Skip to main content
Log in

Molecular design and synthesis of methoxy-substitued spiropyrans with photomodulated NIR-fluorescence

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

This study focuses on the molecular design and synthesis of salt spiropyrans with near-IR fluorescence. The structure of the obtained compounds was confirmed by NMR, IR and mass spectroscopy. In the course of studying the spectral and photoluminescent characteristics, it was possible to reveal the effect of some substituents in various positions on the properties of spiropyran dyes. Due to the structural similarity of one of the isomers to cyanine dyes, the obtained compounds are of interest as potential fluorescent probes for bioimagimg, in particular, for DNA studies. To reveal their ability of binding to DNA molecules molecular docking was carried out. Toxic effects of compounds demonstrating NIR fluorescence were studied on biofilms, as well as using bacterial lux-biosensors.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Scheme 4
Fig.2
Fig. 3
Fig. 4
Scheme 5
Fig. 5
Fig. 6
Scheme 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All data generated or analysed are included in this published article and Supplementary Information.

References

  1. Bouas-Laurent, H., & Dürr, H. (2001). Organic photochromism (IUPAC Technical Report). Pure and Applied Chemistry, 73, 639–665. https://doi.org/10.1351/pac200173040639

    Article  CAS  Google Scholar 

  2. Lukyanov, B. S., & Lukyanova, M. B. (2005). Spiropyrans: Synthesis, properties, and application. (Review). Chemistry of Heterocyclic Compounds, 4, 281–311. https://doi.org/10.1007/s10593-005-0148-x

    Article  Google Scholar 

  3. Pugachev, A. D., Mukhanov, E. L., Ozhogin, I. V., Kozlenko, A. S., Metelitsa, A. V., & Lukyanov, B. S. (2021). Isomerization and changes of the properties of spiropyrans by mechanical stress: Advances and outlook. Chemistry of Heterocyclic Compounds, 57, 122–130. https://doi.org/10.1007/s10593-021-02881-y

    Article  CAS  Google Scholar 

  4. Rad, J. K., Balzade, Z., & Mahdavian, A. R. (2022). Spiropyran-based advanced photoswitchable materials: A fascinating pathway to the future stimuli-responsive devices. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 51, 100487. https://doi.org/10.1016/j.jphotochemrev.2022.100487

    Article  CAS  Google Scholar 

  5. Kozlenko, A. S., Ozhogin, I. V., Pugachev, A. D., Lukyanova, M. B., El-Sewify, I. M., & Lukyanov, B. S. (2023). A modern look at spiropyrans: From single molecules to smart materials. Topics in Current Chemistry, 381, 8. https://doi.org/10.1007/s41061-022-00417-2

    Article  CAS  PubMed  Google Scholar 

  6. Towns, A. (2021). Spiropyran dyes. Physical Sciences Reviews, 6, 341–368. https://doi.org/10.1515/psr-2020-0197

    Article  Google Scholar 

  7. Szymanski, W., Beierle, J. M., Kistemaker, H. A., Velema, W. A., & Feringa, B. L. (2013). Reversible photocontrol of biological systems by the incorporation of molecular photoswitches. Chemical Reviews, 113, 6114–6178. https://doi.org/10.1021/cr300179f

    Article  CAS  PubMed  Google Scholar 

  8. Mandal, M., Banik, D., Karak, A., Manna, S. K., & Mahapatra, A. K. (2022). Spiropyran-merocyanine based photochromic fluorescent probes: Design, synthesis, and applications. ACS Omega, 7, 36988–37007. https://doi.org/10.1021/acsomega.2c04969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhu, J., Gao, Q., Tong, Q., & Wu, G. (2020). Fluorescent probes based on benzothiazole-spiropyran derivatives for pH monitoring in vitro and in vivo. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 225, 117506. https://doi.org/10.1016/j.saa.2019.117506

    Article  CAS  PubMed  Google Scholar 

  10. Zhang, Y., Xia, S., Mikesell, L., Whisman, N., Fang, M., Steenwinkel, T. E., Chen, K., Luck, R. L., Werner, T., & Liu, H. (2019). Near-infrared hybrid rhodol dyes with spiropyran switches for sensitive ratiometric sensing of ph changes in mitochondria and drosophila melanogaster first-instar larvae. ACS Applied Bio Materials, 2, 4986–4997. https://doi.org/10.1021/acsabm.9b00710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li, J., Li, X., Jia, J., Chen, X., Lv, Y., Guo, Y., & Li, J. (2019). A ratiometric near-infrared fluorescence strategy based on spiropyran in situ switching for tracking dynamic changes of live-cell lysosomal pH. Dyes and Pigments, 166, 433–442. https://doi.org/10.1016/j.dyepig.2019.03.060

    Article  CAS  Google Scholar 

  12. Zhao, M., Liu, Z., Dong, L., Zhou, H., Yang, S., Wu, W., & Lin, J. (2018). A GPC3-specific aptamer-mediated magnetic resonance probe for hepatocellular carcinoma. International Journal of Nanomedicine, 13, 4433–4443. https://doi.org/10.2147/IJN.S168268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhao, M., Dong, L., Liu, Z., Yang, S., Wu, W., & Lin, J. (2018). In vivo fluorescence imaging of hepatocellular carcinoma using a novel GPC3-specific aptamer probe. Quantitative Imaging in Medicine and Surgery, 8(2), 151–160. https://doi.org/10.21037/qims.2018.01.09

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kobayashi, H., Ogawa, M., Alford, R., Choyke, P. L., & Urano, Y. (2010). New strategies for fluorescent probe design in medical diagnostic imaging. Chemical Reviews, 110(5), 2620–2640. https://doi.org/10.1021/cr900263j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Poll, S., & Fuhrmann, M. (2018). Long-term in vivo imaging of structural plasticity in rodents. Handbook of behavioral neuroscience (Vol. 28, pp. 253–262). Elsevier. https://doi.org/10.1016/B978-0-12-812028-6.00014-8

    Chapter  Google Scholar 

  16. Zhang, N., Shang, Z., Wang, Z., Meng, X., Li, Z., Tian, H., Huang, D., Yin, X., Zheng, B., & Zhang, X. (2018). Molecular pathological expression in malignant gliomas resected by fluorescein sodium-guiding under the YELLOW 560 nm surgical microscope filter. World Journal of Surgical Oncology, 16, 195. https://doi.org/10.1186/s12957-018-1495-2

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gioux, S., Choi, H. S., & Frangioni, J. V. (2010). Image-guided surgery using invisible near-infrared light: Fundamentals of clinical translation. Molecular Imaging, 9(5), 237–255. https://doi.org/10.2310/7290.2010.00034

    Article  CAS  PubMed  Google Scholar 

  18. Zhao, T., Huang, G., Li, Y., Yang, S., Ramezani, S., Lin, Z., Wang, Y., Ma, X., Zeng, Z., Luo, M., de Boer, E., Xie, X.-J., Thibodeaux, J., Brekken, R. A., Sun, X., Sumer, B. D., & Gao, J. (2017). A transistor-like pH nanoprobe for tumour detection and image-guided surgery. Nature Biomedical Engineering, 1(1), 0006. https://doi.org/10.1038/s41551-016-0006

    Article  CAS  Google Scholar 

  19. Cormier, Z. (2011). Glowing cells guide cancer surgeons. Nature. https://doi.org/10.1038/news.2011.544

    Article  Google Scholar 

  20. Alander, J. T., Kaartinen, I., Laakso, A., Pätilä, T., Spillmann, T., Tuchin, V. V., Venermo, M., & Välisuo, P. (2012). A review of indocyanine green fluorescent imaging in surgery. Journal of Biomedical Imaging, 2012, 7. https://doi.org/10.1155/2012/940585

    Article  CAS  Google Scholar 

  21. Frangioni, J. V. (2008). New technologies for human cancer imaging. Journal of Clinical Oncology, 26(24), 4012–4021. https://doi.org/10.1200/JCO.2007.14.3065

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kanevche, K., Burr, D. J., Nürnberg, D. J., Hass, P. K., Elsaesser, A., & Heberle, J. (2021). Infrared nanoscopy and tomography of intracellular structures. Communications Biology, 4(1), 1341. https://doi.org/10.1038/s42003-021-02876-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Benniston, A. C., & Fortage, J. (2008). Selenospiropyrans incorporating appended pyrene chromophores. Tetrahedron Letters, 49(27), 4292–4295. https://doi.org/10.1016/j.tetlet.2008.04.134

    Article  CAS  Google Scholar 

  24. Zhang, H., Wang, C., Jiang, T., Guo, H., Wang, G., Cai, X., Yang, L., Zhang, Y., Yu, H., Wang, H., & Jiang, K. (2015). Microtubule-targetable fluorescent probe: Site-specific detection and super-resolution imaging of ultratrace tubulin in microtubules of living cancer cells. Analytical Chemistry, 87(10), 5216–5222. https://doi.org/10.1021/acs.analchem.5b01089

    Article  CAS  PubMed  Google Scholar 

  25. Liubimov, A. V., Venidiktova, O. V., Valova, T. M., Shienok, A. I., Koltsova, L. S., Liubimova, G. V., Popov, L. D., Zaichenko, N. L., & Barachevsky, V. A. (2018). Photochromic and luminescence properties of a hybrid compound based on indoline spiropyran of the coumarin type and azomethinocoumarin. Photochemical and Photobiological Sciences, 17, 1365–1375. https://doi.org/10.1039/c8pp00172c

    Article  CAS  PubMed  Google Scholar 

  26. Xiong, Y., Rivera-Fuentes, P., Sezgin, E., Vargas Jentzsch, A., Eggeling, C., & Anderson, H. L. (2016). Photoswitchable spiropyran dyads for biological imaging. Organic Letters, 18(15), 3666–3669. https://doi.org/10.1021/acs.orglett.6b01717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Doddi, S., Narayanaswamy, K., Ramakrishna, B., Singh, S. P., & Bangal, P. R. (2016). Synthesis and spectroscopic investigation of diketopyrrolopyrrole-spiropyran dyad for fluorescent switch application. Journal of Fluorescence, 26, 1939–1949. https://doi.org/10.1007/s10895-016-1886-0

    Article  CAS  PubMed  Google Scholar 

  28. Oushiki, D., Kojima, H., Terai, T., Arita, M., Hanaoka, K., Urano, Y., & Nagano, T. (2010). Development and application of a near-infrared fluorescence probe for oxidative stress based on differential reactivity of linked cyanine dyes. Journal of the American Chemical Society, 132(8), 2795–2801. https://doi.org/10.1021/ja910090v

    Article  CAS  PubMed  Google Scholar 

  29. Kostyukov, A. A., Mestergazi, M. G., Egorov, A. E., Shmykova, A. M., Shibaeva, A. V., Markova, A. A., Podrugina, T. A., Pogonin, V. I., Radchenko, E. V., Palyulin, V. A., Shtil, A. A., Nekipelova, T. D., Borissevitch, I. E., & Kuzmin, V. A. (2023). Biscarbocyanine dye for fluorescence imaging: Binding with albumin and DNA, cell accumulation, intracellular distribution and molecular modeling. Dyes and Pigments, 210, 111043. https://doi.org/10.1016/j.dyepig.2022.111043

    Article  CAS  Google Scholar 

  30. Sakamoto, T., Yu, Z., & Otani, Y. (2022). Dual-color fluorescence switch-on probe for imaging g-quadruplex and double-stranded DNA in living cells. Analytical Chemistry, 94(10), 4269–4276. https://doi.org/10.1021/acs.analchem.1c04804

    Article  CAS  PubMed  Google Scholar 

  31. Pronkin, P. G., & Tatikolov, A. S. (2022). Photonics of trimethine cyanine dyes as probes for biomolecules. Molecules, 27(19), 6367. https://doi.org/10.3390/molecules27196367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ganguly, S., Murugan, N. A., Ghosh, D., Narayanaswamy, N., Govindaraju, T., & Basu, G. (2021). DNA minor groove-induced cis–trans isomerization of a near-infrared fluorescent probe. Biochemistry, 60(26), 2084–2097. https://doi.org/10.1021/acs.biochem.1c00281

    Article  CAS  PubMed  Google Scholar 

  33. Pronkin, P. G., & Tatikolov, A. S. (2021). Photonics of meso-substituted carbocyanine dyes in solutions and in complexes with DNA. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 263, 120171. https://doi.org/10.1016/j.saa.2021.120171

    Article  CAS  PubMed  Google Scholar 

  34. Pronkin, P. G., & Tatikolov, A. S. (2022). Meso-aryl-substituted thiacarbocyanine dyes as spectral-fluorescent probes for DNA. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 269, 120744. https://doi.org/10.1016/j.saa.2021.120744

    Article  CAS  PubMed  Google Scholar 

  35. Wangngae, S., Ngivprom, U., Khrootkaew, T., Worakaensai, S., Lai, R. Y., & Kamkaew, A. (2023). Cationic styryl dyes for DNA labelling and selectivity toward cancer cells and Gram-negative bacteria. RSC Advances, 13(3), 2115–2122. https://doi.org/10.1039/D2RA07601B

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shinohara, M., Ashikaga, Y., Xu, W., Kim, S., Fukaminato, T., Niidome, T., & Kurihara, S. (2022). Photochemical OFF/ON cytotoxicity switching by using a photochromic surfactant with visible light irradiation. ACS Omega, 7(7), 6093–6098. https://doi.org/10.1021/acsomega.1c06473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pugachev, A. D., Ozhogin, I. V., Lukyanova, M. B., Lukyanov, B. S., Rostovtseva, I. A., Dorogan, I. V., Makarova, N. I., Tkachev, V. V., Metelitsa, A. V., & Aldoshin, S. M. (2020). Visible to near-IR molecular switches based on photochromic indoline spiropyrans with a conjugated cationic fragment. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 230, 118041. https://doi.org/10.1016/j.saa.2020.118041

    Article  CAS  PubMed  Google Scholar 

  38. Pugachev, A. D., Ozhogin, I. V., Makarova, N. I., Rostovtseva, I. A., Lukyanova, M. B., Kozlenko, A. S., Borodkin, G. S., Tkachev, V. V., El-Sewify, I. M., Dorogan, I. V., Metelitsa, A. V., Aldoshin, S. M., & Lukyanov, B. S. (2022). Novel polychromogenic fluorine-substituted spiropyrans demonstrating either uni-or bidirectional photochromism as multipurpose molecular switches. Dyes and Pigments, 199, 110043. https://doi.org/10.1016/j.dyepig.2021.110043

    Article  CAS  Google Scholar 

  39. Pugachev, A. D., Ozhogin, I. V., Lukyanova, M. B., Lukyanov, B. S., Kozlenko, A. S., Rostovtseva, I. A., Makarova, N. I., Tkachev, V. V., Aldoshin, S. M., & Metelitsa, A. V. (2021). Synthesis, structure and photochromic properties of indoline spiropyrans with electron-withdrawing substituents. Journal of Molecular Structure, 1229, 129615. https://doi.org/10.1016/j.molstruc.2020.129615

    Article  CAS  Google Scholar 

  40. Kozlenko, A. S., Makarova, N. I., Ozhogin, I. V., Pugachev, A. D., Lukyanova, M. B., Rostovtseva, I. A., Borodkin, G. S., Stankevich, N. V., Aldoshin, S. M., & Lukyanov, B. S. (2021). New indoline spiropyrans with highly stable merocyanine forms. Mendeleev Communications, 31(3), 403–406. https://doi.org/10.1016/j.mencom.2021.04.040

    Article  CAS  Google Scholar 

  41. Atherton, S. J., & Harriman, A. (1993). Photochemistry of intercalated methylene blue: Photoinduced hydrogen atom abstraction from guanine and adenine. Journal of the American Chemical Society, 115(5), 1816–1822. https://doi.org/10.1021/ja00058a028

    Article  CAS  Google Scholar 

  42. Duff, J. C. (1941). 96. A new general method for the preparation of o-hydroxyaldehydes from phenols and hexamethylenetetramine. Journal of the Chemical Society (Resumed). https://doi.org/10.1039/JR9410000547

    Article  Google Scholar 

  43. Tasior, M., Gryko, D. T., Pielacińska, D. J., Zanelli, A., & Flamigni, L. (2010). Trans-A2B-corroles bearing a coumarin moiety-from synthesis to photophysics. Chemistry—An Asian Journal, 5(1), 130–140. https://doi.org/10.1002/asia.200900345

    Article  CAS  PubMed  Google Scholar 

  44. Aliabadi, R. S., Mahmoodi, N. O., Ghafoori, H., Roohi, H., & Pourghasem, V. (2018). Design and synthesis of novel bis-hydroxychalcones with consideration of their biological activities. Researchon Chemical Intermediates, 44, 2999–3015. https://doi.org/10.1007/s11164-018-3290-7

    Article  CAS  Google Scholar 

  45. Lukyanova, M. B., Tkachev, V. V., Lukyanov, B. S., Pugachev, A. D., Ozhogin, I. V., Komissarova, O. A., Aldoshin, S. M., & Minkin, V. I. (2018). Structure investigation of new condensation products of 1, 2, 3, 3-tetramethylindolenium with metoxysubstituted diformylphenols. Journal of Structural Chemistry, 59, 565–570. https://doi.org/10.1134/S0022476618030095

    Article  CAS  Google Scholar 

  46. CrysAlis PRO version 171.35.19, Agilent Technologies UK Ltd, Yarnton, Oxfordshire, England, 2011.

  47. SHELXTL v. 6.14, Structure Determination Software Suite, Bruker AXS, Madison, Wisconsin, USA.

  48. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M., & Wood, P. A. (2020). Mercury 4.0: From visualization to analysis, design and prediction. Journal of Applied Crystallography, 53(1), 226–235. https://doi.org/10.1107/S1600576719014092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Neese, F., Wennmohs, F., Becker, U., & Riplinger, C. (2020). The ORCA quantum chemistry program package. The Journal of Chemical Physics, 152(22), 224108. https://doi.org/10.1063/5.0004608

    Article  CAS  PubMed  Google Scholar 

  50. Neese, F. (2022). Software update: The ORCA program system—Version 5.0. Wiley Interdisciplinary Reviews: Computational Molecular Science, 12(5), e1606. https://doi.org/10.1002/wcms.1606

    Article  Google Scholar 

  51. Perdew, J. P., Ernzerhof, M., & Burke, K. (1996). Rationale for mixing exact exchange with density functional approximations. The Journal of Chemical Physics, 105(22), 9982–9985. https://doi.org/10.1063/1.472933

    Article  CAS  Google Scholar 

  52. Grimme, S., Ehrlich, S., & Goerigk, L. (2011). Effect of the damping function in dispersion corrected density functional theory. Journal of Computational Chemistry, 32(7), 1456–1465. https://doi.org/10.1002/jcc.21759

    Article  CAS  PubMed  Google Scholar 

  53. Grimme, S., Antony, J., Ehrlich, S., & Krieg, H. (2010). A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. The Journal of Chemical Physics, 132(15), 154104. https://doi.org/10.1063/1.3382344

    Article  CAS  PubMed  Google Scholar 

  54. Cossi, M., Rega, N., Scalmani, G., & Barone, V. (2003). Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. Journal of Computational Chemistry, 24(6), 669–681. https://doi.org/10.1002/jcc.10189

    Article  CAS  PubMed  Google Scholar 

  55. Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5

    Article  CAS  PubMed  Google Scholar 

  56. Chemcraft—graphical software for visualization of quantum chemistry computations. Version 1.8, build 654. https://www.chemcraftprog.com

  57. Valdés-Tresanco, M. S., Valdés-Tresanco, M. E., Valiente, P. A., & Moreno, E. (2020). AMDock: A versatile graphical tool for assisting molecular docking with Autodock Vina and Autodock4. Biology Direct, 15, 12. https://doi.org/10.1186/s13062-020-00267-2

    Article  PubMed  PubMed Central  Google Scholar 

  58. Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). Autodock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30, 2785–2791. https://doi.org/10.1002/jcc.21256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lua, R. C., & Lichtarge, O. (2010). PyETV: A PyMOL evolutionary trace viewer to analyze functional site predictions in protein complexes. Bioinformatics, 26(23), 2981–2982. https://doi.org/10.1093/bioinformatics/btq566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Drew, H. R., Wing, R. M., Takano, T., Broka, C., Tanaka, S., Ltakura, K., & Dickerson, R. E. (1981). Structure of a B-DNA dodecamer: Conformation and dynamics. Proceedings of the National Academy of Sciences, 78, 2179–2183. https://doi.org/10.1073/pnas.78.4.2179

    Article  CAS  Google Scholar 

  61. Dautant, A., Langlois d’Estaintot, B., Gallois, B., Brown, T., & Hunter, W. N. (1995). A trigonal form of the idarubicin:d(CGATCG) complex; crystal and molecular structure at 2.0 Å resolution. Nucleic Acids Research, 23, 1710–1716. https://doi.org/10.1093/nar/23.10.1710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Stepanović, S., Vuković, D., Dakić, I., Savić, B., & Švabić-Vlahović, M. (2000). A modified microtiter-plate test for quantification of staphylococcal biofilm formation. Journal of Microbiological Methods, 40(2), 175–179. https://doi.org/10.1016/s0167-7012(00)00122-6

    Article  PubMed  Google Scholar 

  63. Maniatis, T., Fritsch, E. F., & Sambrook, J. (1982). Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory. https://doi.org/10.1016/0307-4412(83)90068-7

    Book  Google Scholar 

  64. Sazykin, I., Sazykina, M., Khmelevtsova, L., Khammami, M., Karchava, S., Zhuravleva, M., & Kudeevskaya, E. (2016). Expression of SOD and production of reactive oxygen species in Acinetobacter calcoaceticus caused by hydrocarbon oxidation. Annals of Microbiology, 66(3), 1039–1045. https://doi.org/10.1007/s13213-015-1188-9

    Article  CAS  Google Scholar 

  65. Salari, S., Seddighi, N. S., & Almani, P. G. N. (2018). Evaluation of biofilm formation ability in different Candida strains and anti-biofilm effects of Fe3O4-NPs compared with Fluconazole: An in vitro study. Journal de mycologie medicale, 28(1), 23–28. https://doi.org/10.1016/j.mycmed.2018.02.007

    Article  CAS  PubMed  Google Scholar 

  66. Li, X., Yan, Z., & Xu, J. (2003). Quantitative variation of biofilms among strains in natural populations of Candida albicans. Microbiology, 149(2), 353–362. https://doi.org/10.1099/mic.0.25932-0

    Article  CAS  PubMed  Google Scholar 

  67. Peeters, E., Nelis, H. J., & Coenye, T. (2008). Comparison of multiple methods for quantification of microbial biofilms grown in microtiter plates. Journal of Microbiological Methods, 72(2), 157–165. https://doi.org/10.1016/j.mimet.2007.11.010

    Article  CAS  PubMed  Google Scholar 

  68. Karunanidhi, A., Ghaznavi-Rad, E., Hamat, R. A., Pichika, M. R., Lung, L. T. T., Mohd Fauzi, F., Chigurupati, S., van Belkum, A., & Neela, V. (2018). Antibacterial and antibiofilm activities of nonpolar extracts of Allium stipitatum Regel. against multidrug resistant bacteria. BioMed Research International, 2018, 9845075. https://doi.org/10.1155/2018/9845075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Pierce, C. G., Uppuluri, P., Tristan, A. R., Wormley, F. L., Jr., Mowat, E., Ramage, G., & Lopez-Ribot, J. L. (2008). A simple and reproducible 96-well plate-based method for the formation of fungal biofilms and its application to antifungal susceptibility testing. Nature Protocols, 3(9), 1494–1500. https://doi.org/10.1038/nprot.2008.141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Biran, A., Yagur-Kroll, S., Pedahzur, R., Buchinger, S., Reifferscheid, G., Ben-Yoav, H., Shacham-Diamand, Y., & Belkin, S. (2010). Bacterial genotoxicity bioreporters. Microbial Biotechnology, 3(4), 412–427. https://doi.org/10.1111/j.1751-7915.2009.00160.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zavilgelsky, G. B., Kotova, V. Y., & Manukhov, I. V. (2007). Action of 1, 1-dimethylhydrazine on bacterial cells is determined by hydrogen peroxide. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 634(1–2), 172–176. https://doi.org/10.1016/j.mrgentox.2007.07.012

    Article  CAS  Google Scholar 

  72. Sazykin, I. S., Sazykina, M. A., Khammami, M. I., Kostina, N. V., Khmelevtsova, L. E., & Trubnik, R. G. (2015). Distribution of polycyclic aromatic hydrocarbons in surface sediments of lower reaches of the Don River (Russia) and their ecotoxicologic assessment by bacterial lux-biosensors. Environmental Monitoring and Assessment, 187, 277. https://doi.org/10.1007/s10661-015-4406-9

    Article  CAS  PubMed  Google Scholar 

  73. Sazykin, I.S., Sazykina, M.A., Kudeevskaya, E.M., & Khammami, M.I. (2014). Vibrio aquamarinus strain, method of determining sample toxicity using same and testing culture for determining sample toxicity. Pat. 2534819. The Russian Federation, p. 9. IPC S12N1/20 S12R1/63, C12Q1/02./Bull. N 34.

  74. Tkachev, V. V., Lukyanova, M. B., Lukyanov, B. S., Pugachev, A. D., Aldoshin, S. M., & Minkin, V. I. (2016). Investigation of a new product of a condensation reation between 1, 2, 3, 3-tetramethylindolenilium perchlorate and 2, 6-diformyl-4-methyl-phenol. Journal of Structural Chemistry, 57, 1270–1271. https://doi.org/10.1134/S0022476616060299

    Article  CAS  Google Scholar 

  75. Kozlenko, A. S., Ozhogin, I. V., Pugachev, A. D., Rostovtseva, I. A., Makarova, N. I., Demidova, N. V., Tkachev, V. V., Borodkin, G. S., Metelitsa, A. V., El-Sewify, I. M., & Lukyanov, B. S. (2023). New cationic spiropyrans with photoswitchable NIR fluorescence. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 297, 122712. https://doi.org/10.1016/j.saa.2023.122712

    Article  CAS  PubMed  Google Scholar 

  76. Pugachev, A. D., Rostovtseva, I. A., Makarova, N.I., Ievlev, M.Yu., Dmitriev, V.S., Ozhogin, I. V., Tkachev, V.V., Utenyshev, A.N., Borodkina, I.G., Metelitsa, A.V., Aldoshin, S.M., Minkin, V.I., & Lukyanov, B. S. (2023). Synthesis and study of new photochromic halogen-substituted spiropyrans of indoline series. Russian Chemical Bulletin, 72, (in press).

  77. Chernyshev, A. V., Voloshin, N. A., Rostovtseva, I. A., Solov’eva, E. V., Gaeva, E. B., & Metelitsa, A. V. (2018). Polychromogenic molecular systems based on photo-and ionochromic spiropyrans. Dyes and Pigments, 158, 506–516. https://doi.org/10.1016/j.dyepig.2018.05.040

    Article  CAS  Google Scholar 

  78. Schulz-Senft, M., Gates, P. J., Sönnichsen, F. D., & Staubitz, A. (2017). Diversely halogenated spiropyrans-useful synthetic building blocks for a versatile class of molecular switches. Dyes and Pigments, 136, 292–301. https://doi.org/10.1016/j.dyepig.2016.08.039

    Article  CAS  Google Scholar 

  79. Koval, V. V., Kozlenko, A. S., Minkin, V. I., El-Sewify, I. M., & Lukyanov, B. S. (2022). DFT modeling of indoline spiropyrans with a cationic substituent in the gas phase. Mendeleev Communications, 32(4), 467–470. https://doi.org/10.1016/j.mencom.2022.07.013

    Article  CAS  Google Scholar 

  80. Deniel, M. H., Lavabre, D., & Micheau, J. C. (2002). Photokinetics under continuous irradiation. In J. C. Crano & R. J. Guglielmetti (Eds.), Organic photochromic and thermochromic compounds: Volume 2: Physicochemical studies, biological applications, and thermochromism (pp. 167–209). Springer. https://doi.org/10.1007/b115590

    Chapter  Google Scholar 

  81. Owen, S. C., Doak, A. K., Ganesh, A. N., Nedyalkova, L., McLaughlin, C. K., Shoichet, B. K., & Shoichet, M. S. (2014). Colloidal drug formulations can explain “bell-shaped” concentration–response curves. ACS Chemical Biology, 9(3), 777–784. https://doi.org/10.1021/cb4007584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Calabrese, E. J., & Baldwin, L. A. (2001). The frequency of U-shaped dose responses in the toxicological literature. Toxicological Sciences, 62(2), 330–338. https://doi.org/10.1093/toxsci/62.2.330

    Article  CAS  PubMed  Google Scholar 

  83. Kendig, E. L., Le, H. H., & Belcher, S. M. (2010). Defining hormesis: Evaluation of a complex concentration response phenomenon. International Journal of Toxicology, 29(3), 235–246. https://doi.org/10.1177/1091581810363012

    Article  CAS  PubMed  Google Scholar 

  84. Smolobochkin, A., Gazizov, A., Sazykina, M., Akylbekov, N., Chugunova, E., Sazykin, I., Gildebrant, A., Voronina, J., Burilov, A., Karchava, S., Klimova, M., Voloshina, A., Sapunova, A., Klimanova, E., Sashenkova, T., Allayarova, U., Balakina, A., & Mishchenko, D. (2019). Synthesis of novel 2-(Het) arylpyrrolidine derivatives and evaluation of their anticancer and anti-biofilm activity. Molecules, 24(17), 3086. https://doi.org/10.3390/molecules24173086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Smolobochkin, A. V., Muravyeva, E. A., Vagapova, L. I., Knyazeva, I. R., Voronina, J. K., Burilov, A. R., Pudovik, M. A., Gildebrant, A. V., Sazykin, I. S., Sazykina, M. A., & Gazizov, A. S. (2019). Synthesis and evaluation of water-soluble 2-aryl-1-sulfonylpyrrolidine derivatives as bacterial biofilm formation inhibitors. Chemistry and Biodiversity, 16(1), e1800490. https://doi.org/10.1002/cbdv.201800490

    Article  CAS  PubMed  Google Scholar 

  86. Smolobochkin, A. V., Rizbayeva, T. S., Gazizov, A. S., Voronina, J. K., Dobrynin, A. B., Gildebrant, A. V., Strelnik, A. G., Sazykin, I. S., Burilov, A. R., Pudovik, M. A., & Sazykina, M. A. (2019). Acid-catalyzed intramolecular imination/nucleophilic trapping of 4-aminobutanal derivatives: one-pot access to 2-(pyrazolyl) pyrrolidines. European Journal of Organic Chemistry, 2019(33), 5709–5719. https://doi.org/10.1002/ejoc.201900868

    Article  CAS  Google Scholar 

  87. Chugunova, E., Gazizov, A., Sazykina, M., Akylbekov, N., Gildebrant, A., Sazykin, I., Gumerova, S., Khamatgalimov, A., Gerasimova, T., Dobrynin, A., Gogoleva, O., & Gorshkov, V. (2020). Design of novel 4-aminobenzofuroxans and evaluation of their antimicrobial and anticancer activity. International Journal of Molecular Sciences, 21(21), 8292. https://doi.org/10.3390/ijms21218292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ma, Z., Li, J., Bai, Y., Zhang, Y., Sun, H., & Zhang, X. (2020). A bacterial infection-microenvironment activated nanoplatform based on spiropyran-conjugated glycoclusters for imaging and eliminating of the biofilm. Chemical Engineering Journal, 399, 125787. https://doi.org/10.1016/j.cej.2020.125787

    Article  CAS  Google Scholar 

  89. Pronkin, P. G., & Tatikolov, A. S. (2018). Influence of the interaction with DNA on the spectral-fluorescent and photochemical properties of some meso-substituted polymethine dyes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 202, 269–275. https://doi.org/10.1016/j.saa.2018.05.053

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The study was financially supported by the Russian Science Foundation Grant No. 22-73-00330, https://rscf.ru/project/22-73-00330/, and carried out in Southern Federal University. SCXRD studies were performed in accordance with the state task, state registration Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS No.AAAA-A19-119092390076-7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artem D. Pugachev.

Ethics declarations

Conflict of interest

The authors declare no financial or nonfinancial interests that are directly or indirectly related to this article.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 9347 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pugachev, A.D., Kozlenko, A.S., Makarova, N.I. et al. Molecular design and synthesis of methoxy-substitued spiropyrans with photomodulated NIR-fluorescence. Photochem Photobiol Sci 22, 2651–2673 (2023). https://doi.org/10.1007/s43630-023-00479-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-023-00479-1

Keywords

Navigation