Skip to main content

Antimicrobial Activity of Bacteriocins and Their Applications

  • Chapter
Meat Biotechnology

Bacteriocins are peptides or proteins that exert an antimicrobial action against a range of microorganisms. Their production can be related to the antagonism within a certain ecological niche, as the producer strain, being itself immune to its action, generally gains a competitive advantage. Many Gram-positive and Gram-negative microorganisms have been found to produce bacteriocins. The former, and especially the ones produced by lactic acid bacteria, has been the field of intensive research during the last decades mainly due to their properties that account for their suitability in food preservation and the benefits arising from that, and secondarily due to the broader inhibitory spectrum compared to the ones produced by Gramnegative microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aasen, I. M., Moretro, T., Katla, T., Axelsson, L., & Storro, I. (2000). Influence of complex nutrients, temperature and pH on bacteriocin production by Lactobacillus sakei CCUG 42687. Applied Microbiology and Biotechnology, 53, 159–166.

    Article  CAS  Google Scholar 

  • Abriouel, H., Maqueda, M., Galvez, A., Martinez-Bueno, M., & Valdivia, E. (2002). Inhibition of bacterial growth, enterotoxin production, and spore outgrowth in strains of Bacillus cereus by bacteriocin AS-48. Applied and Environmental Microbiology, 68, 1473–1477.

    Article  CAS  Google Scholar 

  • Ahn, C., & Stiles, M. E. (1990). Plasmid-associated bacteriocin production by a strain of Carnobacterium piscicola from meat. Applied and Environmental Microbiology, 56, 2503–2510.

    CAS  Google Scholar 

  • Albano, H., Todorov, S. D., van Reenen, C. A., Hogg, T., Dicks, L. M. T., & Texixeira, P. (2007a). Characterization of two bacteriocins produced by Pediococcus acidilactici isolated from ‘Alheira’, a fermented sausage traditionally produced in Portugal. International Journal of Food Microbiology, 116, 239–247.

    Article  CAS  Google Scholar 

  • Albano, H., Oliveira, M., Aroso, R., Cubero, N., Hogg, T., & Teixeira, P. (2007b). Antilisterial activity of lactic acid bacteria isolated from ‘Alheiras’ (traditional Portuguese fermented sausages): In situ assays. Meat Science, 76, 796–800.

    Article  CAS  Google Scholar 

  • Ananou, S., Galvez, A., Martinez-Bueno, M., Maqueda, M., & Valdivia, E. (2005). Synergistic effect of enterocin AS-48 in combination with outer membrane permeabilizing treatments against Escherichia coli O157:H7. Journal of Applied Microbiology, 99, 1364–1372.

    Article  CAS  Google Scholar 

  • Ananou, S., Maqueda, M., Martinez-Bueno, M., Galvez, A., & Valdivia, E. (2005). Control of Staphylococcus aureus in sausages by enterocin AS-48. Meat Science, 71, 549–556

    Article  CAS  Google Scholar 

  • Ananou, S., Valdivia, E., Martínez Bueno, M., Galvez, A., & Maqueda, M. (2004). Effect of combined physico-chemical preservatives on enterocin AS-48 activity against the enterotoxigenic Staphylococcus aureus CECT 976 strain. Journal of Applied Microbiology, 97, 48–56.

    Article  CAS  Google Scholar 

  • Aymerich, T., Holo, H., Havarstein, L.S., Hugas, M., Garriga, M., & Nes, I. F. (1996). Biochemical and genetic characterization of enterocin A from Enterococcus faecium, a new antilisterial bacteriocin in the pediocin family of bacteriocins. Applied and Environmental Microbiology, 62, 1676–1682.

    CAS  Google Scholar 

  • Aymerich, T., Artigas, M. G., Garriga, M., Monfort, J. M., & Hugas, M. (2000a). Effect of sausage ingredients and additives on the production of enterocins A and B by Enterococcus faecium CTC492.Optimization of in vitro production and anti-listerial effect in dry.fermented sausages. Journal of Applied Microbiology, 88, 686–694.

    Article  CAS  Google Scholar 

  • Aymerich, M. T., Garriga, M., Monford, J. M., Nes, I., & Hugas, M. (2000b). Bacteriocin-producing lactobacilli in Spanish-style fermented sausages: characterization of bacteriocins. Food Microbiology, 17, 33–45.

    Article  CAS  Google Scholar 

  • Bakes, S. H., Kitis, F. Y. E., Quattlebaum, R. G., & Barefoot, S. F. (2004). Sensitization of Gram-negative and Gram-positive bacteria to jenseniin G by sublethal injury. Journal of Food Protection, 67, 1009–1013.

    Google Scholar 

  • Barcena, B. J. M., Sineriz, F., Gonzalez de Llano, D., Rodriguez, A., & Suarez, J. E. (1998). Chemo-stat production of plantaricin C by Lactobacillus plantarum LL41. Applied and Environmental Microbiology, 57, 3512–3514.

    Google Scholar 

  • Benkerroum, N., Daoudi, A., Hamraoui, T., Ghalfi, H., Thiry, C., Duroy, M., Evrart, P., Roblain, D., & Thonart, P. (2005). Lyophilized preparations of bacteriocinogenic Lactobacillus curvatus and Lactococcus lactis subsp. lactis as potential protective adjuncts to control Listeria monocytogenes in dry-fermented sausages. Journal of Applied Microbiology, 98, 56–63.

    Article  CAS  Google Scholar 

  • Benthin, S., Schulze, U., Nielsen, J., & Villadsen, J. (1994). Growth energetics of Lactococcus cremoris FD1 during energy-, carbon-, and nitrogen-limitation in steady state and transient cultures. Chemical Engineering Science, 49, 589–609.

    Article  CAS  Google Scholar 

  • Bhunia, A. K., Johnson, M. C., Ray, B., & Kalchayanand, N. (1991). Mode of action of pediocin AcH from Pediococcus acidilactici H on sensitive bacterial strains. Journal of Applied Bacteriology, 70, 25–33.

    CAS  Google Scholar 

  • Biswas, S. R., Ray, P., Johnson, M. C., & Ray, B. (1991). Influence of growth conditions on the production of a bacteriocin, pediocin AcH, by Pediococcus acidilactici H. Applied and Environmental Microbiology, 57, 1265–1267.

    CAS  Google Scholar 

  • Boziaris, I. S., Humpheson, I., & Adams, M. R. (1998). Effect of nisin on heat injury and inactivation of Salmonella enteritidis PT4. International Journal of Food Microbiology, 43, 7–13.

    Article  CAS  Google Scholar 

  • Budde, B. B., Hornbaek, T., Jacobsen, T., Barkholt, V., & Koch, A. G. (2003). Leuconostoc carnosum 4010 has the potential for use as a protective culture for vacuum-packed meats: Culture isolation, bacteriocin identification, and meat application experiments.International Journal of Food Microbiology, 83, 171–184.

    Article  Google Scholar 

  • Campanini, M., Pedrazzoni, I., Barbuti, S., & Baidini, P. (1993). Behaviour of Listeria monocytogenes during the maturation of naturally and artificially contaminated salami: Effect of lactic-acid bacteria starter cultures lnternational Journal of Food Microbiology, 21, 169–175.

    Article  Google Scholar 

  • Casaus, P., Nilsen, T., Cintas, L. M., Nes, I. F., Hernandez, P. E., & Holo, H. (1997). Enterocin B, a new bacteriocin from Enterococcus faecium T136 which can act synergistically with enterocin A. Microbiology, 143, 2287–2294.

    CAS  Google Scholar 

  • Chatterjee, C., Paul, M., Xie, L., & van der Donk, W. A. (2005). Biosynthesis and mode of action of Lantibiotics. Chemistry Reviews, 105, 633–683.

    Article  CAS  Google Scholar 

  • Cintas, L. M., Rodriguez, J. M., Fernandez, M. F., Sletten, K., Nes, I. F., Hernandez, P. E., & Holo, H. (1995). Isolation and Characterization of Pediocin L50, a new bacteriocin from Pediococcus acidilactici with a broad inhibitory spectrum. Applied and Environmental Microbiology, 61, 263–2648.

    Google Scholar 

  • Cintas, L. M., Casaus, P., Havarstein, L. S., Hernandez, P. E., & Nes, I. F. (1997). Biochemical and genetic characterization of enterocin P, a novel sec-dependent bacteriocin from Enterococcus faecium P13 with a broad antimicrobial spectrum. Applied and Environmental Microbiology, 63, 4321–4330.

    CAS  Google Scholar 

  • Cintas, L. M., Casaus, P., Holo, H., Hernandez, P. E., Nes, I. F., & Havarstein, L. S. (1998). Enterocins L50A and L50B, two novel bacteriocins from Enterococcus faecium L50, and related to staphylococcal hemolysins. Journal of Bacteriology, 180, 1988–1994.

    CAS  Google Scholar 

  • Cleveland, J., Montville, T. J., Nes, I. F., & Chikindas, M. L. (2001). Bacteriocins: Safe, natural antimicrobials for food preservation. International Journal of Food Microbiology, 71, 1–20.

    Article  CAS  Google Scholar 

  • Cotter, P. D., Hill, C., & Ross, R. P. (2005). Bacteriocins: Developing innate immunity for food. Nature Reviews Microbiology, 3, 777–788.

    Article  CAS  Google Scholar 

  • Cutter, C. N., & Siragusa, G. R. (1994). Decontamination of beef carcass tissue with nisin using a pilot scale model carcass washer. Food Microbiology, 11, 481–489.

    Article  Google Scholar 

  • Daba, H., Lacroix, C., Huang, J., & Simard, R. (1993). Influence of growth conditions on production and activity of mesenterocin 5 by a strain of Leuconostoc mesenteroides. Applied Microbiology and Biotechnology, 39, 166–173.

    Article  CAS  Google Scholar 

  • Daeschel, M. A., Mcguire, J., & Almakhla, H. (1992). Antimicrobial activity of nisin adsorbed to hydrophilic and hydrophobic silicon surfaces. Journal of Food Protection, 55, 731–735.

    CAS  Google Scholar 

  • De Vuyst, L., Callewaert, R., & Crabbe, K. (1996). Primary metabolite kinetics of bacteriocin biosynthesis by Lactobacillus amylovorus and evidence for stimulation of bacteriocin under unfavourable growth conditions. Microbiology, 142, 817–827.

    Google Scholar 

  • De Vuyst, L., & Vandamme, E. J. (1994). Bacteriocins of lactic acid bacteria: Microbiology, genetics and applications. London: Blackie Academic and Professional.

    Google Scholar 

  • Deegan, L. H., Cotter, P. D., Hill, C., & Ross, P. (2006). Bacteriocins: Biological tools for bio-preservation and shelf-life extension. International Dairy Journal, 16, 1058–1071.

    Article  CAS  Google Scholar 

  • Dicks, L. M. T., Mellett, F. D., & Hoffman, L. C. (2004). Use of bacteriocin-producing starter cultures of Lactobacillus plantarum and Lactobacillus curvatus in production of ostrich meat salami. Meat Science, 66, 703–708.

    Article  CAS  Google Scholar 

  • Dominguez, A. P. M., Bimani, D., Caldera-Olivera, F., & Brandelli, A. (2007). Cerein 8 production in soybean protein using response surface methodology. Biochemical Engineering Journal, 35, 238–243.

    Article  CAS  Google Scholar 

  • Drosinos, E. H., Mataragas, M., & Metaxopoulos, J. (2005a). Biopreservation: A new direction towards food safety. In A. P. Riley (Ed.), New developments in food policy, control and research (pp. 31–64). New York: Nova Science Publishers, Inc.

    Google Scholar 

  • Drosinos, E. H., Mataragas, M., & Metaxopoulos, J. (2006). Modeling of growth and bacteriocin production by Leuconostoc mesenteroides E131. Meat Science, 74, 690–696.

    Article  CAS  Google Scholar 

  • Drosinos, E. H., Mataragas, M., Nasis, P., Galiotou, M., & Metaxopoulos, J. (2005b). Growth and bacteriocin production kinetics of Leuconostoc mesenteroides E131. Journal of Applied Microbiology, 99, 1314–1323.

    Article  CAS  Google Scholar 

  • Enan, G., El-Essawy, A. A., Uyttendaele, M., & Debevere, J. (1996). Antibacterial activity of Lactobacillus plantarum UG1 isolated from dry sausage: Characterization production and bactericidal action of plantaricin UG1. International Journal of Food Microbiology, 30, 189–215.

    Article  CAS  Google Scholar 

  • Fang, T. J., & Lin, L. W. (1994). Growth of Listeria monocytogenes and Pseudomonas fragi on cooked pork in a modified atmosphere packaging/nisin combination. Journal of Food Protection, 57, 479–485.

    Google Scholar 

  • Foegeding, P. M., Thomas, A. B., Pilkington, D. H., & Klaenhammer, T. R. (1992). Enhanced control of Listeria monocytogenes by in situ-produced pediocin during dry fermented sausage productiont. Applied and Environmental Microbiology, 58, 884–890.

    CAS  Google Scholar 

  • Franz, C. M. A. P., van Belkum, M. J., Holzapfel, W. H., Abriouel, H., & Galvez, A. (2007). Diversity of enterococcal bacteriocins and their grouping in a new classification scheme. FEMS Microbiology Reviews, 31, 293–310.

    Article  CAS  Google Scholar 

  • Galvez, A., Abriouel, H., Lopez, R. L., & Ben Omar, N. (2007). Bacteriocin-based strategies for food biopreservation. International Journal of Food Microbiology (in press) doi:10.1016/j.ijfoodmicro.2007.06.001.

    Google Scholar 

  • Garcia, M. T., Ben Omar, N., Lucas, R., Perez-Pulido, R., Castro, A., Grande, M. J., Martinez-Canamero, M., & Galvez, A. (2003). Antimicrobial activity of enterocin EJ97 on Bacillus coagulans CECT 12. Food Microbiology, 20, 533–536.

    Article  CAS  Google Scholar 

  • Garcia, M. T., Lucas, R., Abriouel, H., Ben Omar, N., Perez, R., Grande, M. J., Martinez-Canamero, M., & Galvez, A. (2004a). Antimicrobial activity of enterocin EJ97 against ‘Bacillus macroides/Bacillus maroccanus’ isolated from zucchini purée. Journal of Applied Microbiology, 97, 731–737.

    Article  CAS  Google Scholar 

  • Garcia, M. T., Martinez Canamero, M., Lucas, R., Ben Omar, N., Perez Pulido, R., & Galvez, A. (2004b). Inhibition of Listeria monocytogenes by enterocin EJ97 produced by Enterococcus faecalis EJ97. International Journal of Food Microbiology, 90, 161–170.

    Article  CAS  Google Scholar 

  • Ghalfi, H., Benkerroum, N., Doguiet, D. D. K., Bensaid, M., & Thonart, P. (2007). Effectiveness of cell-adsorbed bacteriocin produced by Lactobacillus curvatus CWBI-B28 and selected essential oils to control Listeria monocytogenes in pork meat during cold storage. Letters in Applied Microbiology, 44, 268–273.

    Article  CAS  Google Scholar 

  • Gill, A. O., & Holley, R. A. (2003). Interactive inhibition of meat spoilage and pathogenic bacteria by lysozyme, nisin and EDTA in the presence of nitrite and sodium chloride at 24ˆC. International Journal of Food Microbiology, 80, 251–259.

    Article  Google Scholar 

  • Grande, Ma. J., Lucas, R., Abriouel, H., Valdivia, E., Ben Omar, N., Maqueda, M., Martinez-Bueno, M., Martinez-Canamero, M., & Galvez, A. (2006). Inhibition of toxicogenic Bacillus cereus in rice-based foods by enterocin AS-48. International Journal of Food Microbiology, 106, 185–194.

    Article  CAS  Google Scholar 

  • Grande, Ma. J., Lucas, R., Abriouel, H., Valdivia, E., Ben Omar, N., Maqueda, M., Martinez-Canamero, M., & Galvez, A. (2007). Treatment of vegetable sauces with enterocin AS-48 alone or in combination with phenolic compounds to inhibit proliferation of Staphylococcus aureus. Journal of Food Protection, 70, 405–411.

    CAS  Google Scholar 

  • Guerra, N. P., Macias, C. L., Agrasar, A. T., & Castro, L. P. (2005). Development of a bioactive packaging cellophane using Nisaplin as biopreservative agent. Letters in Applied Microbiology, 40, 106–1610.

    Article  CAS  Google Scholar 

  • Hampikyan, H., & Ugur, M. (2007). The effect of nisin on L. monocytogenes in Turkish fermented sausages (sucuks). Meat Science, 76, 327–332.

    Article  CAS  Google Scholar 

  • Harding, C. D., & Saw, B. G. (1990). Antimicrobial activity of Leuconostoc gelidum against closely related species and Listeria monocytogenes. Journal of Applied Bacteriology, 69, 648–654.

    CAS  Google Scholar 

  • Holck, A. L., Axelsson, L., Huhne, K., & Krockel, L. (1994). Purification and cloning of sakacin 674, a bacteriocin from Lactobacillus sake Lb674. FEMS Microbiology Letters, 115, 143–150.

    Article  CAS  Google Scholar 

  • Holck, A., Axelsson, L., & Schillinger, U. (1996). Divergicin 750, a novel bacteriocin produced by Carnobacterium divergens 750. FEMS Microbiology Letters, 136, 163–168.

    Article  CAS  Google Scholar 

  • Hugas, M. (1998). Bacteriocinogenic lactic acid bacteria for the biopreservation of meat and meat products. Meat Science, 49, S139–S150.

    Article  Google Scholar 

  • Hugas, M., Garriga, M., Pascual, M., Aymerich, M. T., & Monfort, J. M. (2002). Enhancement of sakacin K activity against Listeria monocytogenes in fermented sausages with pepper or manganese as ingredients. Food Microbiology, 19, 519–528.

    Article  CAS  Google Scholar 

  • Jack, R. W., Wan, J., Gordon, J., Harmark, K., Davidson, B. E., Hillier, A. J., Wettenhall, R. E. H., Hickey, M. W., & Coventry, M. J. (1996). Characterization of the chemical and antimicrobial properties of piscicolin 126, a bacteriocin produced by Carnobacterium piscicola JG126. Applied and Environmental Microbiology, 62, 2897–2903.

    CAS  Google Scholar 

  • Joerger, M. C., & Klaenhammer, T. R. (1986). Characterization and purification of helveticin J and evidence for a chromosomally determined, bacteriocin produced by Lactobacillus helveticus 481. Journal of Bacteriology, 167, 439–446.

    CAS  Google Scholar 

  • Joosten, H. M. L. J., & Nunez, M. (1995). Adsorption of nisin and enterocin 4 to polypropylene and glass surface and its prevention by tween 80. Letters in Applied Microbiology, 21, 389–392.

    Article  CAS  Google Scholar 

  • Jydegaard, A.-M., Gravesen, A., & Knøchel, S. (2000). Growth condition-related response of Listeria monocytogenes 412 to bacteriocin inactivation. Letters in Applied Microbiology, 31, 68–72.

    Article  CAS  Google Scholar 

  • Kaiser, A. L., & Montville, T. J. (1993). The influence of pH and growth rate on the production of the bacteriocin, bavaricin MN, in batch and continuous fermentations. Journal of Applied Bacteriology, 75, 536–540.

    CAS  Google Scholar 

  • Kemperman, R., Kuipers, A., Karsens, H., Nauta, A., Kuipers, O., & Kok, J. (2003). Identification and characterization of two novel clostridial bacteriocins, Circularin A and Closticin 574. Applied and Environmental Microbiology, 69, 1589–1597.

    Article  CAS  Google Scholar 

  • Kim, W. S., Hall, R. J., & Dunn, N. W. (1997). The effect of nisin concentration and nutrient depletion on nisin production of Lactobacillus lactis. Applied Microbiology and Biotechnology, 50, 429–433.

    Article  Google Scholar 

  • Klaenhammer, T. R. (1993). Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiology Reviews, 12, 39–86.

    CAS  Google Scholar 

  • Krier, F., Revol-Junelles, A. M., & Germain, P. (1998). Influence of temperature and pH production of two bacteriocins by Leuconostoc mesenteroides subsp. mesenteroides FR52 during batch fermentation. Applied Microbiology and Biotechnology, 50, 359–363.

    Article  CAS  Google Scholar 

  • Lahti, E., Johansson, T., Honkanen-Buzalski, T., Hill, P., & Nurmi, E. (2001). Survival and detection of Escherichia coli O157:H7 and Listeria monocytogenes during the manufacture of dry sausage using two different starter cultures. Food Microbiology, 18, 75–85.

    Article  CAS  Google Scholar 

  • Laukova, A., Czikkova, S., Laczkova, S., & Turek, P. (1999). Use of enterocin CCM 4231 to control Listeria monocytogenes in experimentally contaminated dry fermented Hornad salami.International Journal of Food Microbiology, 52, 115–119.

    Article  CAS  Google Scholar 

  • Lee, S., Iwata, T., & Oyagi, H. (1993). Effects of salts on conformational change of basic amphipathic peptides from UPβ -structure to UPα -helix in the presence of phospholipid liposomes and their channel-forming ability. Biochimica et Biophysica Acta, 1151, 75–82.

    Article  Google Scholar 

  • Lejeune, R., Callewaert, R., Crabbe, K., & De Vuyst, L. (1998). Modelling the growth and bacteriocin production by Lactobacillus amylovorus DCE 471 in batch cultivation. Journal of Applied Microbiology, 84, 159–168.

    Article  CAS  Google Scholar 

  • Leroy, F., & De Vuyst, L. (1999). Temperature and pH conditions that prevail during the fermentation of sausages are optimal for the production of the antilisterial bacteriocin sakacin K. Applied and Environmental Microbiology, 65, 974–981.

    CAS  Google Scholar 

  • Leroy, F., & De Vuyst, L. (2003). A combined model to predict the functionality of the bacteriocin-producing Lactobacillus sakei strain CTC 494. Applied and Environmental Microbiology, 69, 1093–1099.

    Article  CAS  Google Scholar 

  • Leroy, F., Verluyten, J., Messens, W., & De Vuyst, L. (2002). Modelling contributes to the understanding of the different behaviour of bacteriocin-producing strains in a meat environment. International Dairy Journal, 12, 247–253.

    Article  CAS  Google Scholar 

  • Luchansky, J. B., & Call, J. E. (2004). Evaluation of nisin-coated cellulose casings for the control of Listeria monocytogenes inoculated onto the surface of commercially prepared frankfurters. Journal of Food Protection, 67, 1017–1021.

    CAS  Google Scholar 

  • Luchansky, J. B., Glass, K. A., Harsono, K. D., Degnan, A. J., Faith, N. G., Cauvin, B., Baccus-Taylor, G., Arihara, K., Bater, B., Maurer, A. J., & Cassens, R. G. (1992). Genomic analysis of pediococcus starter cultures used to control Listeria monocytogenes in Turkey summer sausage. Applied and Environmental Microbiology, 58, 3053–3059.

    CAS  Google Scholar 

  • Lyon, W. J., Olson, D. G., & Murano, E. A. (1995). Isolation and purification of enterocin EL1, a bacteriocin produced by a strain of Enterococcus faecium. Journal of Food Protection, 58, 890–898.

    CAS  Google Scholar 

  • Mataragas, M., Drosinos, E. H., & Metaxopoulos, J. (2003a). Antagonistic activity of lactic acid bacteria against Listeria monocytogenes in sliced cooked cured pork shoulder stored under vacuum or modified atmosphere at 4± 2ˆC. Food Microbiology, 20, 259–265.

    Article  Google Scholar 

  • Mataragas, M., Drosinos, E. H., Tsakalidou, E., & Metaxopoulos, J. (2004). Influence of nutrients on growth and bacteriocin production by Leuconostoc mesenteroides L124 and Lactobacillus curvatus L442. [International Journal of General and Molecular Microbiology] Antonie van Leeuwenhoek, 85, 191–198.

    Article  CAS  Google Scholar 

  • Mataragas, M., Metaxopoulos, J., Galiotou, M., & Drosinos, E. H. (2003b). Influence of pH and temperature on growth and bacteriocin production by Leuconostoc mesenteroides L124 and Lactobacillus curvatus L442. Meat Science, 64, 265–271.

    Article  CAS  Google Scholar 

  • Matsusaki, H., Endo, N., Sonomoto, K., & Ishikazi, A. (1996). Lantibiotic nisin Z fermentative production by Lactobacillus lactis IO-1: Relationship between production of the lantibiotic and lactate and cell growth. Applied Microbiology and Biotechnology, 45, 36–40.

    Article  CAS  Google Scholar 

  • McKellar, R. C. (1997). A heterogeneous population model for the analysis of bacterial growth kinetics. International Journal of Food Microbiology, 36, 179–186.

    Article  CAS  Google Scholar 

  • Meghrous, J., Huot, E., Quittelier, M., & Petitdemange, H. (1992). Regulation of nisin biosynthesis by continuous cultures and by resting cells of Lactococcus lactis subsp. lactis. Research in Microbiology, 143, 879–890.

    Article  CAS  Google Scholar 

  • Messens, W., Neysens, P., Vansieleghem, W., Vanderhoeven, J., & De Vuyst, L. (2002). Modeling growth and bacteriocin production by Lactobacillus amylovorus DCE 471 in response to temperature and pH values used for sourdough fermentations. Applied and Environmental Microbiology, 68, 1431–1435.

    Article  CAS  Google Scholar 

  • Messens, W., Verluyten, J., Leroy, F., & De Vuyst, L. (2003). Modeling growth and bacteriocin production by Lactobacillus curvatus LTH 1174 in response to temperature and pH values used for European sausage fermentation processes. International Journal of Food Microbiology, 81, 41–52.

    Article  CAS  Google Scholar 

  • Messi, P., Bondi, M., Sabia, C., Battini, R., & Manicardi G. (2001). Detection and preliminary characterization of a bacteriocin (plantaricin 35d) produced by a Lactobacillus plantarum strain. International Journal of Food Microbiology, 64, 193–198.

    Article  CAS  Google Scholar 

  • Millette, M., Le Tien, C., Smoragiewicz, W., & Lacroix, M. (2007). Inhibition of Staphylococcus aureus on beef by nisin-containing modified alginate films and beads. Food Control, 18,878–884.

    Article  CAS  Google Scholar 

  • Moretro, T., Aasen, I. M., Storro, I., & Axelsson, L. (2000). Production of sakacin P by Lactobacillus sakei in a completely defined medium. Journal of Applied Microbiology, 88, 536–545.

    Article  CAS  Google Scholar 

  • Mortvedt, C. I., Nissen-Meyer, J., Sletten, K., & Nes I. F. (1991). Purification and amino acid sequence of lactocin S, a bacteriocin produced by Lactobacillus sake L45. Applied and Environmental Microbiology, 57, 1829–1834.

    CAS  Google Scholar 

  • Mortvedt-Abildgaard, C., Nissen-Meyer, J., Jelle, B., Grenov, B., Skaugen, M., & Nes, I. F. (1995). Production and pH-dependent bactericidal activity of lactocin S, a lantibiotic from Lactobacillus sake. Applied and Environmental Microbiology, 61, 175–179.

    CAS  Google Scholar 

  • Motlagh, A. M., Bhunia, A. K., Szostek, F., Hansen, T. R., Johnson, M. C., & Ray B. (1992). Nucleotide and amino acid sequence of pap-gene (pediocin AcH production) in Pediococcus acidilactici H. Letters in Applied Microbiology, 15, 45–48.

    Article  CAS  Google Scholar 

  • Murray, M., & Richard, J. A. (1997). Comparative study of the antilisterial activity of nisin A and pediocin AcH in fresh ground pork stored aerobically at 5ˆC. Journal of Food Protection, 60, 1534–1540.

    CAS  Google Scholar 

  • Nagao, J. -I., Asaduzzaman, S. M., Aso, Y., Okuda, K. -I., Nakayama, J., & Sonomoto, K. (2006). Lantibiotics: Insight and foresight for new paradigm. Journal of Bioscience and Bioengineering, 102, 139–149.

    Article  CAS  Google Scholar 

  • Natrajan, N., & Sheldon, B. W. (2000). Efficacy of nisin-coated polymer films to inactivate Salmonella typhimurium on fresh broiler skin. Journal of Food Protection, 63, 1189–1196.

