Skip to main content

Attribute Selection Using Contranominal Scales

  • Conference paper
  • First Online:
Graph-Based Representation and Reasoning (ICCS 2021)

Abstract

Formal Concept Analysis (FCA) allows to analyze binary data by deriving concepts and ordering them in lattices. One of the main goals of FCA is to enable humans to comprehend the information that is encapsulated in the data; however, the large size of concept lattices is a limiting factor for the feasibility of understanding the underlying structural properties. The size of such a lattice depends on the number of subcontexts in the corresponding formal context that are isomorphic to a contranominal scale of high dimension. In this work, we propose the algorithm ContraFinder that enables the computation of all contranominal scales of a given formal context. Leveraging this algorithm, we introduce \(\delta \)-adjusting, a novel approach in order to decrease the number of contranominal scales in a formal context by the selection of an appropriate attribute subset. We demonstrate that \(\delta \)-adjusting a context reduces the size of the hereby emerging sub-semilattice and that the implication set is restricted to meaningful implications. This is evaluated with respect to its associated knowledge by means of a classification task. Hence, our proposed technique strongly improves understandability while preserving important conceptual structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://arxiv.org/abs/2106.10978.

References

  1. Albano, A., Chornomaz, B.: Why concept lattices are large - extremal theory for the number of minimal generators and formal concepts. In: 12th International Conference on Concept Lattices and Their Applications (CLA 2016). CEUR Workshop Proceedings, vol. 1466, pp. 73–86. CEUR-WS.org (2015)

    Google Scholar 

  2. Boley, M., Gärtner, T., Grosskreutz, H.: Formal concept sampling for counting and threshold-free local pattern mining. In: SIAM International Conference on Data Mining (SDM 2010), pp. 177–188. SIAM (2010)

    Google Scholar 

  3. Bron, C., Kerbosch, J.: Finding all cliques of an undirected graph (algorithm 457). Commun. ACM 16(9), 575–576 (1973)

    Article  Google Scholar 

  4. Czerniak, J., Zarzycki, H.: Application of rough sets in the presumptive diagnosis of urinary system diseases. In: Sołdek, J., Drobiazgiewicz, L. (eds.) Artificial Intelligence and Security in Computing Systems. The Springer International Series in Engineering and Computer Science, vol. 752, pp. 41–51. Springer, Boston (2002). https://doi.org/10.1007/978-1-4419-9226-0_5

    Chapter  Google Scholar 

  5. Dias, S., Vieira, N.: Reducing the size of concept lattices: the JBOS approach. In: 7th International Conference on Concept Lattices and Their Applications (CLA 2010). CEUR Workshop Proceedings, vol. 672, pp. 80–91. CEUR-WS.org (2010)

    Google Scholar 

  6. Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.edu/ml

  7. Duffus, D., Rival, I.: Crowns in dismantlable partially ordered sets. In: 5th Hungarian Combinatorial Colloquium, vol. I, pp. 271–292 (1978)

    Google Scholar 

  8. Dürrschnabel, D., Hanika, T., Stumme, G.: Drawing order diagrams through two-dimension extension. CoRR arXiv:1906.06208 (2019)

  9. Dürrschnabel, D., Koyda, M., Stumme, G.: Attribute selection using contranominal scales [dataset], April 2021. https://doi.org/10.5281/zenodo.4945088

  10. Ganter, B., Wille, R.: Formal Concept Analysis - Mathematical Foundations. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-642-59830-2

    Book  MATH  Google Scholar 

  11. Hanika, T., Hirth, J.: Knowledge cores in large formal contexts. CoRR arXiv:2002.11776 (2020)

  12. Hanika, T., Koyda, M., Stumme, G.: Relevant attributes in formal contexts. In: Endres, D., Alam, M., Şotropa, D. (eds.) ICCS 2019. LNCS (LNAI), vol. 11530, pp. 102–116. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23182-8_8

