Skip to main content
Log in

In silico and in vivo analysis of binding affinity of estrogens with estrogen receptor alpha in Channa punctatus (Bloch)

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

In the present study, potential interaction between natural estrogens i.e., estrone (E1), estradiol (E2) and estriol (E3) with human estrogen receptor (hER) was seen by in silico study. Molecular docking studies were carried out using Glide and ligand docking program. The binding affinity, assessed by Glide score, indicates stronger interaction of E3 with hER followed by E2 and E1. Real-time PCR analysis of vga and vgb expressions, in the liver of different groups of Channa punctatus injected with the three natural estrogens, supported the docking analysis and indicated E3 to be the most potent estrogen in inducing vga and vgb expressions followed by E2 and E1. This study lays the groundwork for studying interactions of various estrogenic substances with different estrogen receptors and to assess estrogenicity of various chemicals which are being released into the environment by employing molecular docking technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arukwe A (2008) Fish estrogenic pathways: chemical disruption and related biomarkers. In: Rocha MJ, Arukwe A, Kapoor BG (eds) Fish reproduction. Science Publishers, New Hampshire, pp 471–514

    Google Scholar 

  • Arukwe A, Kullman SW, Hinton DE (2001) Differential biomarker gene and protein expressions in nonylphenol and estradiol-17β treated juvenile rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol Toxicol Pharmacol 129C:1–10

    Article  CAS  Google Scholar 

  • Authman MM, Abbas WT, Aboumorad IM, Kenawy AM (2013) Effects of illegal cyanide fishing on vitellogenin in the freshwater African catfish, Clarias gariepinus (Burchell, 1822). Ecotoxicol Environ Saf 91:61–70

    Article  CAS  PubMed  Google Scholar 

  • Baronti C, Curini R, D’Ascenzo G, Di Corcia A, Gentili A, Samperi R (2000) Monitoring natural and synthetic estrogens at activated treatment plants and in receiving river water. Environ Sci Technol 34:5059–5066

    Article  CAS  Google Scholar 

  • Belfroid AC, Van der Horst A, Vethaak AD, Schafer AJ, Rijs GBJ, Wegener J, Cofino WP (1999) Analysis and occurrence of estrogenic hormones and their glucuronimides in surface water and wastewater in the Netherlands. Sci Total Environ 225:101–108

    Article  CAS  PubMed  Google Scholar 

  • Bennett ER, Metcalfe CD (1998) Distribution of alkylphenol compounds in Great Lakes sediments, United States and Canada. Environ Toxicol Chem 17:1230–1235

    Article  CAS  Google Scholar 

  • Berg AH, Westerlund L, Olsson PE (2004) Regulation of Arctic char (Salvelinus alpinus) egg shell proteins and vitellogenin during reproduction and in response to 17β-estradiol. Gen Comp Endocrinol 135:246–285

    Article  Google Scholar 

  • Campbell CG, Borglin SE, Green FB, Grayson A, Wozei E, Stringfellow WT (2006) Biologically directed environmental monitoring, fate, and transport of estrogenic endocrine disrupting compounds in water: a review. Chemosphere 65:1265–1280

    Article  CAS  PubMed  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    Article  CAS  PubMed  Google Scholar 

  • Costa MDD, Neto FF, Costa MDM, Morais RN, Garcia JRE, Esquivel BM, Oliveira-Ribeiro CA (2010) Vitellogenesis and other physiological responses induced by 17-β-estradiol in males of freshwater fish Rhamdia quelen. Comp Biochem Physiol 151C:248–257

    CAS  Google Scholar 

  • de Voogt P, van Hattum B (2003) Critical factors in exposure modeling of endocrine active substances. Pure Appl Chem 75:1933–1948

    Google Scholar 

  • Desbrow C, Routledge EJ, Brighty GC, Sumpter JP, Waldock M (1998) Identification of estrogenic chemicals in STW effluent: chemical fractionation and in vitro biological screening. Environ Sci Technol 32:1549–1558

    Article  CAS  Google Scholar 

  • Ding WH, Tzing SH (1998) Analysis of nonylphenol polyethoxylates and their degradation products in river water and sewage effluent by gas chromatography-ion trap (tandem) mass spectrometry with electron impact and chemical ionization. J Chromatogr 824A:79–90

    Article  Google Scholar 

  • Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47:1739–1749

    Article  CAS  PubMed  Google Scholar 

  • Fytianos K, Pegiadou S, Raikos N, Eleftheriadis I, Tsoukali H (1997) Determination of non ionic surfactants (polyethoxylatednonylphenols) by HPLC in waste-waters. Chemosphere 35:1423–1429

    Article  CAS  Google Scholar 

  • Gale WL, Patino R, Maule AG (2004) Interaction of xenobiotics with estrogen receptors alpha and beta and a putative plasma sex hormone binding globulin from channel catfish (Ictalurus punctatus). Gen Comp Endocrinol 136:338–345

    Article  CAS  PubMed  Google Scholar 

  • Germain P, Staels B, Dacquet C, Spedding M, Laudet V (2006) Overview of nomenclature of nuclear receptors. Pharmacol Rev 58:685–704

    Article  CAS  PubMed  Google Scholar 

  • Halgren TA (2009) Identifying and characterizing binding sites and assessing druggability. J Chem Inf Model 49:377–389

    Article  CAS  PubMed  Google Scholar 

  • Halling-Sorensen B, Nielsen SN, Lanzky PF, Ingerslev F, Lutzhoft HCH, Jorgensen SE (1998) Occurrence, fate and effects of pharmaceutical substances in the environment—a review. Chemosphere 36:357–394

    Article  CAS  PubMed  Google Scholar 

  • Heldring N, Pike A, Andersson S, Matthews J, Cheng G, Hartman J, Tujague M, Strom A, Treuter E, Warner M, Gustafsson JA (2007) Estrogen receptors: how do they signal and what are their targets. Physiol Rev 87:905–931

    Article  CAS  PubMed  Google Scholar 

  • Henry TB, McPherson JT, Rogers ED, Heah TP, Hawkins SA, Layton AC, Sayler GS (2009) Changes in the relative expression pattern of multiple vitellogenin genes in adult male and larval zebrafish exposed to exogenous estrogens. Comp Biochem Physiol Mol Integr Physiol 154A:119–126

    Article  CAS  Google Scholar 

  • Heppell SA, Denslow ND, Folmar LC, Sullivan CV (1995) Universal assay of vitellogenin as a biomarker for environmental estrogens. Environ Health Perspect 103:9–15

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ho SM (1987) Endocrinology of vitellogenesis. In: Norris DO, Jones RE (eds) Hormones and Reproduction in Fishes. Amphibians and Reptiles, Plenum, pp 1–13

    Google Scholar 

  • Jobling S, Sumpter JP (1993) Detergent components in sewage effluent are weakly oestrogenic to fish: an in vitro study using rainbow trout (Oncorhynchus mykiss) hepatocytes. Aquat Toxicol 27:361–372

    Article  CAS  Google Scholar 

  • Kime DE, Nash JP, Scott AP (1999) Vitellogenesis as a biomarker of reproductive disruption by xenobiotics. Aquaculture 177:345–352

    Article  CAS  Google Scholar 

  • Kuhl H, Marz W, Jung-Hoffman C (1990) Time-dependent alterations in lipid metabolism during treatment with low-dose oral contraceptives. Am J Obstet Gynecol 163:363–369

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Chadha N, Anjani K. Tiwari, Sehgal N, Mishra AK (2013) Prospective atom based 3D-QSAR model prediction, pharmacophore generation and molecular docking study of carbamate derivatives as dual inhibitors of ache and MAO-B for Alzheimer’s disease. Medicinal Chemistry Research, August 2013

  • Kuster H, Becker A, Firnhaber C, Hohnjec N, Manthey K, Perlick AM, Bekel T, Dondrup M, Henckel K, Goesmann A, Meyer F, Wipf D, Requena N, Hildebrandt U, Hampp R, Nehls U, Krajinski F, Franken P, Puhler A (2007) Development of bioinformatic tools to support EST-sequencing, in silico- and microarray-based transcriptome profiling in mycorrhizal symbioses. Phytochemistry 38:19–32

    Article  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of Relative gene expression data using real-time quantitative PCR and the 2 − ΔΔCT Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Loomis AK, Thomas P (1999) Binding characteristics of estrogen receptor (ER) in Atlantic croaker (Micropogonias undulatus) testis: different affinity for estrogens and xenobiotics from that of hepatic ER. Biol Rep 61:51–60

    Article  CAS  Google Scholar 

  • Matthews J, Celius T, Halgren R, Zacharewski T (2000) Differential estrogen receptor binding of estrogenic substances: a species comparison. J Steroid Biochem Mol Biol 74:223–234

    Article  CAS  PubMed  Google Scholar 

  • Meucci V, Arukwe A (2005) Transcriptional modulation of brain and hepatic estrogen receptor and P450arom isotypes in juvenile Atlantic salmon (Salmo salar) after waterborne exposure to the xenoestrogen, 4-nonylphenol. Aquat Toxicol 77:167–177

    Article  Google Scholar 

  • Mommsen T, Korsgaard B (2008) Vitellogenesis. In: Rocha MJ, Arukwe A, Kapoor BG (eds) Fish Reproduction. Science Publishers, Enfield, pp 113–169

    Google Scholar 

  • Nimrod AC, Benson WH (1996) Estrogenic responses to xenobiotics in channel catfish (Ictalurus punctatus). Mar Environ Res 42:155–160

    Article  CAS  Google Scholar 

  • Nimrod AC, Benson WH (1997) Xenobiotic interaction with and alteration of channel catfish estrogen receptor. Toxicol Appl Pharmacol 147:381–390

    Article  CAS  PubMed  Google Scholar 

  • Olefsky JM (2001) Nuclear receptor minireview series. J Biol Chem 276:36863–36864

    Article  CAS  PubMed  Google Scholar 

  • Palmer BD, Huth LK, Pieto DL, Selcer KW (1998) Vitellogenin as a biomarker for xenobiotic estrogens in an amphibian model system. Environ Toxicol Chem 17:30–36

    Article  CAS  Google Scholar 

  • Panter GH, Thompson RS, Sumpter JP (1998) Adverse reproductive effect in male fathead minnows (Pimephales promelas) exposed to environmentally relevant concentrations of the natural oestrogens, oestradiol and estrone. Aquat Toxicol 42:243–253

    Article  CAS  Google Scholar 

  • Pirie D, Steven L, McGrory S, Best G (1996) Survey of hormone disrupting chemicals. Scottish Environment Protection Agency, 13 pp

  • Polzonetti-Magni AM, Mosconi G, Soverchia L, Kikuyama S, Carnevali O (2004) Multi-hormonal control of vitellogenesis in lower vertebrates. Int Rev Cytol 239:1–46

    Article  CAS  PubMed  Google Scholar 

  • Rani KV, Sehgal N, Goswami SV, Prakash O (2010) Relative potencies of natural estrogens on vitellogenin and choriogenin levels in the Indian freshwater spotted snakehead, Channa punctatus: in vivo and in vitro studies. Fish Physiol Biochem 36:587–595

    Article  CAS  PubMed  Google Scholar 

  • Rankouhi TR, Sanderson JT, van Holsteijn I, van Leeuwen C, Vethaak AD, van den Berg M (2004) Effects of natural and synthetic estrogens and various environmental contaminants on vitellogenesis in fish primary hepatocytes: comparison of bream (Abramis brama) and carp (Cyprinus carpio). Toxicol Sci 81:90–102

    Article  CAS  PubMed  Google Scholar 

  • Rawat VS, Pipil S, Sharma L, Sehgal N (2013) Purification, characterization and expression of two vitellogenins in the Indian freshwater murrel Channa punctatus. Gen Comp Endocrinol 189:119–126

    Article  CAS  PubMed  Google Scholar 

  • Saavedra L, Leonardi M, Morin V, Renato A (2012) Induction of vitellogenin-like lipoproteins in the mussel Aulacomya ater under exposure to 17β-estradiol. Rev Biol Mar Oceanogr 47(3):429–438

    Article  Google Scholar 

  • Scott AP, Katsiadaki L, Witthames PR, Hylland K, Davies IM, McIntosh AD, Thain J (2006) Vitellogenin in the blood plasma of male cod (Gadus morhua): a sign of oestrogenic endocrine disruption in the open sea? Mar Environ Res 61:149–170

    Article  CAS  PubMed  Google Scholar 

  • Sehgal N, Goswami SV (1994) Steroidal effects on plasma vitellogenin from the plasma of the Indian freshwater murrel, Channa punctatus (Bloch) by different methods: a comparative study. Ind J Biochem Biophys 38:263–269

    Google Scholar 

  • Sehgal N, Goswami SV (2001) Purification of vitellogenin from the plasma of the Indian freshwater murrel, Channa punctatus (Bloch) by different methods: a comparative study. Ind J Biochem Biophys 38:263–269

    CAS  Google Scholar 

  • Shappell NW, Billey LO, Forbes D, Matheny TA, Poach ME, Reddy GB, Hunt PG (2007) Estrogenic activity and steroid hormones in swine wastewater through a lagoon constructed-wetland system. Environ Sci Technol 41:444–450

    Article  CAS  PubMed  Google Scholar 

  • Stumpf G, Domdey H (1996) Dependence of yeast pre-mRNA 3’-end processing on CFT1: a sequence homolog of the mammalian AAUAAA binding factor. Science 274(5292):1517–1520

    Article  CAS  PubMed  Google Scholar 

  • Tannenbaum DM, Wang Y, Williams SP, Sigler PB (1998) Crystallographic comparison of the estrogen and progesterone receptor’s ligand binding domains. Proc Natl Acad Sci USA 95:5998–6003

    Article  Google Scholar 

  • Terkatin-Shimony A, Yaron Z (1978) Estrogens and estrogenic effects in Tilapia aurea (Cichlidae, Teleostei). Ann Biol Anim Biochem Biophys 18:1007–1012

    Article  CAS  Google Scholar 

  • Ternes TA, Stumpf M, Mueller J (1999) Behavior and occurrence of estrogens in municipal sewage treatment plants-I. Investigations in Germany, Canada and Brazil. Sci Total Environ 225:81–90

    Article  CAS  PubMed  Google Scholar 

  • Van den Belt K, Verheyen R, Witters H (2003) Effects of 17alpha-ethynylestradiol in a partial life-cycle test with zebrafish (Danio rerio): effects on growth, gonads and female reproductive success. Sci Total Environ 309(1–3):127–137

    PubMed  Google Scholar 

  • Ying GG, Kookana RS, Ru RJ (2002) Occurrence and fate of hormone steroids in the environment. Environ Int 28(6):545–551

    Article  CAS  Google Scholar 

  • Yu JYL, Dickhoff WW, Swanson P, Gorbman A (1981) Vitellogenesis and its hormonal regulation in the Pacific hagfish, Eptatretuss touti. Gen Comp Endocrinol 43:492–503

    Article  CAS  PubMed  Google Scholar 

  • Zha J, Wang Z, Wang N, Ingersoll C (2007) Histological alternation and Vitellogenin induction in adult rare minnow (Gobiocypris rarus) after exposure to ethynylestradiol and nonylphenol. Chemosphere 66(3):488–495

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Wang S, Li H, Li L (2011) Vitellogenin, a multivalent sensor and an antimicrobial effector. Int J Biochem Cell Biol 43:303–305

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Sehgal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pipil, S., Kumar, V., Rawat, V.S. et al. In silico and in vivo analysis of binding affinity of estrogens with estrogen receptor alpha in Channa punctatus (Bloch). Fish Physiol Biochem 41, 31–40 (2015). https://doi.org/10.1007/s10695-014-0003-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-014-0003-z

Keywords

Navigation