Skip to main content

Advertisement

Log in

Abrupt transition from fractional crystallization to magma mixing at Gorely volcano (Kamchatka) after caldera collapse

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

A series of large caldera-forming eruptions (361–38 ka) transformed Gorely volcano, southern Kamchatka Peninsula, from a shield-type system dominated by fractional crystallization processes to a composite volcanic center, exhibiting geochemical evidence of magma mixing. Old Gorely, an early shield volcano (700–361 ka), was followed by Young Gorely eruptions. Calc-alkaline high magnesium basalt to rhyolite lavas have been erupted from Gorely volcano since the Pleistocene. Fractional crystallization dominated evolution of the Old Gorely magmas, whereas magma mixing is more prominent in the Young Gorely eruptive products. The role of recharge-evacuation processes in Gorely magma evolution is negligible (a closed magmatic system); however, crustal rock assimilation plays a significant role for the evolved magmas. Most Gorely magmas differentiate in a shallow magmatic system at pressures up to 300 MPa, ∼3 wt% H2O, and oxygen fugacity of ∼QFM + 1.5 log units. Magma temperatures of 1123–1218 °C were measured using aluminum distribution between olivine and spinel in Old and Young Gorely basalts. The crystallization sequence of major minerals for Old Gorely was as follows: olivine and spinel (Ol + Sp) for mafic compositions (more than 5 wt% of MgO); clinopyroxene and plagioclase crystallized at ∼5 wt% of MgO (Ol + Cpx + Plag) and magnetite at ∼3.5 wt% of MgO (Ol + Cpx + Plag + Mt). We show that the shallow magma chamber evolution of Old Gorely occurs under conditions of decompression and degassing. We find that the caldera-forming eruption(s) modified the magma plumbing geometry. This led to a change in the dominant magma evolution process from fractional crystallization to magma mixing. We further suggest that disruption of the magma chamber and accompanying change in differentiation process have the potential to transform a shield volcanic system to that of composite cone on a global scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Aiuppa A, Giudice G, Liuzzo M, Tamburello G, Allard P, Calabrese S, Chaplygin I, McGonigle AJS, Taran Y (2012) First volatile inventory for Gorely volcano, Kamchatka. Geophys Res Lett 39(6), L06307. doi:10.1029/2012GL051177

    Article  Google Scholar 

  • Almeev RR, Holtz F, Koepke J, Parat F, Botcharnikov RE (2007) The effect of H2O on olivine crystallization in MORB: experimental calibration at 200 MPa. Am Mineral 92(4):670–674. doi:10.2138/am.2007.2484

    Article  Google Scholar 

  • Almeev RR, Kimura JI, Ariskin AA, Ozerov AY (2013) Decoding crystal fractionation in calc-alkaline magmas from the Bezymianny volcano (Kamchatka, Russia) using mineral and bulk rock compositions. J Volcanol Geotherm Res 263:141–171. doi:10.1016/j.jvolgeores.2013.01.003

    Article  Google Scholar 

  • Amelung F, Day S (2002) InSAR observations of the 1995 Fogo, Cape Verde, eruption: implications for the effects of collapse events upon island volcanoes. Geophys Res Lett 29(12):47–41–47–44. doi:10.1029/2001GL013760

    Article  Google Scholar 

  • Andersen DJ, Lindsley DH (1988) Internally consistent solution models for Fe-Mg-Mn-Ti oxides; Fe-Ti oxides. Am Mineral 73(7–8):714–726

    Google Scholar 

  • Anderson AT (1976) Magma mixing: petrological process and volcanological tool. J Volcanol Geotherm Res 1(1):3–33. doi:10.1016/0377-0273(76)90016-0

    Article  Google Scholar 

  • Annen C, Blundy JD, Sparks RSJ (2006) The genesis of intermediate and silicic magmas in deep crustal hot zones. J Petrol 47(3):505–539. doi:10.1093/petrology/egi084

    Article  Google Scholar 

  • Arculus RJ (2003) Use and abuse of the terms calcalkaline and calcalkalic. J Petrol 44(5):929–935. doi:10.1093/petrology/44.5.929

    Article  Google Scholar 

  • Ariskin AA, Barmina GS (1999) An empirical model for the calculation of spinel-melt equilibria in mafic igneous systems at atmospheric pressure: 2. Fe-Ti oxides. Contrib Mineral Petrol 134(2–3):251–263. doi:10.1007/s004100050482

    Article  Google Scholar 

  • Ariskin AA, Barmina GS, Ozerov AY, Nielsen RL (1995) Genesis of high-alumina basalts from Klyuchevskoi volcano. Petrology 3(5):449–472

    Google Scholar 

  • Atherton MP, Petford N (1993) Generation of sodium-rich magmas from newly underplated basaltic crust. Nature 362(6416):144–146. doi:10.1038/362144a0

    Article  Google Scholar 

  • Auer S, Bindeman I, Wallace P, Ponomareva V, Portnyagin M (2009) The origin of hydrous, high-δ18O voluminous volcanism: diverse oxygen isotope values and high magmatic water contents within the volcanic record of Klyuchevskoy volcano, Kamchatka, Russia. Contrib Mineral Petrol 157(2):209–230. doi:10.1007/s00410-008-0330-0

    Article  Google Scholar 

  • Avdeiko GP, Savelyev DP, Palueva AA, Popruzhenko SV (2007) Evolution of the Kurile-Kamchatkan volcanic arcs and dynamics of the Kamchatka-Aleutian Junction. In: Volcanism and subduction: the Kamchatka region. American Geophysical Union, p 3755. doi:10.1029/172GM04

  • Baboshina VA, Tereschenkov AA, Kharakhinov VV (1984) Deep structure of the Sea of Okhotsk according to geophysical data, overview information. Vsesouzniy Nauchno‐Issledovatelskiy Institute (VNII) Gazprom 3:41 (in Russian)

    Google Scholar 

  • Ballhaus C, Berry RF, Green DH (1990) Oxygen fugacity controls in the Earth’s upper mantle. Nature 348(6300):437–440. doi:10.1038/348437a0

    Article  Google Scholar 

  • Batanova VG, Sobolev AV, Kuzmin DV (2015) Trace element analysis of olivine: high precision analytical method for JEOL JXA-8230 electron probe microanalyser. Chem Geol 419:149–157. doi:10.1016/j.chemgeo.2015.10.042

    Article  Google Scholar 

  • Belousov A (1996) Deposits of the 30 March 1956 directed blast at Bezymianny volcano, Kamchatka, Russia. Bull Volcanol 57(8):649–662. doi:10.1007/s004450050118

    Article  Google Scholar 

  • Bindeman IN, Simakin AG (2014) Rhyolites—hard to produce, but easy to recycle and sequester: integrating microgeochemical observations and numerical models. Geosphere 10(5):930–957. doi:10.1130/ges00969.1

    Article  Google Scholar 

  • Bindeman IN, Davis AM, Drake MJ (1998) Ion microprobe study of plagioclase-basalt partition experiments at natural concentration levels of trace elements. Geochim Cosmochim Acta 62(7):1175–1193. doi:10.1016/S0016-7037(98)00047-7

    Article  Google Scholar 

  • Bindeman IN, Leonov VL, Izbekov PE, Ponomareva VV, Watts KE, Shipley NK, Perepelov AB, Bazanova LI, Jicha BR, Singer BS, Schmitt AK, Portnyagin MV, Chen CH (2010) Large-volume silicic volcanism in Kamchatka: Ar–Ar and U–Pb ages, isotopic, and geochemical characteristics of major pre-Holocene caldera-forming eruptions. J Volcanol Geotherm Res 189(1–2):57–80. doi:10.1016/j.jvolgeores.2009.10.009

    Article  Google Scholar 

  • Bird P (2003) An updated digital model of plate boundaries. Geochem Geophys Geosyst 4(3):1027. doi:10.1029/2001GC000252

    Article  Google Scholar 

  • Bohrson WA, Spera FJ (2001) Energy-constrained open-system magmatic processes II: application of energy-constrained assimilation–fractional crystallization (EC-AFC) model to magmatic systems. J Petrol 42(5):1019–1041. doi:10.1093/petrology/42.5.1019

    Article  Google Scholar 

  • Braitseva OA, Melekestsev IV, Ponomareva VV, Sulerzhitsky LD (1995) Ages of calderas, large explosive craters and active volcanoes in the Kuril-Kamchatka region, Russia. Bull Volcanol 57(6):383–402. doi:10.1007/BF00300984

    Google Scholar 

  • Branney M, Acocella V (2015) Chapter 16—Calderas. In: Sigurdsson H (ed) The encyclopedia of volcanoes, 2nd edn. Academic, Amsterdam, pp 299–315. doi:10.1016/B978-0-12-385938-9.00016-X

    Chapter  Google Scholar 

  • Brophy J (2008) A study of rare earth element (REE)–SiO2 variations in felsic liquids generated by basalt fractionation and amphibolite melting: a potential test for discriminating between the two different processes. Contrib Mineral Petrol 156(3):337–357. doi:10.1007/s00410-008-0289-x

    Article  Google Scholar 

  • Buddington AF, Lindsley DH (1964) Iron-titanium oxide minerals and synthetic equivalents. J Petrol 5(2):310–357. doi:10.1093/petrology/5.2.310

    Article  Google Scholar 

  • Budnikov BA (1988) The eruption of Gorely volcano in April 1986. J Volcanol Seismol 4:99–103 (in Russian)

    Google Scholar 

  • Bulin NK (1977) Deep structure of Kamchatka and Kuril Islands from seismic data. Soviet Geol 5:140–148 (in Russian)

    Google Scholar 

  • Chappell BW, White AJR (2001) Two contrasting granite types: 25 years later. Aust J Earth Sci 48(4):489–499. doi:10.1046/j.1440-0952.2001.00882.x

    Article  Google Scholar 

  • Chashchin AA, Martynov YA (2011) Petrology of Gorely and Mutnovsky volcanoes rocks (Southern Kamchatka). Dalnauka, Vladivostok, p 270 (in Russian)

    Google Scholar 

  • Chashchin AA, Martynov YA, Perepelov AB, Ekimova NI, Vladimirova TP (2011) Physical and chemical conditions of the formation and evolution of late pleistocene-holocene magmas of the Gorely and Mutnovsky volcanoes, southern Kamchatka. Russ J Pac Geol 5(4):348–367. doi:10.1134/S1819714011040038

    Article  Google Scholar 

  • Churikova T, Dorendorf F, Worner G (2001) Sources and fluids in the mantle wedge below Kamchatka, evidence from across-arc geochemical variation. J Petrol 42(8):1567–1593. doi:10.1093/petrology/42.8.1567

    Article  Google Scholar 

  • Danyushevsky LV (2001) The effect of small amounts of H2O on crystallisation of mid-ocean ridge and backarc basin magmas. J Volcanol Geotherm Res 110(3–4):265–280. doi:10.1016/S0377-0273(01)00213-X

    Article  Google Scholar 

  • Danyushevsky LV, Plechov P (2011) Petrolog3: integrated software for modeling crystallization processes. Geochem Geophys Geosyst 12(7), Q07021. doi:10.1029/2011GC003516

    Article  Google Scholar 

  • Danyushevsky LV, Sobolev AV, Dmitriev LV (1996) Estimation of the pressure of crystallization and H2O content of MORB and BABB glasses: calibration of an empirical technique. Mineral Petrol 57(3–4):185–204. doi:10.1007/BF01162358

    Article  Google Scholar 

  • Davidson J, de Silva S (2000) Composite volcanoes. In: Sigurdsson H (ed) The encyclopedia of volcanoes. Academic Press, p 663–682

  • DeMets C, Gordon RG, Argus DF, Stein S (1990) Current plate motions. Geophys J Int 101(2):425–478. doi:10.1111/j.1365-246X.1990.tb06579.x

    Article  Google Scholar 

  • DePaolo DJ (1981) Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth Planet Sci Lett 53(2):189–202. doi:10.1016/0012-821X(81)90153-9

    Article  Google Scholar 

  • Donovan JJ (2012) Probe for EPMA: acquisition, automation and analysis, Enterpriseth edn. Probe Software, Inc., Eugene

    Google Scholar 

  • Duggen S, Portnyagin M, Baker J, Ulfbeck D, Hoernle K, Garbe-Schönberg D, Grassineau N (2007) Drastic shift in lava geochemistry in the volcanic-front to rear-arc region of the Southern Kamchatkan subduction zone: evidence for the transition from slab surface dehydration to sediment melting. Geochim Cosmochim Acta 71(2):452–480. doi:10.1016/j.gca.2006.09.018

    Article  Google Scholar 

  • Eichelberger JC (1978) Andesitic volcanism and crustal evolution. Nature 275(5675):21–27. doi:10.1038/275021a0

    Article  Google Scholar 

  • Eichelberger JC (1980) Vesiculation of mafic magma during replenishment of silicic magma reservoirs. Nature 288(5790):446–450. doi:10.1038/288446a0

    Article  Google Scholar 

  • Fedotov SA, Masurenkov YP (eds) (1991) Active volcanoes of Kamchatka. Nauka, Moscow

    Google Scholar 

  • Feig S, Koepke J, Snow J (2006) Effect of water on tholeiitic basalt phase equilibria: an experimental study under oxidizing conditions. Contrib Mineral Petrol 152(5):611–638. doi:10.1007/s00410-006-0123-2

    Article  Google Scholar 

  • Ford CE, Russel DG, Graven JA, Fisk MR (1983) Olivine-liquid equilibria: temperature, pressure and composition dependence of the crystal/liquid cation partition coefficients for Mg, Fe2+, Ca and Mn. J Petrol 24(3):256–266. doi:10.1093/petrology/24.3.256

    Article  Google Scholar 

  • Gavrilenko M, Herzberg C, Vidito C, Carr MJ, Tenner TJ, Ozerov AY (2016) A preliminary olivine geohygrometer and its application to subduction zone magmatism. J Petrol. (in review)

  • Gill JB (1981) Orogenic andesites and plate tectonics. Springer-Verlag. doi:10.1007/978-3-642-68012-0

  • Ginibre C, Wörner G (2007) Variable parent magmas and recharge regimes of the Parinacota magma system (N. Chile) revealed by Fe, Mg and Sr zoning in plagioclase. Lithos 98(1–4):118–140. doi:10.1016/j.lithos.2007.03.004

    Article  Google Scholar 

  • Gorbach NV, Portnyagin MV (2011) Geology and petrology of the lava complex of Young Shiveluch Volcano, Kamchatka. Petrology 19(2):134–166. doi:10.1134/s0869591111020068

    Article  Google Scholar 

  • Gorbach N, Portnyagin M, Tembrel I (2013) Volcanic structure and composition of Old Shiveluch volcano, Kamchatka. J Volcanol Geotherm Res 263:193–208. doi:10.1016/j.jvolgeores.2012.12.012

    Article  Google Scholar 

  • Gorbatov A, Kostoglodov V, Suárez G, Gordeev E (1997) Seismicity and structure of the Kamchatka subduction zone. J Geophys Res: Solid Earth 102(B8):17883–17898. doi:10.1029/96JB03491

    Article  Google Scholar 

  • Gorbatov A, Domínguez J, Suárez G, Kostoglodov V, Zhao D, Gordeev E (1999) Tomographic imaging of the P-wave velocity structure beneath the Kamchatka peninsula. Geophys J Int 137(2):269–279. doi:10.1046/j.1365-246X.1999.t01-1-00801.x

    Article  Google Scholar 

  • Grove T, Elkins-Tanton L, Parman S, Chatterjee N, Müntener O, Gaetani G (2003) Fractional crystallization and mantle-melting controls on calc-alkaline differentiation trends. Contrib Mineral Petrol 145(5):515–533. doi:10.1007/s00410-003-0448-z

    Article  Google Scholar 

  • Gudmundsson A (2011) Deflection of dykes into sills at discontinuities and magma-chamber formation. Tectonophysics 500(1–4):50–64. doi:10.1016/j.tecto.2009.10.015

    Article  Google Scholar 

  • Herzberg C, Vidito C, Starkey N (2016) Nickel—cobalt contents of olivine record origins of mantle peridotite and related rocks. Am Mineral. (accepted, in press)

  • Hildreth W, Moorbath S (1988) Crustal contributions to arc magmatism in the Andes of Central Chile. Contrib Mineral Petrol 98(4):455–489. doi:10.1007/BF00372365

    Article  Google Scholar 

  • Ishikawa T, Tera F, Nakazawa T (2001) Boron isotope and trace element systematics of the three volcanic zones in the Kamchatka arc. Geochim Cosmochim Acta 65(24):4523–4537. doi:10.1016/S0016-7037(01)00765-7

    Article  Google Scholar 

  • Ivanov BV, Droznin VA, Vakin EA, Ivanov VV, Ovsyannikov AA, Razina AA (1988) Eruption of Gorely volcano in 1985. J Volcanol Seismol 4:93–98 (in Russian)

    Google Scholar 

  • Iwasaki T, Levin V, Nikulin A, Iidaka T (2013) Constraints on the Moho in Japan and Kamchatka. Tectonophysics 609:184–201. doi:10.1016/j.tecto.2012.11.023

    Article  Google Scholar 

  • Izbekov P, Gardner JE, Eichelberger JC (2004) Comagmatic granophyre and dacite from Karymsky volcanic center, Kamchatka: experimental constraints for magma storage conditions. J Volcanol Geotherm Res 131(1–2):1–18. doi:10.1016/S0377-0273(03)00312-3

    Article  Google Scholar 

  • Jarosewich E, Nelen JA, Norberg JA (1980) Reference samples for electron microprobe analysis. Geostand Newslett 4(1):43–47. doi:10.1111/j.1751-908X.1980.tb00273.x

    Article  Google Scholar 

  • Kelley KA, Cottrell E (2009) Water and the oxidation state of subduction zone magmas. Science 325(5940):605–607. doi:10.1126/science.1174156

    Article  Google Scholar 

  • Kinzler RJ, Grove TL, Recca SI (1990) An experimental study on the effect of temperature and melt composition on the partitioning of nickel between olivine and silicate melt. Geochimica Et Cosmochimica Acta 54(5):1255–1265. doi:10.1016/0016-7037(90)90151-a

    Article  Google Scholar 

  • Kirsanov IT (1964) State of the volcanoes Gorely and Mutnovsky for the period from October 1959 to October 1960. Bull Volcano Station 35:34–43 (in Russian)

    Google Scholar 

  • Kirsanov IT (1985) Gorely volcano, its geological structure, the last eruptions, and composition of the products. In: (1985) Volcanic activity, its mechanism, the link with geodynamics, eruptions and earthquakes forecast, Petropavlovsk-Kamchatsky, p 32–33. (in Russian)

  • Kirsanov IT, Fedorov MV (1964) Ignimbrites of Gorely volcano. In: (1964) Problems of volcanism. Proceedings of the II USSR Volcanological Meeting. Petropavlovsk-Kamchatsky, p 45–47. (in Russian)

  • Kirsanov IT, Melekescev IV (1991) Gorely volcano. In: Fedotov SA, Masurenkov YP (eds) Active volcanoes of Kamchatka. Nauka, Moscow, pp 294–317

    Google Scholar 

  • Kirsanov IT, Ozerov AY (1983) The products composition and energetic effect of the Gorely volcano eruption in 1980–1981. J Volcanol Seismol 1:25–42 (in Russian)

    Google Scholar 

  • Kirsanov IT, Ogorodov NV, Chirkov AM (1964) State Mutnovsky and Gorely volcanoes between November 1960 and June 1961. Bull Volcano Station 36:39–47 (in Russian)

    Google Scholar 

  • Kress VC, Carmichael ISE (1988) Stoichiometry of the iron oxidation reaction in silicate melts. Am Mineral 73(11–12):1267–1274

    Google Scholar 

  • Kulakov VS (1936) Volcanic observations in Kamchatka. Priroda 10:53–54 (in Russian)

    Google Scholar 

  • Langmuir CH, Vocke RD Jr, Hanson GN, Hart SR (1978) A general mixing equation with applications to Icelandic basalts. Earth Planet Sci Lett 37(3):380–392. doi:10.1016/0012-821X(78)90053-5

    Article  Google Scholar 

  • Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on the total alkali-silica diagram. J Petrol 27(3):745–750. doi:10.1093/petrology/27.3.745

    Article  Google Scholar 

  • Le Maitre RW, Bateman P, Dudek A, Keller J, Lameyre J, Le Bas MJ, Sabine PA, Schmid R, Sorensen H, Streckeisen A, Woolley AR, Zanettin B (1989) A classification of igneous rocks and glossary of terms: recommendations of the international Union Of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Blackwell Scientific, Oxford

    Google Scholar 

  • Lee C-TA, Luffi P, Plank T, Dalton H, Leeman WP (2009) Constraints on the depths and temperatures of basaltic magma generation on Earth and other terrestrial planets using new thermobarometers for mafic magmas. Earth Planet Sci Lett 279(1–2):20–33. doi:10.1016/j.epsl.2008.12.020

    Article  Google Scholar 

  • Lee C-TA, Luffi P, Chin EJ, Bouchet R, Dasgupta R, Morton DM, Le Roux V, Q-z Y, Jin D (2012) Copper systematics in arc magmas and implications for crust-mantle differentiation. Science 336(6077):64–68. doi:10.1126/science.1217313

    Article  Google Scholar 

  • Lee C-TA, Lee TC, Wu C-T (2014) Modeling the compositional evolution of recharging, evacuating, and fractionating (REFC) magma chambers: implications for differentiation of arc magmas. Geochim Cosmochim Acta 143:8–22. doi:10.1016/j.gca.2013.08.009

    Article  Google Scholar 

  • Lees JM (1992) The magma system of Mount St. Helens: non-linear high-resolution P-wave tomography. J Volcanol Geotherm Res 53(1–4):103–116. doi:10.1016/0377-0273(92)90077-Q

    Article  Google Scholar 

  • Levin V, Park J, Brandon M, Lees J, Peyton V, Gordeev E, Ozerov A (2002) Crust and upper mantle of Kamchatka from teleseismic receiver functions. Tectonophysics 358(1–4):233–265. doi:10.1016/s0040-1951(02)00426-2

    Article  Google Scholar 

  • Levin V, Droznina S, Gavrilenko M, Carr MJ, Senyukov S (2014) Seismically active subcrustal magma source of the Klyuchevskoy volcano in Kamchatka, Russia. Geology 42(11):983–986. doi:10.1130/g35972.1

    Article  Google Scholar 

  • Lipman PW (1997) Subsidence of ash-flow calderas: relation to caldera size and magma-chamber geometry. Bull Volcanol 59(3):198–218. doi:10.1007/s004450050186

    Article  Google Scholar 

  • Longpré M-A, Troll VR, Walter TR, Hansteen TH (2009) Volcanic and geochemical evolution of the Teno massif, Tenerife, Canary Islands: some repercussions of giant landslides on ocean island magmatism. Geochem Geophys Geosyst 10(12). doi:10.1029/2009GC002892

  • Manconi A, Longpré M-A, Walter TR, Troll VR, Hansteen TH (2009) The effects of flank collapses on volcano plumbing systems. Geology 37(12):1099–1102. doi:10.1130/g30104a.1

    Article  Google Scholar 

  • Menand T (2008) The mechanics and dynamics of sills in layered elastic rocks and their implications for the growth of laccoliths and other igneous complexes. Earth Planet Sci Lett 267(1–2):93–99. doi:10.1016/j.epsl.2007.11.043

    Article  Google Scholar 

  • Mironov NL, Portnyagin MV (2011) H2O and CO2 in parental magmas of Kliuchevskoi volcano inferred from study of melt and fluid inclusions in olivine. Russ Geol Geophys 52(11):1353–1367. doi:10.1016/j.rgg.2011.10.007

    Article  Google Scholar 

  • Mironov N, Portnyagin M, Botcharnikov R, Gurenko A, Hoernle K, Holtz F (2015) Quantification of the CO2 budget and H2O–CO2 systematics in subduction-zone magmas through the experimental hydration of melt inclusions in olivine at high H2O pressure. Earth Planet Sci Lett 425:1–11. doi:10.1016/j.epsl.2015.05.043

    Article  Google Scholar 

  • Miyashiro A (1974) Volcanic rock series in island arcs and active continental margins. Am J Sci 274(4):321–355. doi:10.2475/ajs.274.4.321

    Article  Google Scholar 

  • Morimoto N, Fabries J, Ferguson AK, Ginzburg IV, Ross M, Seifert FA, Zussman J, Aoki K, Gottardi G (1988) Nomenclature of pyroxenes. Am Mineral 73(9–10):1123–1133

    Google Scholar 

  • Müller RD, Sdrolias M, Gaina C, Roest WR (2008) Age, spreading rates, and spreading asymmetry of the world’s ocean crust. Geochem Geophys Geosyst 9(4). doi:10.1029/2007GC001743

  • Nikulin A, Levin V, Carr M, Herzberg C, West M (2012) Evidence for two upper mantle sources driving volcanism in Central Kamchatka. Earth Planet Sci Lett 321–322:14–19. doi:10.1016/j.epsl.2011.12.039

    Article  Google Scholar 

  • Norman MD, Pearson NJ, Sharma A, Griffin WL (1996) Quantitative analysis of trace elements in geological materials by laser ablation ICPMS: instrumental operating conditions and calibration values of NIST glasses. Geostand Newslett 20(2):247–261. doi:10.1111/j.1751-908X.1996.tb00186.x

    Article  Google Scholar 

  • Novograblenov PT (1932) Catalogue of volcanoes of Kamchatka. News of the state geographical society 64(1):88–99. (in Russian)

  • Oldenburg CM, Spera FJ, Yuen DA, Sewell G (1989) Dynamic mixing in magma bodies: theory, simulations, and implications. J Geophys Res: Solid Earth 94(B7):9215–9236. doi:10.1029/JB094iB07p09215

    Article  Google Scholar 

  • O’Neill HS, Jenner FE (2012) The global pattern of trace-element distributions in ocean floor basalts. Nature 491(7426):698–704. doi:10.1038/nature11678

    Article  Google Scholar 

  • Orihashi Y, Hirata T (2003) Rapid quantitative analysis of Y and REE abundances in XRF glass bead for selected GSJ reference rock standards using Nd-YAG 266 nm UV laser ablation ICP-MS. Geochem J 37(3):401–412. doi:10.2343/geochemj.37.401

    Article  Google Scholar 

  • Ozerov AY (2000) The evolution of high-alumina basalts of the Klyuchevskoy volcano, Kamchatka, Russia, based on microprobe analyses of mineral inclusions. J Volcanol Geotherm Res 95(1–4):65–79. doi:10.1016/s0377-0273(99)00118-3

    Article  Google Scholar 

  • Perugini D, Poli G (2012) The mixing of magmas in plutonic and volcanic environments: analogies and differences. Lithos 153:261–277. doi:10.1016/j.lithos.2012.02.002

    Article  Google Scholar 

  • Petford N, Atherton M (1996) Na-rich partial melts from newly underplated basaltic crust: the Cordillera Blanca Batholith, Peru. J Petrol 37(6):1491–1521. doi:10.1093/petrology/37.6.1491

    Article  Google Scholar 

  • Pinel V, Jaupart C (2000) The effect of edifice load on magma ascent beneath a volcano. Philosophical transactions of the Royal Society of London A: mathematical. Phys Eng Sci 358(1770):1515–1532. doi:10.1098/rsta.2000.0601

    Article  Google Scholar 

  • Pinel V, Jaupart C (2003) Magma chamber behavior beneath a volcanic edifice. J Geophys Res: Solid Earth 108(B2). doi:10.1029/2002JB001751

  • Pinel V, Jaupart C (2005) Some consequences of volcanic edifice destruction for eruption conditions. J Volcanol Geotherm Res 145(1–2):68–80. doi:10.1016/j.jvolgeores.2005.01.012

    Article  Google Scholar 

  • Plank T, Kelley KA, Zimmer MM, Hauri EH, Wallace PJ (2013) Why do mafic arc magmas contain ∼4 wt% water on average? Earth Planet Sci Lett 364:168–179. doi:10.1016/j.epsl.2012.11.044

    Article  Google Scholar 

  • Portnyagin M, Bindeman I, Hoernle K, Hauff F (2007) Geochemistry of primitive lavas of the Central Kamchatka depression: magma generation at the edge of the pacific plate. In: Volcanism and subduction: the Kamchatka region. American Geophysical Union, p 199–239. doi:10.1029/172GM16

  • Portnyagin M, Hoernle K, Plechov P, Mironov N, Khubunaya S (2007b) Constraints on mantle melting and composition and nature of slab components in volcanic arcs from volatiles (H2O, S, Cl, F) and trace elements in melt inclusions from the Kamchatka Arc. Earth Planet Sci Lett 255(1–2):53–69. doi:10.1016/j.epsl.2006.12.005

    Article  Google Scholar 

  • Portnyagin M, Duggen S, Hauff F, Mironov N, Bindeman I, Thirlwall M, Hoernle K (2015) Geochemistry of the late Holocene rocks from the Tolbachik volcanic field, Kamchatka: quantitative modelling of subduction-related open magmatic systems. J Volcanol Geotherm Res 307:133–155. doi:10.1016/j.jvolgeores.2015.08.015

    Article  Google Scholar 

  • Presley TK, Sinton JM, Pringle M (1997) Postshield volcanism and catastrophic mass wasting of the Waianae Volcano, Oahu, Hawaii. Bull Volcanol 58(8):597–616. doi:10.1007/s004450050165

    Article  Google Scholar 

  • Rapp RP, Watson EB (1995) Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust-mantle recycling. J Petrol 36(4):891–931. doi:10.1093/petrology/36.4.891

    Article  Google Scholar 

  • Righter K, Leeman WP, Hervig RL (2006) Partitioning of Ni, Co and V between spinel-structured oxides and silicate melts: importance of spinel composition. Chem Geol 227(1–2):1–25. doi:10.1016/j.chemgeo.2005.05.011

    Article  Google Scholar 

  • Rogers N (2015) Chapter 4—the composition and origin of magmas. In: Sigurdsson H (ed) The encyclopedia of volcanoes, 2nd edn. Academic, Amsterdam, pp 93–112. doi:10.1016/B978-0-12-385938-9.00004-3

    Chapter  Google Scholar 

  • Ruprecht P, Plank T (2013) Feeding andesitic eruptions with a high-speed connection from the mantle. Nature 500(7460):68–72. doi:10.1038/nature12342

    Article  Google Scholar 

  • Ruscitto DM, Wallace PJ, Johnson ER, Kent AJR, Bindeman IN (2010) Volatile contents of mafic magmas from cinder cones in the Central Oregon High Cascades: implications for magma formation and mantle conditions in a hot arc. Earth Planet Sci Lett 298(1–2):153–161. doi:10.1016/j.epsl.2010.07.037

    Article  Google Scholar 

  • Ruscitto DM, Wallace PJ, Cooper LB, Plank T (2012) Global variations in H2O/Ce: 2. Relationships to arc magma geochemistry and volatile fluxes. Geochem Geophys Geosyst 13(3):Q03025. doi:10.1029/2011GC003887

    Article  Google Scholar 

  • Ryan WBF, Carbotte SM, Coplan JO, O’Hara S, Melkonian A, Arko R, Weissel RA, Ferrini V, Goodwillie A, Nitsche F, Bonczkowski J, Zemsky R (2009) Global multi-resolution topography synthesis. Geochem Geophys Geosyst 10(3):Q03014. doi:10.1029/2008GC002332

    Article  Google Scholar 

  • Sakuyama M (1979) Evidence of magma mixing: petrological study of Shirouma-Oike calc-alkaline andesite volcano, Japan. J Volcanol Geotherm Res 5(1–2):179–208. doi:10.1016/0377-0273(79)90040-4

    Article  Google Scholar 

  • Scandone R, Malone SD (1985) Magma supply, magma discharge and readjustment of the feeding system of Mount St. Helens during 1980. J Volcanol Geotherm Res 23(3):239–262. doi:10.1016/0377-0273(85)90036-8

    Article  Google Scholar 

  • Seligman A, Bindeman I, Jicha B, Ellis B, Ponomareva V, Leonov V (2014) Multi-cyclic and isotopically diverse silicic magma generation in an arc volcano: Gorely Eruptive Center, Kamchatka, Russia. J Petrol 55(8):1561–1594. doi:10.1093/petrology/egu034

    Article  Google Scholar 

  • Selyangin OB (1993) New data on Mutnovsky volcano: structure, evolution and prediction. J Volcanol Seismol 1:17–35 (in Russian)

    Google Scholar 

  • Selyangin OB (2009) Wonderful world of Mutnovsky and Gorely volcanoes: volcanologic and traveller’s guide. Hold. komp. “Novaya kniga”, Petropavlovsk-Kamchatsky, p 108

  • Selyangin OB, Ponomareva VV (1999) Gorelovsky volcanic center, Southern Kamchatka: structure and evolution. J Volcanol Seismol 2:3–23 (in Russian)

    Google Scholar 

  • Shipman JS, Izbekov P, Gavrilenko MG (2011), Petrologic insights into magma system response to edifice collapse, Abstract V21E-2540 presented at 2011 Fall Meeting, AGU, San Francisco

  • Sigmundsson F, Hreinsdottir S, Hooper A, Arnadottir T, Pedersen R, Roberts MJ, Oskarsson N, Auriac A, Decriem J, Einarsson P, Geirsson H, Hensch M, Ofeigsson BG, Sturkell E, Sveinbjornsson H, Feigl KL (2010) Intrusion triggering of the 2010 Eyjafjallajokull explosive eruption. Nature 468(7322):426–430. doi:10.1038/nature09558

    Article  Google Scholar 

  • Simakin AG, Bindeman IN (2012) Remelting in caldera and rift environments and the genesis of hot, “recycled” rhyolites. Earth Planet Sci Lett 337–338:224–235. doi:10.1016/j.epsl.2012.04.011

    Article  Google Scholar 

  • Smith DR, Leeman WP (1987) Petrogenesis of Mount St. Helens dacitic magmas. J Geophys Res: Solid Earth 92(B10):10313–10334. doi:10.1029/JB092iB10p10313

    Article  Google Scholar 

  • Sobolev AV, Hofmann AW, Kuzmin DV, Yaxley GM, Arndt NT, Chung S-L, Danyushevsky LV, Elliott T, Frey FA, Garcia MO, Gurenko AA, Kamenetsky VS, Kerr AC, Krivolutskaya NA, Matvienkov VV, Nikogosian IK, Rocholl A, Sigurdsson IA, Sushchevskaya NM, Teklay M (2007) The amount of recycled crust in sources of mantle-derived melts. Science 316(5823):412–417. doi:10.1126/science.1138113

    Article  Google Scholar 

  • Spera FJ, Bohrson WA (2001) Energy-constrained open-system magmatic processes I: general model and energy-constrained assimilation and Fractional Crystallization (EC-AFC) formulation. J Petrol 42(5):999–1018. doi:10.1093/petrology/42.5.999

    Article  Google Scholar 

  • Steblov GM, Kogan MG, King RW, Scholz CH, Bürgmann R, Frolov DI (2003) Imprint of the North American plate in Siberia revealed by GPS. Geophys Res Lett 30(18):1924. doi:10.1029/2003GL017805

    Article  Google Scholar 

  • Stern RJ (2002) Subduction zones. Rev Geophys 40(4):1012. doi:10.1029/2001RG000108

    Article  Google Scholar 

  • Straub SM, LaGatta AB, Martin-Del Pozzo AL, Langmuir CH (2008) Evidence from high-Ni olivines for a hybridized peridotite/pyroxenite source for orogenic andesites from the central Mexican Volcanic Belt. Geochem Geophys Geosyst 9(3):Q03007. doi:10.1029/2007GC001583

    Article  Google Scholar 

  • Sun S-s, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Lond, Spec Publ 42(1):313–345. doi:10.1144/gsl.sp.1989.042.01.19

    Article  Google Scholar 

  • Svyatlovsky AE (1956) South Bystrinsky range on the Kamchatka Peninsula. Proc Lab Volcanol (12):110–190. (in Russian)

  • Tepper J, Nelson B, Bergantz G, Irving A (1993) Petrology of the Chilliwack batholith, North Cascades, Washington: generation of calc-alkaline granitoids by melting of mafic lower crust with variable water fugacity. Contrib Mineral Petrol 113(3):333–351. doi:10.1007/BF00286926