    CAS  Google Scholar 

  • Nes, I. F., Diep, D. B., Havarstein, L. S., Brurberg, M. B., Eijsink, V., & Holo, H. (1996). Biosynthesis of bacteriocins in lactic acid bacteria. Antonie van Leeuwenhoek, 70, 113–128.

    Article  CAS  Google Scholar 

  • Nes, I. F., & Holo, H. (2000). Class II antimicrobial peptides from lactic acid bacteria. Biopolymers (Peptide Science), 55, 50–61.

    Article  CAS  Google Scholar 

  • Nielsen, J., Nikolajsen, K., & Villadsen, J. (1991). Structured modelling of a microbial system II. Experimental verification of a structured lactic acid fermentation model. Biotechnology and Bioengineering, 38, 11–23.

    Article  CAS  Google Scholar 

  • Nieto-Lozano, J. C., Reguera-Useros, J. I., Pelaez-Martinez, M., del, C., & Hardisson de la Torr, A. (2006). Effect of a bacteriocin produced by Pediococcus acidilactici against Listeria monocytogenes and Clostridium perfringens on Spanish raw meat. Meat Science, 72, 57–61.

    Google Scholar 

  • Nilsson, L., Chen, Y., Chikindas, M. L., Huss, H. H., Gram, L., & Montville, T. J. (2000). Carbon dioxide and nisin act synergistically on Listeria monocytogenes. Applied and Environmental Microbiology, 66, 769–774.

    Article  CAS  Google Scholar 

  • Noonpakdee, W., Santivarngkna, C., Jumriangrit, P., Sonomoto, K., & Panyim, S. (2003). Isolation of nisin-producing Lactococcus lactis WNC 20 strain from nham, a traditional Thai fermented sausage. International Journal of Food Microbiology, 81, 137–145.

    Article  CAS  Google Scholar 

  • Osmanagaoglu, O. (2007). Detection and characterization of Leucocin OZ, a new anti-listerial bacteriocin produced by Leuconostoc carnosum with a broad spectrum of activity. Food Control, 18, 118–123.

    Article  CAS  Google Scholar 

  • Parente, E., & Hill, C. (1992). A comparison of factors affecting the production of two bacteriocins from lactic acid bacteria. Journal of Applied Bacteriology, 73, 290–298.

    CAS  Google Scholar 

  • Parente, E., & Ricciardi, A. (1994). Influence of pH on the production of enterocin 1146 during batch fermentation. Letters in Applied Microbiology, 19, 12–15.

    Article  CAS  Google Scholar 

  • Parente, E., & Ricciardi, A. (1999). Production, recovery and purification of bacteriocins from lactic acid bacteria. Applied Microbiology and Biotechnology, 52, 628–638.

    Article  CAS  Google Scholar 

  • Patton, G. C., & van der Donk, W. A. (2005). New developments in lantibiotic biosynthesis and mode of action. Current Opinion in Microbiology, 8, 543–551.

    Article  CAS  Google Scholar 

  • Pawar, D. D., Malik, S. V. S., Bhilegaonkar, K. N., & Barbuddhe, S. B. (2000). Effect of nisin and its combination with sodium chloride on the survival of Listeria monocytogenes added to raw buffalo meat mince. Meat Science, 56, 215–219.

    Article  CAS  Google Scholar 

  • Prema, P., Bharathy, S., Palavesam, A., Sivasubramanian, M., & Immanuel G. (2006). Detection, purification and efficacy of warnerin produced by Staphylococcus warneri. World Journal of Microbiology and Biotechnology, 22, 865–872.

    Article  CAS  Google Scholar 

  • Rekhif, N., Atrih, A., & Lefebvre, G. (1994). Selection and properties of spontaneous mutants of Listeria monocytogenes ATTC 15313 resistant to different bacteriocins produced by lactic acid bacteria strains. Current Microbiology, 28, 237–242.

    Article  CAS  Google Scholar 

  • Rodriguez, J. M., Cintas, L. M., Casaus, P., Horn, N., Dodd, H. M., Hernandez, P. E., & Gasson, M. J. (1995). Isolation of nisin-producing Lactococcus lactis strains from dry fermented sausages. Journal of Applied Bacteriology, 78, 109–115.

    CAS  Google Scholar 

  • Rollini, M., & Manzoni, M. (2005). Influence of different fermentation parameters on glutathione volumetric productivity by Saccharomyces cerevisiae. Process Biochemistry, 41, 1501–1505.

    Article  CAS  Google Scholar 

  • Schneider, R., Fernandez, F. J., Aquilar, M. B., Guerrero-Legarreta, I., Alpuche-Solis, A., & Ponce-Alquicira, E. (2006). Partial characterization of a class IIa pediocin produced by Pediococcus parvulus 133 strain isolated from meat (Mexical ‘chorizo’). Food Control, 17, 909–915.

    Article  CAS  Google Scholar 

  • Schillinger, U., & Luecke, F. K. (1987). Lactic acid bacteria on vacuum packaged meat and their influence on shelf life. Fleischwirtschaft, 67, 1244–1248.

    Google Scholar 

  • Schillinger, U., & Luecke, F. K. (1989). Antibacterial activity of Lactobacillus sake isolated from meat. Applied and Environmental Microbiology, 55, 1901–1906.

    CAS  Google Scholar 

  • Siragusa, G. R., Cutter, C. N., & Willett, J. L. (1999). Incorporation of bacteriocin in plastic retains activity and inhibits surface growth of bacteria on meat. Food Microbiology, 61, 229–235.

    Article  Google Scholar 

  • Sobrino, O. J., Rodriguez, J. M., Moreira, W. L., Cintas, L. M., Fernandez, M. F., Sanz, B., & Hernandez, P.E. (1992). Sakacin M, a bacteriocin-like substance from Lactobacillus sake 148. International Journal of Food Microbiology, 16, 215–225.

    Article  CAS  Google Scholar 

  • Stiles, M. E., & Hastings, J. W. (1991). Bacteriocin production by lactic acid bacteria: Potential for use in meat preservation. Trends in Food Science and Technology, 2, 247–251.

    Article  CAS  Google Scholar 

  • Taylor, J. I., Somer, E. B., & Kruger, L. A. (1985). Antibotulinal effectiveness of nisin-nitrite combinations in culture medium and chicken frankfurter emulsions. Journal of Food Protection, 48, 234–249.

    CAS  Google Scholar 

  • van Belkum, M. J., & Stiles, M. E. (2000). Nonlantibiotic antimicrobial peptides from lactic acid bacteria. Natural Product Reports, 17, 323–365.

    Article  Google Scholar 

  • Verluyten, J., Leroy, F., & de Vuyst, L. (2004). Effects of different spices used in production of fermented sausages on growth of and curvacin A production by Lactobacillus curvatus LTH 1174. Applied and Environmental Microbiology, 70, 4807–4813.

    Article  CAS  Google Scholar 

  • Verluyten, J., Messens, W., & De Vuyst, L. (2003). The curing agent sodium nitrite, used in the production of fermented sausages, is less inhibiting to the bacteriocin-producing meat starter culture Lactobacillus curvatus LTH 1174 under anaerobic conditions. Applied and Environmental Microbiology, 69, 3833–3839.

    Article  CAS  Google Scholar 

  • Verluyten, J., Messens, W., & De Vuyst, L. (2004). Sodium chloride reduces production of curvacin A, a bacteriocin produced by Lactobacillus curvatus strain LTH 1174, originating from fermented sausage. Applied and Environmental Microbiology, 70, 2271–2278.

    Article  CAS  Google Scholar 

  • Vermeiren, L., Devlieghere, F., Vandekinderen, I., & Debevere, J. (2006). The interaction of the non-bacteriocinogenic Lactobacillus sakei 10A and lactocin S producing Lactobacillus sakei 148 towards Listeria monocytogenes on a model cooked ham. Food Microbiology, 23, 511–518.

    Article  CAS  Google Scholar 

  • Vignolo, G., Fadda, S., de Kairuz, M. N., Holgado, A. P., de, R., & Oliver, G. (1998). Effects of curing additives on the control of Listeria monocytogenes by lactocin 705 in meat slurry. Food Microbiology, 15, 259–264.

    Article  CAS  Google Scholar 

  • Villani, F., Sannino, L., Moschetti, G., Mauriello, G., Pepe, O., Amodio-Cocchieri R., & Coppola, S. (1997). Partial characterization of an antagonistic substance produced by Staphylococcus xylosus 1E and determination of the effectiveness of the producer strain to inhibit Listeria monocytogenes in Italian sausages. Food Microbiology, 14, 555–566.

    Article  CAS  Google Scholar 

  • Xie, L., & van der Donk, W. A. (2004). Post-translational modifications during lantibiotic biosynthesis. Current Opinion in Chemical Biology, 8, 498–507.

    Article  CAS  Google Scholar 

  • Xiraphi, N., Georgalaki, M., Van Driessche, G., Devreese, B., Van Beeumen, J., Tsakalidou, E., Metaxopoulos, J., & Drosinos, E. H. (2006). Purification and characterization of curvaticin L442, a bacteriocin produced by Lactobacillus curvatus L442. [International Journal of General and Molecular Microbiology] Antonie van Leeuwenhoek, 89, 19–26.

    Article  CAS  Google Scholar 

  • Yand, R., & Ray, B. (1994). Factors influencing production of bacteriocins by lactic acid bacteria. Food Microbiology, 11, 281–291.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Drosinos, E.H., Mataragas, M., Paramithiotis, S. (2008). Antimicrobial Activity of Bacteriocins and Their Applications. In: Toldrá, F. (eds) Meat Biotechnology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-79382-5_17

Download citation

Publish with us

Policies and ethics