Article  CAS  PubMed  Google Scholar 

  25. Valdes-Lopez O (2010) MicroRNA expression profile in common bean (Phaseolus vulgaris) under nutrient deficiency stresses and manganese toxicity. New Phytol 187:805–818

    Article  CAS  PubMed  Google Scholar 

  26. Tang X et al (2007) A simple array platform for microRNA analysis and its application in mouse tissues. RNA 13:1803–1822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dirks RM, Pierce NA (2004) Triggered amplification by hybridization chain reaction. Proc Natl Acad Sci U S A 101:15275–15278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schwarzkopf M, Pierce NA (2016) Multiplexed miRNA northern blots via hybridization chain reaction. Nucleic Acids Res 44(15):e129

    PubMed  PubMed Central  Google Scholar 

  29. Meng L, Lemaux PG (2003) A simple and rapid method for nuclear run-on transcription assays in plants. Plant Mol Biol Rep 21:65–71

    Article  CAS  Google Scholar 

  30. Klungland A, Dahl JA (2014) Dynamic RNA modifications in disease. Curr Opin Genet Dev 26:47–52

    Article  CAS  PubMed  Google Scholar 

  31. Kirchner S, Ignatova Z (2015) Emerging roles of tRNA in adaptive translation, signalling dynamics and disease. Nat Rev Genet 16:98–112

    Article  CAS  PubMed  Google Scholar 

  32. Ge J, Yu YT (2013) RNA pseudouridylation: new insights into an old modification. Trends Biochem Sci 38:210–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Motorin Y, Helm M (2010) tRNA stabilization by modified nucleotides. Biochemistry 49(24):4934–4944

    Article  CAS  PubMed  Google Scholar 

  34. Mishima E et al (2014) Conformational change in transfer RNA is an early indicator of acute cellular damage. J Am Soc Nephrol 25(10):2316–2326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kirino Y et al (2004) Codon-specific translational defect caused by a wobble modification deficiency in mutant tRNA from a human mitochondrial disease. Proc Natl Acad Sci U S A 101(42):15070–15075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zheng G et al (2013) ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell 49(1):18–29

    Article  CAS  PubMed  Google Scholar 

  37. Jia G et al (2011) N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol 7(12):885–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mishima E et al (2015) Immuno-northern blotting: detection of RNA modifications by using antibodies against modified nucleosides. PLoS One 10(11):e0143756

    Article  PubMed  PubMed Central  Google Scholar 

  39. Schmittgen TD et al (2004) A high-throughput method to monitor the expression of microRNA precursors. Nucleic Acids Res 32:e43

    Article  PubMed  PubMed Central  Google Scholar 

  40. Shi R, Chiang VL (2005) Facile means for quantifying microRNA expression by real-time PCR. BioTechniques 39:519–525

    Article  CAS  PubMed  Google Scholar 

  41. Fu HG et al (2006) A novel method to monitor the expression of microRNAs. Mol Biotechnol 32:197–204

    Article  CAS  PubMed  Google Scholar 

  42. Chen C et al (2005) Real-time quantification of microRNAs by stem–loop RT–PCR. Nucleic Acids Res 33:e179

    Article  PubMed  PubMed Central  Google Scholar 

  43. Varkonyi-Gasic E et al (2007) Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods 3:12

    Article  PubMed  PubMed Central  Google Scholar 

  44. Bhardwaj AR et al (2014) A genome-wide perspective of miRNAome in response to high temperature, salinity and drought stresses in Brassica juncea (Czern) L. PLoS One 9(3):e92456

    Article  PubMed  PubMed Central  Google Scholar 

  45. Pandey R et al (2014) A comprehensive study on identification and expression profiling of microRNAs in Triticum aestivum during abiotic stress and development. PLoS One 9(4):e95800

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lakhotia N et al (2014) Identification and characterization of miRNAome in root, stem, leaf and tuber developmental stages of potato (Solanum tuberosum) by high-throughput sequencing. BMC Plant Biol 14:6

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kohli D et al (2014) Identification and characterization of wilt and salt stress-responsive microRNAs from chickpea by high-throughput sequencing. PLoS One 9(10):e108 851

    Article  Google Scholar 

  48. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    Article  CAS  PubMed  Google Scholar 

  49. Jain M (2009) Genome-wide identification of novel internal control genes for normalization of gene expression during various stages of development in rice. Plant Sci 176:702–706

    Article  CAS  Google Scholar 

  50. Garg R et al (2010) Validation of internal control genes for quantitative gene expression studies in chickpea (Cicer arietinum L.). Biochem Biophys Res Commun 396:283–288

    Article  CAS  PubMed  Google Scholar 

  51. Herrin DL, Schmidt GW (1998) Rapid, reversible staining of northern blots prior to hybridization. BioTechniques 6:196–198

    Google Scholar 

Download references

Acknowledgements

Research work in the laboratories of SK-A and MA is supported by funds from Department of Biotechnology (DBT), PURSE and FIST grants from Department of Science & Technology (DST), University Grants Commission (UGC) and University of Delhi. ARB and RP are thankful to Ramjas College, University of Delhi and SGTB Khalsa College, University of Delhi, respectively, for financial support. Ankur R. Bhardwaj and Ritu Pandey contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surekha Katiyar-Agarwal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bhardwaj, A.R., Pandey, R., Agarwal, M., Katiyar-Agarwal, S. (2021). Northern Blotting Technique for Detection and Expression Analysis of mRNAs and Small RNAs. In: Jin, H., Kaloshian, I. (eds) RNA Abundance Analysis . Methods in Molecular Biology, vol 2170. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0743-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0743-5_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0742-8

  • Online ISBN: 978-1-0716-0743-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics