Skip to main content

Advertisement

Log in

The origin of hydrous, high-δ18O voluminous volcanism: diverse oxygen isotope values and high magmatic water contents within the volcanic record of Klyuchevskoy volcano, Kamchatka, Russia

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Klyuchevskoy volcano, in Kamchatka’s subduction zone, is one of the most active arc volcanoes in the world and contains some of the highest δ18O values for olivines and basalts. We present an oxygen isotope and melt inclusion study of olivine phenocrysts in conjunction with major and trace element analyses of 14C- and tephrochronologically-dated tephra layers and lavas spanning the eruptive history of Klyuchevskoy. Whole-rock and groundmass analyses of tephra layers and lava samples demonstrate that both high-Mg (7–12.5 wt% MgO) and high-Al (17–19 wt% Al2O3, 3–6.5 wt% MgO) basalt and basaltic andesite erupted coevally from the central vent and flank cones. Individual and bulk olivine δ18O range from normal MORB values of 5.1‰ to values as high as 7.6‰. Likewise, tephra and lava matrix glass have high-δ18O values of 5.8–8.1‰. High-Al basalts dominate volumetrically in Klyuchevskoy’s volcanic record and are mostly high in δ18O. High-δ18O olivines and more normal-δ18O olivines occur in both high-Mg and high-Al samples. Most olivines in either high-Al or high-Mg basalts are not in oxygen isotopic equilibrium with their host glasses, and Δ18Oolivine–glass values are out of equilibrium by up to 1.5‰. Olivines are also out of Fe–Mg equilibrium with the host glasses, but to a lesser extent. Water concentrations in olivine-hosted melt inclusions from five tephra samples range from 0.4 to 7.1 wt%. Melt inclusion CO2 concentrations vary from below detection (<50 ppm) to 1,900 ppm. These values indicate depths of crystallization up to ~17 km (5 kbar). The variable H2O and CO2 concentrations likely reflect crystallization of olivine and entrapment of inclusions in ascending and degassing magma. Oxygen isotope and Fe–Mg disequilibria together with melt inclusion data indicate that olivine was mixed and recycled between high-Al and high-Mg basaltic melts and cumulates, and Fe–Mg and δ18O re-equilibration processes were incomplete. Major and trace elements in the variably high-δ18O olivines suggest a peridotite source for the parental magmas. Voluminous, highest in the world with respect to δ18O, and hydrous basic volcanism in Klyuchevskoy and other Central Kamchatka depression volcanoes is explained by a model in which the ascending primitive melts that resulted from the hydrous melt fluxing of mantle wedge peridotite, interacted with the shallow high-δ18O lithospheric mantle that had been extensively hydrated during earlier times when it was part of the Kamchatka forearc. Following accretion of the Eastern Peninsula terrains several million years ago, a trench jump eastward caused the old forearc mantle to be beneath the presently active arc. Variable interaction of ascending flux-melting-derived melts with this older, high-δ18O lithospheric mantle has produced mafic parental magmas with a spectrum of δ18O values. Differentiation of the higher δ18O parental magmas has created the volumetrically dominant high-Al basalt series. Both basalt types incessantly rise and mix between themselves and with variable in δ18O cumulates within dynamic Klyuchevskoy magma plumbing system, causing biannual eruptions and heterogeneous magma products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Almeev RR, Kimura JI, Ozerov AY, Ariskin AA, Barmina GS (2003) From high-Mg basalts to dacites: continued crystal fractionation in the Klyuchevskoy-Bezymianny magma plumbing system, Kamchatka. Geochim Cosmochim Acta 67:A13

    Google Scholar 

  • Anderson AT (1973) The before-eruption water content of some high-alumina magmas. Bull Volcanol 37:530–552. doi:10.1007/BF02596890

    Article  Google Scholar 

  • Ariskin AA, Barmina GS, Ozerov AY, Nielsen RL (1995) Genesis of High-Alumina Basalts of Klyuchevskoy Volcano. Petrology 5:496–521

    Google Scholar 

  • Avdeiko GP, Savelyev DP, Palueva AA, Popruzhenko SV (2007) Evolution of the Kurile–Kamchatka volcanic arcs and dynamics of the Kamchatka–Aleutian junction. In: Eichelberger J, Izbekov P, Kasahara M, Lees J, Gordeev E (eds) Volcanism and tectonics of the Kamchatka Peninsula and adjacent arcs, American Geophysical Union Monograph Series, vol 172, AGU, Washington, pp 37–55

  • Bailey JC (1996) Role of subducted sediments in the genesis of Kurile–Kamchatka island arc basalts: Sr isotopic and elemental evidence. Geochem J 30:289–321

    Google Scholar 

  • Bindeman IN, Vinogradov VI, Valley JW, Wooden JL, Natal’in BA (2002) Archean protolith and accretion of crust in Kamchatka: SHRIMP dating of Zircons from Sredinny and Ganal Massifs. J Geol 110:271–289. doi:10.1086/339532

    Article  Google Scholar 

  • Bindeman IN, Ponomareva VV, Bailey JC, Valley JW (2004) Volcanic arc of Kamchatka: a province with high-delta O-18 magma sources and large-scale O-18/O-16 depletion of the upper crust. Geochim Cosmochim Acta 68(4):841–865. doi:10.1016/j.gca.2003.07.009

    Article  Google Scholar 

  • Bindeman IN, Eiler JM, Yogodzinski G, Tatsumi Y, Stern C, Grove T et al (2005) Oxygen isotope evidence for slab melting in modern and ancient subduction zones. Earth Planet Sci Lett 235:480–496. doi:10.1016/j.epsl.2005.04.014

    Article  Google Scholar 

  • Bindeman IN, Sigmarsson O, Eiler JM (2006) Time constraints on the origin of large volume basalts derived from O-isotope and trace element mineral zoning and U-series disequilibria in the Laki and Grímsvötn volcanic system. Earth Planet Sci Lett 245:245–259. doi:10.1016/j.epsl.2006.02.029

    Article  Google Scholar 

  • Braitseva OA, Melekestsev IV, Ponomareva VV, Sulerzhitsky LD (1995) The ages of calderas, large explosive craters and active volcanoes in the Kurile–Kamchatka region, Russia. Bull Volcanol 57(6):383–402

    Google Scholar 

  • Braitseva OA, Ponomareva VV, Sulerzhitsky LD, Melekestsev IV, Bailey JC (1997) Holocene key-marker tephra layers in Kamchatka, Russia. Quatern Res 47:125–139. doi:10.1006/qres.1996.1876

    Article  Google Scholar 

  • Cayol V, Dieterich JH, Okamura AT, Miklius A (2000) High magma storage rates before the 1983 eruption of Kilauea, Hawaii. Science 288:2343–2346. doi:10.1126/science.288.5475.2343

    Article  Google Scholar 

  • Chiba H, Chacko T, Clayton RN, Goldsmith JR (1989) Oxygen isotope fractionations involving diopside, forsterite, magnetite, and calcite: Application to geothermometry. Geochim Cosmochim Acta 53:2985–2995. doi:10.1016/0016-7037(89)90174-9

    Article  Google Scholar 

  • Churikova T, Dorendorf F, Worner G (2001) Sources and fluids in the mantle wedge below Kamchatka, evidence for across-arc geochemical variation. J Petrol 42:1567–1593. doi:10.1093/petrology/42.8.1567

    Article  Google Scholar 

  • Churikova T, Worner G, Mironov N, Kronz A (2007) Volatile (S, Cl and F) and fluid mobile trace element compositions in melt inclusions: implications for variable fluid sources across the Kamchatka arc. Contrib Mineral Petrol 154(2):217–239. doi:10.1007/s00410-007-0190-z

    Article  Google Scholar 

  • Costa F, Dungan M (2005) Short time scales of magmatic assimilation from diffusion modeling of multiple elements in olivine. Geology 33:837–840. doi:10.1130/G21675.1

    Article  Google Scholar 

  • Dorendorf F, Wiechert U, Worner G (2000) Hydrated sub-arc mantle: a source for the Klyuchevskoy volcano, Kamchatka/Russia. Earth Planet Sci Lett 175:69–86. doi:10.1016/S0012-821X(99)00288-5

    Article  Google Scholar 

  • Ducea MN, Barton MD (2007) Igniting flare-up events in Cordillieran arcs. Geology 35:1047–1050. doi:10.1130/G23898A.1

    Article  Google Scholar 

  • Duggen S, Portnyagin M, Baker J, Ulfbeck D, Hoernle K, Garbe-Schonberg D et al (2007) Drastic shift in lava geochemistry in the volcanic-front to rear-arc region of the Southern Kamchatkan subduction zone: evidence for the transition from slab surface dehydration to sediment melting. Geochim Cosmochim Acta 71:452–480. doi:10.1016/j.gca.2006.09.018

    Article  Google Scholar 

  • Eiler JM (2001) Oxygen isotope variations in basaltic lavas and upper mantle rocks. Rev Mineral Geochem 43:319–364

    Article  Google Scholar 

  • Eiler JM, Crawford A, Elliott T, Farley KA, Valley JW, Stolper EM (2000) Oxygen isotope geochemistry of oceanic-arc lavas. J Petrol 41:229–256

    Article  Google Scholar 

  • Garcia MO, Ito E, Eiler JM, Pietruszka AJ (1998) Crustal contamination of Kilauea volcano magmas revealed by oxygen isotope analyses of glass and olivine from Puu Oo eruption lavas. J Petrol 39:803–817. doi:10.1093/petrology/39.5.803

    Article  Google Scholar 

  • Ghiorso MS, Sack RO (1995) Chemical mass transfer in magmatic processes. 4. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib Mineral Petrol 119(2–3):197–212. doi:10.1007/BF00307281

    Article  Google Scholar 

  • Gorbatov A, Kostoglodov V, Suarez G, Gordeev E (1997) Seismicity and structure of the Kamchatka subduction zone. J Geophys Res 102:17833–17898. doi:10.1029/96JB03491

    Article  Google Scholar 

  • Gorbatov A, Domínguez J, Suárez G, Kostoglodov V, Zhao D, Gordeev E (1999) Tomographic imaging of the P-wave velocity structure beneath the Kamchatka peninsula. Geophys J Int 137(2):269–279. doi:10.1046/j.1365-246X.1999.00801.x

    Article  Google Scholar 

  • Grove TL, Parman SW, Bowring SA, Price RC, Baker MB (2002) The role of an H2O-rich fluid component in the generation of primitive basaltic andesites and andesites from the Mt. Shasta region, N. California. Contrib Mineral Petrol 142:375–396

    Google Scholar 

  • Grove TL, Chatterjee N, Parman SW, Medard E (2006) The influence of H2O on mantle wedge melting. Earth Planet Sci Lett 249(1–2):74–89. doi:10.1016/j.epsl.2006.06.043

    Article  Google Scholar 

  • Gurenko AA, Belousov AB, Trumbull RB, Sobolev AV (2005) Explosive basaltic volcanism of the Chikurachki volcano (Kurile arc, Russia): insights on pre-eruptive magmatic conditions and volatile budget revealed from phenocryst-hosted melt inclusions and groundmass glasses. J Volcanol Geotherm Res 147:203–232. doi:10.1016/j.jvolgeores.2005.04.002

    Article  Google Scholar 

  • Hildreth W, Moorbath S (1988) Crustal contributions to arc magmatism in the Andes of Central Chile. Contrib Mineral Petrol 98:455–489. doi:10.1007/BF00372365

    Article  Google Scholar 

  • Hora JM, Singer BS, Worner G (2007) Volcano evolution and eruptive flux on the thick crust of the Andean Central Volcanic Zone: Ar-40/Ar-39 constraints from Volcan Parinacota, Chile. Geol Soc Am Bull 119:343–362. doi:10.1130/B25954.1

    Article  Google Scholar 

  • Ionov DA, Seitz HM (2008) Lithium abundances and isotopic compositions in mantle xenoliths from subduction and intra-plate settings: mantle sources vs. eruption histories. Earth Planet Sci Lett 3–4:316–331. doi:10.1016/j.epsl.2007.11.020

    Article  Google Scholar 

  • Ishimaru S, Arai S, Ishida T, Shirasaka M, Okrugin VM (2004) Melting and multi-stage metasomatism in the mantle wedge beneath a frontal arc inferred from highly depleted peridotitic xenoliths from Avacha volcano, S Kamchatka. J Petrol 48:395–433. doi:10.1093/petrology/egl065

    Article  Google Scholar 

  • Johnson E, Wallace PW, Delgado GH, Manea V, Kent A, Bindeman IN, Donegan C (2008) The origin of H2O-rich subduction components beneath the Michoacán-Guanajuato Volcanic Field, Mexico: insights from magmatic volatile contents, oxygen isotopes, and 2-D thermal models for the subducted slab and mantle wedge. J Petrol (in press)

  • Kepezhinskas P, Defant MJ, Widom E (2002) Abundance and distribution of PGE and Au in the island-arc mantle: implications for subarc metasomatism. Lithos 60:113–128. doi:10.1016/S0024-4937(01)00073-1

    Article  Google Scholar 

  • Kersting AB (1991) Petrology and geochemistry of Klyuchevskoy Volcano, Kamchatka, U.S.S.R.; implications for the chemical and physical evolution of island arcs, PhD Dissertation, University of Michigan, Ann Arbor, p 245

  • Kersting AB, Arculus RJ (1994) Klyuchevskoy volcano, Kamchatka Russia—the role of high-flux recharged, tapped, and fractionated magma chamber(s) in the genesis of high-Al2O3 from high MgO basalt. J Petrol 35(1):1–41

    Google Scholar 

  • Kersting AB, Arculus RJ (1995) Pb isotope composition of Klyuchevskoy volcano, Kamchatka and North Pacific sediments: implications for magma genesis and crustal recycling in the Kamchatkan arc. Earth Planet Sci Lett 136(3–4):133–148. doi:10.1016/0012-821X(95)00196-J

    Article  Google Scholar 

  • Khrenov AP, Dvigalo VN, Kirsanov IT, Fedotov SA, Gorel’chik VI, Zharinov NA (1991) Klyuchevskoy volcano. In: Fedotov SA, Masurenkov YP (eds) Active volcanoes of Kamchatka, vol 1. Nauka Publishers, Moscow, pp 104–153

    Google Scholar 

  • Khubunaya SA, Gontovaya LI, Sobolev AV, Niskous I (2007) Magma chambers beneath Klyuchevskoy group volcanoes. Volcanol Seismol 2:32–54

    Google Scholar 

  • Konstantinovskaia EA (2001) Geodynamics of an early eocene arc-continent collision reconstructed from the Kamchatka Orogenic Belt, NE Russia. Tectonophysics 325:87–105. doi:10.1016/S0040-1951(00)00132-3

    Article  Google Scholar 

  • Lander AV, Shapiro MN (2007) The origin of the modern Kamchatka zone. In: Volcanism and subduction: the Kamchatka Region. Geophys Monograph Series, vol 172. AGU, Washington, pp 57–64

  • Lees JM, Symons N, Chubarova O, Gorelchik V, Ozerov A (2007) Tomographic images of Klyuchevskoy volcano P-wave velocity. In: Eichelberger J, Izbekov P, Kasahara M, Lees J, Gordeev E (eds) Volcanism and tectonics of the Kamchatka Peninsula and adjacent arcs, American Geophysical Union Monograph Series. AGU, Washington, pp 293–302

    Google Scholar 

  • Levin V, Shapiro N, Park J, Ritzwoller M (2002) Seismic evidence for catastrophic slab loss beneath Kamchatka. Nature 418:763–767. doi:10.1038/nature00973

    Article  Google Scholar 

  • Manea VC, Manea M, Clark S (2007) Thermal models beneath Kamchaka and the Pacific plate rejuvenation from a mantle plume impact. In: Eichelberger J, Izbekov P, Kasahara M, Lees J, Gordeev E (eds) Volcanism and tectonics of the Kamchatka Peninsula and adjacent arcs, American Geophysical Union Monograph Series. AGU, Washington, pp 77–90

    Google Scholar 

  • Martin E, Bindeman IN, Grove TL (2008) Subduction in high fluid fluxing environment and the origin of high-d18O lavas in Mt. Shasta, Cascade arc, California (in preparation)

  • Melekestsev IV (1980) Volcanism and relief formation. Nauka Publishers, Moscow (in Russian)

  • Mironov NL, Portnyagin MV, Pletchov PY, Khubunaya SA (2001) Final stages of mama evolution in Klyuchevskoy volcano, Kamchatka: evidence form melt inclusions in minerals of high-alumina basalts. Petrology 9(1):51–69

    Google Scholar 

  • Muehlenbachs K (1986) Alteration of the oceanic crust and the 18O history of seawater. In: JW Valley, HP Taylor, JR O’Neil Jr (eds) Stable isotopes in high temperature geological processes. Rev Mineral 16:425–444

  • Newman S, Lowenstern JB (2002) VolatileCalc: a silicate melt-H2O-CO2 solution model written in Visual Basic for excel. Comput Geosci 28:597–604. doi:10.1016/S0098-3004(01)00081-4

    Article  Google Scholar 

  • Ozerov AY (2000) The evolution of high-alumina basalts of the Klyuchevskoy volcano, Kamchatka, Russia, based on microprobe analyses of mineral inclusions. J Volcanol Geotherm Res 95:65–79. doi:10.1016/S0377-0273(99)00118-3

    Article  Google Scholar 

  • Ozerov AY, Ariskin AA, Kyle P, Bogoyavlenskaya GE, Karpenko SF (1997) Petrological–geochemical model for genetic relationships between basaltic and andesitic magmatism of Klyuchevskoi and Bezymyannyi volcanoes, Kamchatka. Petrology 5/6:614–635

    Google Scholar 

  • Pineau F, Semet MP, Grassineau N, Okrugin VM, Javoy M (1999) The genesis of the stable isotope (O, H) record in arc magmas: the Kamchatka’s case. Chem Geol 62:157–176

    Google Scholar 

  • Piyp VB, Yefimova YA (1993) Seismic sections of the earth’s crust under volcanoes of Kamchatka. Int Geol Rev 35:170–177

    Google Scholar 

  • Pokrovsky BG, Volynets ON (1999) Oxygen-isotope geochemistry in volcanic rocks of the Kurile–Kamchatka arc. Petrology 7:227–251

    Google Scholar 

  • Ponomareva VV, Melekestsev IV, Dirksen OV (2006) Sector collapses and large landslides on late Pleistocene–Holocene volcanoes in Kamchatka, Russia. J Volcanol Geotherm Res 158:117–138. doi:10.1016/j.jvolgeores.2006.04.016

    Article  Google Scholar 

  • Ponomareva VV, Kyle PR, Pevzner MM, Sulerzhitsky LD, Hartman M (2007) Holocene eruptive history of Shiveluch volcano. Kamchatka Peninsula. In: Eichelberger J, Gordeev E, Kasahara M, Izbekov P, Lees J (eds) Volcanism and tectonics of the Kamchatka Peninsula and adjacent arcs, American Geophysical Union Geophysical Monograph Series, vol 172. AGU, Washington, pp 263–282

    Google Scholar 

  • Portnyagin M, Manea VC (2008) Mantle temperature control on composition of arc magmas along the Central Kamchatka Depression. Geology 36(7):519–522. doi:10.1130/G24636A

    Google Scholar 

  • Portnyagin M, Hoernle K, Avdeiko GP, Hauff F, Werner R, Bindeman IN et al (2005) Transition from arc to oceanic magmatism at the Kamchatka–Aleutian junction. Geology 33(1):25–28. doi:10.1130/G20853.1

    Article  Google Scholar 

  • Portnyagin M, Hoernle K, Plechov P, Mironov N, Khubunaya S (2007a) Constraints on mantle melting and composition and nature of slab components in volcanic arcs from volatiles (H2O, S, Cl, F) and trace elements in melt inclusions form the Kamchatka Arc. Earth Planet Sci Lett 255:53–69. doi:10.1016/j.epsl.2006.12.005

    Article  Google Scholar 

  • Portnyagin M, Bindeman IN, Hoernle K, Hauff F (2007b) Geochemistry of primitive lavas of the Central Kamchatka depression: magma generation at the edge of the Pacific Plate. In: Eichelberger J, Izbekov P, Kasahara M, Lees J, Gordeev E (eds) Volcanism and tectonics of the Kamchatka Peninsula and adjacent arcs, American Geophysical Union Monograph Series, vol 172. AGU, Washington, pp 199–239

    Google Scholar 

  • Rapp RP, Watson EB (1995) Dehydration melting of metabasalts at 8–32 kbars: implications for continental growth and crust-mantle recycling. J Petrol 36:891–931

    Google Scholar 

  • Sobolev AV, Chaussidon M (1996) H2O concentrations in primary melts from suprasubduction zones and mid-ocean ridges: implications for H2O storage and recycling in the mantle. Earth Planet Sci Lett 137:45–55

    Google Scholar 

  • Sobolev AV, Hofmann, AW, Kuzmin DV et al (2007) The amount of recycled crust in sources of mantle-derived melts. Science 316:412–417. doi:10.1126/science.1138113

    Google Scholar 

  • Spilliaert N, Allard P, Metrich N, Sobolev V (2006) Melt inclusion record of the conditions of ascent, degassing, and extrusion of volatile-rich alkali basalt during the powerful 2002 flank eruption of Mount Etna (Italy). J Geophys Res. Series/Report no.:/111. doi:10.1029/2005JB003934

  • Staudigel H, Davies GR, Hart SR, Marchant KM, Smith BM (1995) Large-scale isotopic Sr, Nd and O isotopic anatomy of altered oceanic crust-DSP/ODP sites 417/418. Earth Planet Sci Lett 130:169–185. doi:10.1016/0012-821X(94)00263-X

    Article  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for the mantle composition and processes. In: Magmatism in the Ocean Basin, vol 42. Geol Soc Sp Publ. Geological Society, London, pp 313–345

  • Volynets ON (1994) Geochemical types, petrology and genesis of late Cenozoic volcanic rocks from the Kurile–Kamchatka island-arc system. Int Geol Rev 36(4):373–405

    Article  Google Scholar 

  • Wallace PJ (2005) Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data. J Volcanol Geotherm Res 140:217–240. doi:10.1016/j.jvolgeores.2004.07.023

    Article  Google Scholar 

  • Yogodzinski GM, Lees JM, Churikova TG, Dorendorf F, Woerner G, Volynets ON (2001) Geochemical evidence for the melting of subducting oceanic lithosphere at plate edges. Nature 404:500–504. doi:10.1038/35054039

    Article  Google Scholar 

Download references

Acknowledgments

This research represents the M.S. thesis by the lead author. It was supported by NSF grants EAR0537872 (Bindeman) and EAR0309559 (Wallace). We thank Jim Palandri for help with stable isotope analyses, John Donovan for help with the electron microprobe, Sergei Simakin and Nikita Mironov for their help with the ion microprobe and sample preparation. We also thank Gerhard Wörner and an anonymous reviewer for their helpful reviews. The KALMAR project from the Ministry of Science and Education of Germany supported M. Portnyagin. Fieldwork was supported by NSF grant EAR 0537872 and in part by grants 06-05-64960 and 06-05-65037 from the Russian Foundation for Basic Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilya Bindeman.

Additional information

Communicated by T.L. Grove.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (PDF 1.67 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Auer, S., Bindeman, I., Wallace, P. et al. The origin of hydrous, high-δ18O voluminous volcanism: diverse oxygen isotope values and high magmatic water contents within the volcanic record of Klyuchevskoy volcano, Kamchatka, Russia. Contrib Mineral Petrol 157, 209–230 (2009). https://doi.org/10.1007/s00410-008-0330-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-008-0330-0

Keywords

Navigation