    Chapter  Google Scholar 

  13. Hanika, T., Marx, M., Stumme, G.: Discovering implicational knowledge in wikidata. In: Cristea, D., Le Ber, F., Sertkaya, B. (eds.) ICFCA 2019. LNCS (LNAI), vol. 11511, pp. 315–323. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21462-3_21

    Chapter  Google Scholar 

  14. Ho, V.T., Stepanova, D., Gad-Elrab, M.H., Kharlamov, E., Weikum, G.: Rule learning from knowledge graphs guided by embedding models. In: Vrandečić, D., et al. (eds.) ISWC 2018. LNCS, vol. 11136, pp. 72–90. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00671-6_5

    Chapter  Google Scholar 

  15. Karp, R.: Reducibility among combinatorial problems. In: Proceedings of a Symposium on the Complexity of Computer Computations. The IBM Research Symposia Series, pp. 85–103. Plenum Press, New York (1972)

    Google Scholar 

  16. Koyda, M., Stumme, G.: Boolean substructures in formal concept analysis. CoRR arXiv:2104.07159 (2021)

  17. Kuitché, R., Temgoua, R., Kwuida, L.: A similarity measure to generalize attributes. In: 14th International Conference on Concept Lattices and Their Applications (CLA 2018). CEUR Workshop Proceedings, vol. 2123, pp. 141–152. CEUR-WS.org (2018)

    Google Scholar 

  18. Kumar, C.: Knowledge discovery in data using formal concept analysis and random projections. Int. J. Appl. Math. Comput. Sci. 21(4), 745–756 (2011)

    Article  Google Scholar 

  19. Kunegis, J.: KONECT: the Koblenz network collection. In: Proceedings of the 22nd International Conference on World Wide Web, pp. 1343–1350 (2013)

    Google Scholar 

  20. Kuznetsov, S.: Stability as an estimate of the degree of substantiation of hypotheses derived on the basis of operational similarity. Nauchno-Tekhnicheskaya Informatsiya, Seriya 2 24, 21–29 (1990)

    Google Scholar 

  21. Lozin, V.: On maximum induced matchings in bipartite graphs. Inf. Process. Lett. 81(1), 7–11 (2002)

    Article  MathSciNet  Google Scholar 

  22. Rowley, D.: PC/BEAGLE. Expert. Syst. 7(1), 58–62 (1990)

    Article  Google Scholar 

  23. Schlimmer, J.: Mushroom Records Drawn from the Audubon Society Field Guide to North American Mushrooms. GH Lincoff (Pres), New York (1981)

    Google Scholar 

  24. Seshapanpu, J.: Students performance in exams, November 2018. https://www.kaggle.com/spscientist/students-performance-in-exams

  25. Stumme, G., Taouil, R., Bastide, Y., Pasquier, N., Lakhal, L.: Computing iceberg concept lattices with titanic. Data Knowl. Eng. 42(2), 189–222 (2002)

    Article  Google Scholar 

  26. Wille, R.: Lattices in data analysis: how to draw them with a computer. In: Rival, I. (ed.) Algorithms and Order. NATO ASI Series (Series C: Mathematical and Physical Sciences), vol. 255, pp. 33–58. Springer, Dordrecht (1989). https://doi.org/10.1007/978-94-009-2639-4_2

    Chapter  Google Scholar 

  27. Xiao, M., Tan, H.: Exact algorithms for maximum induced matching. Inf. Comput. 256, 196–211 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dominik Dürrschnabel or Maren Koyda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dürrschnabel, D., Koyda, M., Stumme, G. (2021). Attribute Selection Using Contranominal Scales. In: Braun, T., Gehrke, M., Hanika, T., Hernandez, N. (eds) Graph-Based Representation and Reasoning. ICCS 2021. Lecture Notes in Computer Science(), vol 12879. Springer, Cham. https://doi.org/10.1007/978-3-030-86982-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86982-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86981-6

  • Online ISBN: 978-3-030-86982-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics