Skip to main content

Automatic Textual Explanations of Concept Lattices

  • Conference paper
  • First Online:
Graph-Based Representation and Reasoning (ICCS 2023)

Abstract

Lattices and their order diagrams are an essential tool for communicating knowledge and insights about data. This is in particular true when applying Formal Concept Analysis. Such representations, however, are difficult to comprehend by untrained users and in general in cases where lattices are large. We tackle this problem by automatically generating textual explanations for lattices using standard scales. Our method is based on the general notion of ordinal motifs in lattices for the special case of standard scales. We show the computational complexity of identifying a small number of standard scales that cover most of the lattice structure. For these, we provide textual explanation templates, which can be applied to any occurrence of a scale in any data domain. These templates are derived using principles from human-computer interaction and allow for a comprehensive textual explanation of lattices. We demonstrate our approach on the spices planner data set, which is a medium sized formal context comprised of fifty-six meals (objects) and thirty-seven spices (attributes). The resulting 531 formal concepts can be covered by means of about 100 standard scales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chao, G.: Human-computer interaction: process and principles of human-computer interface design. In: 2009 International Conference on Computer and Automation Engineering, pp. 230–233. IEEE (2009)

    Google Scholar 

  2. Dürrschnabel, D., Koyda, M., Stumme, G.: Attribute selection using contranominal scales. In: Braun, T., Gehrke, M., Hanika, T., Hernandez, N. (eds.) ICCS 2021. LNCS (LNAI), vol. 12879, pp. 127–141. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86982-3_10

    Chapter  Google Scholar 

  3. Ganter, B., Hanika, T., Hirth, J.: Scaling dimension. In: Dürrschnabel, D., López Rodríguez, D. (eds.) ICFCA 2023. LNCS, vol. 13934, pp. 64–77. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-35949-1_5

    Chapter  Google Scholar 

  4. Ganter, B., Wille, R.: Formal concept analysis: mathematical foundations. Springer, Berlin; New York (1999). ISBN 3540627715 9783540627715. http://www.amazon.de/Formal-Concept-Analysis-Mathematical-Foundations/dp/3540627715/ref=sr_1_1?ie=UTF8 &qid=1417077494 &sr=8-1 &keywords=formal+concept+analysis+mathematical+foundations

  5. Hanika, T., Hirth, J.: Conexp-Clj - a research tool for FCA. In: Cristea, D., Le Ber, F., Missaoui, R., Kwuida, L., Sertkaya, B., editors, ICFCA (Supplements), volume 2378 of CEUR Workshop Proceedings, pp. 70–75. CEUR-WS.org (2019)

    Google Scholar 

  6. Hanika, T., Hirth, J.: Knowledge cores in large formal contexts. Ann. Math. Artif. Intell. Apr (2022a). ISSN 1573–7470. https://doi.org/10.1007/s10472-022-09790-6

  7. Hanika, T., Hirth, J.: On the lattice of conceptual measurements. Inf. Sci. 613, 453–468 (2022b). ISSN 0020–0255. https://doi.org/10.1016/j.ins.2022.09.005. https://www.sciencedirect.com/science/article/pii/S0020025522010489

  8. Hanika, T., Hirth, J.: Quantifying the conceptual error in dimensionality reduction. In: Braun, T., Gehrke, M., Hanika, T., Hernandez, N., editors, Graph-Based Representation and Reasoning - 26th International Conference on Conceptual Structures, ICCS 2021, Virtual Event, September 20–22, 2021, Proceedings, volume 12879 of Lecture Notes in Computer Science, pp. 105–118. Springer (2021). https://doi.org/10.1007/978-3-030-86982-3_8

  9. Hirth, J., Horn, V., Stumme, G., Hanika, T.: Ordinal motifs in lattices (2023). CoRR, arXiv. 2304.04827

  10. Kulesza, T., Burnett, M., Wong, W.-K., Stumpf, S.: Principles of explanatory debugging to personalize interactive machine learning. In: Proceedings of the 20th International Conference on Intelligent User Interfaces, pp. 126–137 (2015)

    Google Scholar 

  11. Ibne Mamun, T., Baker, K., Malinowski, H., Hoffman, R.R., Mueller, S.T.: Assessing collaborative explanations of AI using explanation goodness criteria. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 65, pp. 988–993. SAGE Publications Sage CA: Los Angeles, CA (2021)

    Google Scholar 

  12. Mueller, S.T., et al.: Explanation in human-AI systems: a literature meta-review, synopsis of key ideas and publications, and bibliography for explainable AI. arXiv preprint arXiv:1902.01876 (2019)

  13. Mueller, S.T., et al.: Principles of explanation in human-AI systems. arXiv preprint arXiv:2102.04972 (2021)

  14. Papenmeier, A., Englebienne, G., Seifert, C.: How model accuracy and explanation fidelity influence user trust. arXiv preprint arXiv:1907.12652 (2019)

  15. Schwalbe, G., Finzel, B.: A comprehensive taxonomy for explainable artificial intelligence: a systematic survey of surveys on methods and concepts. Data Min. Knowl. Discov., pp. 1–59 (2023)

    Google Scholar 

  16. Stevens, S.S.: On the theory of scales of measurement. Science 103(2684), 677–680 (1946). ISSN 0036–8075

    Google Scholar 

  17. Tintarev, N., Masthoff, J.: Designing and evaluating explanations for recommender systems. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 479–510. Springer, Boston, MA (2011). https://doi.org/10.1007/978-0-387-85820-3_15

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Hirth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hirth, J., Horn, V., Stumme, G., Hanika, T. (2023). Automatic Textual Explanations of Concept Lattices. In: Ojeda-Aciego, M., Sauerwald, K., Jäschke, R. (eds) Graph-Based Representation and Reasoning. ICCS 2023. Lecture Notes in Computer Science(). Springer, Cham. https://doi.org/10.1007/978-3-031-40960-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40960-8_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40959-2

  • Online ISBN: 978-3-031-40960-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics