Skip to main content

Advertisement

Log in

Iodine nutrition optimization: are there risks for thyroid autoimmunity?

  • Short Review
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Iodine deficiency is still the main cause of preventable thyroid disorders, worldwide. To optimize iodine intake, programs of voluntary or mandatory iodization of salt have been implemented in several iodine-deficient countries and iodine sufficiency has been achieved in many. Despite the clear beneficial effects on thyroid health, some concerns have been raised on the presumed detriment of iodine prophylaxis on thyroid autoimmunity. Very recent studies aimed at evaluating the long-term consequences of iodine supplementation on thyroid autoimmunity and related dysfunction, have clearly demonstrated that the early post-iodization increase in thyroid antibody positivity is largely transient and not clinically relevant, since the prevalence of overt thyroid dysfunction has remained reassuring low over two decades. The recommended iodine intake is therefore safe with regard to thyroid autoimmunity, the benefits largely outweighing the risks in a population with a stable median iodine concentration not exceeding 300 μg/L. Thus, a possible increase in thyroid autoimmunity should not represent a limitation to promoting iodine supplementation in the general population, also taking into account the steady rise in prevalence of autoimmune disorders which has occurred in the last few decades because of environmental factors other than iodine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Sevringhaus EL, Barbour JH (1941) Adequacy of iodised salt for goiter prevention. J ClinEndocrinol 1:850–851. https://doi.org/10.1210/jcem-1-10-85

    Article  CAS  Google Scholar 

  2. Vermiglio F, Finocchiaro MD, Lo Presti VP, La Torre N, Nucifora M, Trimarchi F (1989) Partial beneficial effects of the so called “silent iodine prophylaxis” on iodine deficiency disorders (IDD) in northeastern Sicily endemia. J Endocrinol Invest 12:123–126. https://doi.org/10.1007/BF03349938

    Article  CAS  PubMed  Google Scholar 

  3. Völzke H, Caron P, Dahl L et al (2016) Ensuring effective prevention of iodine deficiency disorders. Thyroid 26:189–196. https://doi.org/10.1089/thy.2015.0543.Erratum.In:Thyroid.2016;26:1148

    Article  PubMed  Google Scholar 

  4. Schaffner M, Rochau U, Stojkov I, Rushaj VQ, Völzke H, Marckmann LJH, Oberaigner W, Siebert U (2020) Barriers against prevention programs for iodine deficiency disorders in Europe: a delphi study affiliations expand. Thyroid. https://doi.org/10.1089/thy.2020.0065

    Article  PubMed  Google Scholar 

  5. Laurberg P, Cerqueira C, Ovesen L, Rasmussen LB, Perrild H, Andersen S, Bulow Pedersen IB, Carlè A (2010) Iodine intake as a determinant of thyroid disorders in populations. Best Pract Res ClinEndocrinolMetab 24:13–27

    Article  CAS  Google Scholar 

  6. Zimmermann MB, Andersson M (2012) Assessment of iodine nutrition in populations: past, present, and future. Nutr Rev 70:553–570

    Article  Google Scholar 

  7. Lazarus JH (2021) Monitoring iodine nutritional status: adults or schoolchildren? J Endocrinol Invest 44:383–385

    Article  CAS  Google Scholar 

  8. Farebrother J, Zimmermann MB, Andersson M (2019) Excess iodine intake: sources, assessment, and effect on thyroid function. Ann N Y AcadSci 1446:44–65. https://doi.org/10.1111/nyas.14041

    Article  CAS  Google Scholar 

  9. Olivieri A, Trimarchi F, Vitti P (2020) Global iodine nutrition 2020: Italy is an iodine sufficient country. J Endocrinol Invest 43(11):1671–1672. https://doi.org/10.1007/s40618-020-01402-6

    Article  CAS  PubMed  Google Scholar 

  10. Laurberg P, Pedersen KM, Hreidarsson A, Sigfusson N, Iversen E, Knudsen PR (1998) Iodine intake and the pattern of thyroid disorders: a comparative epidemiological study of thyroid abnormalities in the elderly in Iceland and in Jutland, Denmark. J ClinEndocrinolMetab 83:765–769. https://doi.org/10.1210/jcem.83.3.4624

    Article  CAS  Google Scholar 

  11. Bulow Pedersen IB, Laurberg P, Arnfred T, Knudsen N, Jørgensen T, Perrild H, Ovesen L (2002) Surveillance of disease frequency in a population by linkage to diagnostic laboratory databases. a system for monitoring the incidences of hyper- and hypothyroidism as part of the Danish iodine supplementation program. Comput Methods Programs Biomed 67:209–216

    Article  Google Scholar 

  12. Bulow Pedersen IB, Laurberg P, Knudsen N et al (2006) Increase in incidence of hyperthyroidism predominantly occurs in young people after iodine fortification of salt in Denmark. J ClinEndocrinolMetab 91:3830–3834

    Article  Google Scholar 

  13. Cerqueira C, Knudsen N, Ovesen L, Perrild H, Rasmussen LB, Laurberg P, Jørgensen T (2009) Association of iodine fortification with incident use of anti-thyroid medication—a Danish nationwide study. J ClinEndocrinolMetab 94:2400–2405. https://doi.org/10.1210/jc.2009-0123

    Article  CAS  Google Scholar 

  14. Laurberg P, Jørgensen T, Perrild H, Ovesen L, Knudsen N, Pedersen IB, Rasmussen LB, Carlé A, Vejbjerg P (2006) The Danish investigation on iodine intake and thyroid disease, DanThyr: status and perspectives. Eur J Endocrinol 155:219–228. https://doi.org/10.1530/eje.1.02210.Erratum.In:EurJEndocrinol.2006,155:643

    Article  CAS  PubMed  Google Scholar 

  15. Pedersen IB, Laurberg P, Knudsen N, Jørgensen T, Perrild H, Ovesen L, Rasmussen LB (2007) An increased incidence of overt hypothyroidism after iodine fortification of salt in Denmark: a prospective population study. J ClinEndocrinolMetab 92:3122–3127

    Article  CAS  Google Scholar 

  16. Vejbjerg P, Knudsen N, Perrild H, Carle A, Laurberg P, Pedersen IB, Rasmussen LB, Ovesen L, Jorgensen T (2007) Effect of a mandatory iodization program on thyroid gland volume based on individuals’ age, gender, and preceding severity of dietary iodine deficiency: a prospective, population-based study. J ClinEndocrinolMetab 92:1397–1401

    Article  CAS  Google Scholar 

  17. Peteresen M, Pedersen IB, Knudsen M, Andersen S, Jørgensen T, Perrild H, Ovesen L, Rasmussen LB, Thuesen BH, Carlé A (2019) Changes in subtypes of overt thyrotoxicosis and hypothyroidism following iodine fortification. ClinEndocrinol 91:652–659. https://doi.org/10.1111/cen.14072

    Article  CAS  Google Scholar 

  18. Baltisberger BL, Minder CE, Burgi H (1995) Decrease of incidence of toxic nodular goitre in a region of Switzerland after full correction of mild iodine deficiency. Eur J Endocrinol 132:546–549

    Article  CAS  Google Scholar 

  19. Mostbeck A, Galvan G, Bauer P et al (1990) The incidence of hyperthyroidism in Austria from 1987 to 1995 before and after an increase in salt iodization in 1990. Eur J Nucl Med 25:367–374

    Article  Google Scholar 

  20. Aghini Lombardi F, Fiore E, Tonacchera M, Antonangeli M, Rago T, Frigeri M, Provenzale AM, Montanelli L, Grasso L, Pinchera A, Vitti P (2010) The effect of voluntary iodine prophylaxis in a small rural community: the Pescopagano survey 15 years later. J ClinEndocrinolMetab 98:1031–1039. https://doi.org/10.1210/jc.2012-2960

    Article  CAS  Google Scholar 

  21. Ippolito S, Cusini C, Lasalvia P, Gianfagna F, Veronesi G, Gallo D, Masiello E, Premoli P, Sabatino J, Mercuriali A, Lai A, Piantanida E, Tanda ML, Bartalena L (2020) Change in newly diagnosed Graves’ disease phenotype between the twentieth and the twenty-first centuries: meta-analysis and meta-regression. J Endocrinol Invest. https://doi.org/10.1007/s40618-020-01479-z

    Article  PubMed  PubMed Central  Google Scholar 

  22. Teng W, Shan Z, Teng X et al (2006) Effect of iodine intake on thyroid diseases in China. N Engl J Med 354:2783–2793

    Article  CAS  Google Scholar 

  23. Li Y, Teng D, Shan Z et al (2008) Antithyroperoxidase and antithyroglobulin antibodies in a five- year follow-up survey of populations with different iodine intakes. J ClinEndocrinolMetab 93:1751–1757

    Article  CAS  Google Scholar 

  24. Shan Z, Chen L, Lian X, Liu C, Shi B, Shi L, Tong N, Wang S, Weng J, Zhao J, Teng X, Yu X, Lai Y, Wang W, Li C, Mao J, Li Y, Fan C, Teng W (2016) Iodine status and prevalence of thyroid disorders after introduction of mandatory universal salt iodization for 16 years in china: a cross-sectional study in 10 Cities. Thyroid 26:1125–1130. https://doi.org/10.1089/thy.2015.0613

    Article  CAS  PubMed  Google Scholar 

  25. Li Y, Teng D, Ba J et al (2020) Efficacy and safety of long-term universal salt iodization on thyroid disorders: epidemiological evidence from 31 provinces of Mainland China. Thyroid 30:568–579. https://doi.org/10.1089/thy.2019.0067

    Article  CAS  PubMed  Google Scholar 

  26. Teng D, Yang W, Shi X et al (2020) An inverse relationship between iodine intake and thyroid antibodies: a national cross-sectional survey in Mainland China. Thyroid 30:1656–1665. https://doi.org/10.1089/thy.2020.0037

    Article  CAS  PubMed  Google Scholar 

  27. Delange F (1995) Correction of iodine deficiency: benefits and possible side effects. Eur J Endocrinol 132(542):543

    Google Scholar 

  28. Kahaly GJ, Dienes HP, Beyer J, Hommel, (1998) IodG ide induces thyroid autoimmunity in patients with endemic goitre: a randomised, double-blind, placebo-controlled trial. Eur J Endocrinol 139:290–297

    Article  CAS  Google Scholar 

  29. Zimmermann MB, Moretti D, Chaouki N, Torresani T (2003) Introduction of iodized salt to severely iodine-deficient children does not provoke thyroid autoimmunity: a one-year prospective trial in northern Morocco. Thyroid 13:199–203

    Article  CAS  Google Scholar 

  30. Pedersen IB, Knudsen N, Carlé A, Vejbjerg P, Jørgensen T, Perrild H, Ovesen L, Rasmussen LB, Laurberg P (2011) A cautious iodization program bringing iodine intake to a low recommended level is associated with an increase in the prevalence of thyroid autoantibodies in the population. ClinEndocrinol 75:120–126

    CAS  Google Scholar 

  31. Bliddal S, Borresen SW, Feldt-Rasmussen U (2017) Increase in thyroglobulin antibody and thyroid peroxidase antibody levels, but not preterm birth-rate, in pregnant Danish women upon iodine fortification. Eur J Endocrinol 176:603–612

    Article  CAS  Google Scholar 

  32. Latrofa F, Fiore E, Rago T, Antonangeli L, Montanelli L, Ricci D, Provenzale MA, Scutari MA, Frigeri M, Tonacchera M, Vitti P (2013) Iodine contributes to thyroid autoimmunity in humans by unmasking a cryptic epitope on thyroglobulin. J ClinEndocrinolMetab 98:E1768–E2177

    Article  CAS  Google Scholar 

  33. Premawardhana LD, Parkes AB, Smyth PP, Wijeyaratne CN, Jayasinghe A, de Silva DG, Lazarus JH (2000) Increased prevalence of thyroglobulin antibodies in Sri Lankan schoolgirls-is iodine the cause? Eur J Endocrinol 143:185–188

    Article  CAS  Google Scholar 

  34. Mazziotti G, Premawardhana LD, Parkes AB, Adams H, Smyth PP, Smith DF, Kaluarachi WN, Wijeyaratne CN, Jayasinghe A, de Silva DG, Lazarus JH (2003) Evolution of thyroid autoimmunity during iodine prophylaxis. The Sri Lankan experience. Eur J Endocrinol 149:103–110

    Article  CAS  Google Scholar 

  35. Premawardhana LDKE, Parker AR, Mazziotti G, Lazarus JG (2003) Autoimmune thyroiditis after elimination of iodine deficiency in Sri Lanka. Thyroid 13:1187–1188

    Article  CAS  Google Scholar 

  36. Jayatissa R, Okosieme O, Ranasinghe S, Carter JL, Gunatunga I, Lazarus JH, Premawardhana L (2021) Thyroid autoimmunity and dysfunction in Sri Lankan children and adolescents after twenty-two years of sustained universal salt iodisation. Thyroid. https://doi.org/10.1089/thy.2020.0798

    Article  PubMed  Google Scholar 

  37. Teng X, Shan Z, Chen Y, Lai Y, Yu J, Shan L, Bai X, Li Y, Li N, Li Z, Wang S, Xing Q, Xue H, Zhu L, Hou X, Fan C, Teng W (2011) More than adequate iodine intake may increase subclinical hypothyroidism and autoimmune thyroiditis: a cross-sectional study based on two Chinese communities with different iodine intake levels. Eur J Endocrinol 164:943–950. https://doi.org/10.1530/EJE-10-104

    Article  CAS  PubMed  Google Scholar 

  38. Chen C, Xu H, Chen Y, Chen Y, Li Q, Hu J, Liang W, Cheng J, Xia F, Wang C, Han B, Zheng Y, Jiang B, Wang N, Lu Y (2017) Iodized salt intake and its association with urinary iodine, thyroid peroxidase antibodies, and thyroglobulin antibodies among urban Chinese. Thyroid 27:1566–1573. https://doi.org/10.1089/thy.2017.0385

    Article  CAS  PubMed  Google Scholar 

  39. Sun J, Teng D, Li C, Peng S, Mao J, Wang W, Xie X, Fan C, Li C, Meng T, Zhang S, Du J, Gao Z, Shan Z, Teng W (2020) Association between iodine intake and thyroid autoantibodies: a cross-sectional study of 7073 early pregnant women in an iodine-adequate region. J Endocrinol Invest 43(1):43–51. https://doi.org/10.1007/s40618-019-01070-1

    Article  CAS  PubMed  Google Scholar 

  40. Allen EM, Appel MC, Braverman LE (1986) The effect of iodide ingestion on the development of spontaneous lymphocytic thyroiditis in the diabetes-prone BB/W rat. Endocrinology 118:1977–1981

    Article  CAS  Google Scholar 

  41. Sundick RS, Bagchi N, Brown TR (1996) The obese strain chicken as a model for human Hashimoto’s thyroiditis. ExpClinEndocrinol Diabetes 104:4–6. https://doi.org/10.1055/s-0029-1211668

    Article  CAS  Google Scholar 

  42. Rasooly L, Burek CL, Rose NR (1996) Iodine-induced autoimmune thyroiditis in NOD-H-2h4 mice. ClinImmunolImmunopathol 81:287–292. https://doi.org/10.1006/clin.1996.0191

    Article  CAS  Google Scholar 

  43. Kolypetri P, King J, Larijani M, Carayanniotis G (2015) Genes and environment as predisposing factors in autoimmunity: acceleration of spontaneous thyroiditis by dietary iodide in NOD.H2(h4) mice. Int Rev Immunol 34:542–556. https://doi.org/10.3109/08830185.2015.1065828

    Article  CAS  PubMed  Google Scholar 

  44. Burek CL, Rose NR (2008) Autoimmune thyroiditis and ROS. Autoimmun Rev 7:530–537. https://doi.org/10.1016/j.autrev.2008.04.006

    Article  CAS  PubMed  Google Scholar 

  45. Barin JG, Talor MV, Sharma RB, Rose NR, Burek CL (2005) Iodination of murine thyroglobulin enhances autoimmune reactivity in the NOD.H2h4 mouse. ClinExpImmunol 142:251–259

    CAS  Google Scholar 

  46. Kolypetri P, Carayanniotis G (2014) Apoptosis of NOD.H2h4 thyrocytes by low concentrations of iodide is associated with impaired control of oxidative stress. Thyroid 24:1170–1178. https://doi.org/10.1089/thy.2013.0676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sharma R, Traore K, Trush MA, Rose NR, Burek CL (2008) Intracellular adhesion molecule-1 up-regulation on thyrocytes by iodine of non-obese diabetic.H2(h4) mice is reactive oxygen species-dependent. ClinExpImmunol 152:13–20. https://doi.org/10.1111/j.1365-2249.2008.03590.x

    Article  CAS  Google Scholar 

  48. Ruggeri RM, CampennÌ A, Giuffrida G, Casciaro M, Barbalace MC, Hrelia S, Trimarchi F, Cannavò S, Gangemi S (2020) Oxidative stress as a key feature of autoimmune thyroiditis: an update. Minerva Endocrinol 45:326–344. https://doi.org/10.23736/S0391-1977.20.03268-X

    Article  PubMed  Google Scholar 

  49. Weetman AP (2021) An update on the pathogenesis of Hashimoto’s thyroiditis. J Endocrinol Invest. https://doi.org/10.1007/s40618-020-01477

    Article  PubMed  Google Scholar 

  50. Ajjan RA, Weetman AP (2015) The pathogenesis of Hashimoto’s thyroiditis: further developments in our understanding. HormMetab Res 47(10):702–710. https://doi.org/10.1055/s-0035-1548832

    Article  CAS  Google Scholar 

  51. Ruggeri RM, Barbalace C, Cristani MT et al (2020) Serum levels of advanced glycation end products (AGEs) are increased and their soluble receptor (sRAGE) reduced in Hashimoto’s thyroiditis. J Endocrinol Invest 43:1337–1342

    Article  CAS  Google Scholar 

  52. Weetman AP (2013) The immunopathogenesis of chronic autoimmune thyroiditis one century after Hashimoto. Eur Thyroid J 1:243–250. https://doi.org/10.1159/000343834

    Article  PubMed  Google Scholar 

  53. Ruggeri RM, Cristani M, Vicchio TM, Alibrandi A, Giovinazzo S, Saija A, Campennì A, Trimarchi F, Gangemi S (2019) Increased serum interleukin-37 (IL-37) levels correlate with oxidative stress parameters in Hashimoto’s thyroiditis. J Endocrinol Invest 42:199–205. https://doi.org/10.1007/s40618-018-0903-3

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was not supported by any grant.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to the review article. Francesco Trimarchi had the idea for the article. Rosaria M. Ruggeri performed the literature search and data analysis and drafted the work. Francesco Trimarchi critically revised the work. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to R. M. Ruggeri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This paper does not contain any studies with human participants performed by the authors.

Informed consent

No informed consent.

Research involving human participants and/or animals

No animals were used for this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruggeri, R.M., Trimarchi, F. Iodine nutrition optimization: are there risks for thyroid autoimmunity?. J Endocrinol Invest 44, 1827–1835 (2021). https://doi.org/10.1007/s40618-021-01548-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-021-01548-x

Keywords

Navigation