    Article  Google Scholar 

  • Tibaldi A (2004) Major changes in volcano behaviour after a sector collapse: insights from Stromboli, Italy. Terra Nov. 16(1):2–8. doi:10.1046/j.1365-3121.2003.00517.x

  • Tolstykh ML, Naumov VB, Gavrilenko MG, Ozerov AY, Kononkova NN (2012) Chemical composition, volatile components, and trace elements in the melts of the Gorely volcanic center, southern Kamchatka: evidence from inclusions in minerals. Geochem Int 50(6):522–550. doi:10.1134/S0016702912060079

    Article  Google Scholar 

  • Toplis MJ (2005) The thermodynamics of iron and magnesium partitioning between olivine and liquid: criteria for assessing and predicting equilibrium in natural and experimental systems. Contrib Mineral Petrol 149(1):22–39. doi:10.1007/s00410-004-0629-4

    Article  Google Scholar 

  • Vidito C, Herzberg C, Gazel E, Geist D, Harpp K (2013) Lithological structure of the Galápagos Plume. Geochem Geophys Geosyst 14(10):4214–4240. doi:10.1002/ggge.20270

    Article  Google Scholar 

  • Vlodavets VI (1957) Gorely ridge. Bulletin of volcano stations (25):68–70. (in Russian)

  • Volynets ON, Babanskii AD, Gol’tsman YV (2000) Variations in isotopic and trace-element composition of lavas from volcanoes of the Northern group, Kamchatka, in relation to specific features of subduction. Geochem Int 38(10):974–989

    Google Scholar 

  • Volynets A, Churikova T, Wörner G, Gordeychik B, Layer P (2010) Mafic Late Miocene–Quaternary volcanic rocks in the Kamchatka back arc region: implications for subduction geometry and slab history at the Pacific–Aleutian junction. Contrib Mineral Petrol 159(5):659–687. doi:10.1007/s00410-009-0447-9

    Article  Google Scholar 

  • Wallace PJ (2005) Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data. J Volcanol Geotherm Res 140(1–3):217–240. doi:10.1016/j.jvolgeores.2004.07.023

    Article  Google Scholar 

  • Wan Z, Coogan LA, Canil D (2008) Experimental calibration of aluminum partitioning between olivine and spinel as a geothermometer. Am Mineral 93(7):1142–1147. doi:10.2138/am.2008.2758

    Article  Google Scholar 

  • Yu Z, Robinson P, McGoldrick P (2001) An evaluation of methods for the chemical decomposition of geological materials for trace element determination using ICP-MS. Geostand Newslett 25(2–3):199–217. doi:10.1111/j.1751-908X.2001.tb00596.x

    Article  Google Scholar 

  • Zavaritsky AN, Piip BI, Gorshkov GS (1954) The study of volcanoes of Kamchatka. Proc Lab Volcanol (8):18–57. (in Russian)

  • Zimmer MM, Plank T, Hauri EH, Yogodzinski GM, Stelling P, Larsen J, Singer B, Jicha B, Mandeville C, Nye CJ (2010) The role of water in generating the calc-alkaline trend: new volatile data for Aleutian magmas and a new tholeiitic index. J Petrol 51(12):2411–2444. doi:10.1093/petrology/egq062

    Article  Google Scholar 

  • Zlobin TK, Gureev RG, Zlobina LM (2005) Deep structure of southwestern Kamchatka from the data of the earthquake converted wave method. Russ J Pac Geol 24(1):14–24 (in Russian)

    Google Scholar 

Download references

Acknowledgments

We thank Natalia Kononkova for her help with olivine and pyroxene microprobe analyses at Vernadsky Institute of Geochemistry and Analytical Chemistry (Russia). Additionally, we want to thank participants of the NSF PIRE project, particularly John Eichelberger and Pavel Izbekov, for their help in microprobe and whole-rock analyses at the University of Alaska Fairbanks.

MG acknowledges support from International Fulbright Science and Technology, from Graduate School of Rutgers University, New Brunswick, and personally Prof. Claude Herzberg. PRK acknowledges support from the NSF Division of Polar Programs. MG and AN acknowledge support from NSF grant EAR-1015422. MG acknowledges support from the Far East Branch of the Russian Academy of Sciences grants “12-III-A-08-166” and “15-I-1-025.” AO acknowledges support from the Far East Branch of the Russian Academy of Sciences, grant “15-I-2-069” and Russian Foundation of Basic Research, grant “15-05-05502”.

We are especially grateful to Maxim Portnyagin, Angela Seligman, Ilya Bindeman, and three anonymous reviewers for the critical reviews and to Michelle Coombs for the editorial work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxim Gavrilenko.

Additional information

Editorial responsibility: M.L. Coombs

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

(PDF 28007 kb)

Fig. S2

(PDF 1063 kb)

Fig. S3

(PDF 419 kb)

Table S1

(XLS 78 kb)

Table S2

(XLS 63 kb)

Table S3

(XLS 71 kb)

Table S4

(XLS 135 kb)

Table S5

(XLS 156 kb)

Table S6

(XLS 133 kb)

Table S7

(XLS 64.5 kb)

Table S8

(XLS 1133 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gavrilenko, M., Ozerov, A., Kyle, P.R. et al. Abrupt transition from fractional crystallization to magma mixing at Gorely volcano (Kamchatka) after caldera collapse. Bull Volcanol 78, 47 (2016). https://doi.org/10.1007/s00445-016-1038-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-016-1038-z

Keywords

Navigation