Skip to main content

Advertisement

Log in

A major QTL on chromosome C05 significantly reduces acid detergent lignin (ADL) content and increases seed oil and protein content in oilseed rape (Brassica napus L.)

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

A reduction in acid detergent lignin content in oilseed rape resulted in an increase in seed oil and protein content.

Abstract

Worldwide increasing demand for vegetable oil and protein requires continuous breeding efforts to enhance the yield of oil and protein crop species. The oil-extracted meal of oilseed rape is currently mainly used for feeding livestock, but efforts are undertaken to use the oilseed rape protein in food production. One limiting factor is the high lignin content of black-seeded oilseed rape that negatively affects digestibility and sensory quality of food products compared to soybean. Breeding attempts to develop yellow seeded oilseed rape with reduced lignin content have not yet resulted in competitive cultivars. The objective of this work was to investigate the inheritance of seed quality in a DH population derived from the cross of the high oil lines SGDH14 and cv. Express. The DH population of 139 lines was tested in field experiments in 14 environments in north-west Europe. Seeds harvested from open pollinated plants were used for extensive seed quality analysis. A molecular marker map based on the Illumina Infinium 60 K Brassica SNP chip was used to map QTL. Amongst others, one major QTL for acid detergent lignin content, explaining 81% of the phenotypic variance, was identified on chromosome C05. Lines with reduced lignin content nevertheless did not show a yellowish appearance, but showed a reduced seed hull content. The position of the QTL co-located with QTL for oil and protein content of the defatted meal with opposite additive effects, suggesting that the reduction in lignin content resulted in an increase in oil and protein content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amar S, Ecke W, Becker HC, Möllers C (2008) QTL for phytosterol and sinapate ester content in Brassica napus L. collocate with the two erucic acid genes. Theor Appl Genet 116:1051–1061

    Article  CAS  Google Scholar 

  • Anscombe FJ, Tukey JWd (1963) The examination and analysis of residuals. Technometrics 5:141–160

    Article  Google Scholar 

  • Badani AG, Snowdon RJ, Wittkop B, Lipsa FD, Baetzel R, Horn R, Haro A, Font R, Lühs W (2006) Colocalization of a partially dominant gene for yellow seed colour with a major QTL influencing acid detergent fibre (ADF) content in different crosses of oilseed rape (Brassica napus). Genome 49:1499–1509

    Article  CAS  Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546

    Article  CAS  Google Scholar 

  • Burns MJ, Barnes SR, Bowman JG, Clarke MHE, Werner CP, Kearsey MJ (2003) QTL analysis of an intervarietal set of substitution lines in Brassica napus: (i) seed oil content and fatty acid composition. Heredity 90:39–48

    Article  CAS  Google Scholar 

  • Chai YR, Lei B, Huang HL, Li JN, Yin JM, Tang ZL, Wang R, Chen L (2009) TRANSPARENT TESTA 12 genes from Brassica napus and parental species: cloning, evolution, and differential involvement in yellow seed trait. Mol Genet Genom 281:109–123. https://doi.org/10.1007/s00438-008-0399-1

    Article  CAS  Google Scholar 

  • Chalhoub B, Denoeud F, Liu S et al (2014) Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345:950–953. https://doi.org/10.1126/science.1253435

    Article  CAS  Google Scholar 

  • Chen G, Geng J, Rahman M et al (2010) Identification of QTL for oil content, seed yield, and flowering time in oilseed rape (Brassica napus). Euphytica 175:161–174. https://doi.org/10.1007/s10681-010-0144-9

    Article  CAS  Google Scholar 

  • Cheng CY, Krishnakumar V, Chan AP, Thibaud-Nissen F, Schobel S, Town CD (2017) Araport11: a complete reannotation of the Arabidopsis thaliana reference genome. Plant J 89:789–804. https://doi.org/10.1111/tpj.13415

    Article  CAS  PubMed  Google Scholar 

  • Clarke WE, Higgins EE, Plieske J, Wieseke R, Sidebottom C, Khedikar Y et al (2016) A high-density SNP genotyping array for Brassica napus and its ancestral diploid species based on optimised selection of single-locus markers in the allotetraploid genome. Theor Appl Genet 129:1887–1899

    Article  CAS  Google Scholar 

  • De La Fuente A, Bing N, Hoeschele I, Mendes P (2004) Discovery of meaningful associations in genomic data using partial correlation coefficients. Bioinformatics 20:3565–3574

    Article  Google Scholar 

  • Delourme R, Falentin C, Huteau V et al (2006) Genetic control of oil content in oilseed rape (Brassica napus L.). Theor Appl Genet 113:1331–1345. https://doi.org/10.1007/s00122-006-0386-z

    Article  CAS  PubMed  Google Scholar 

  • Dimov Z, Suprianto E, Hermann F, Möllers C (2012) Genetic variation for seed hull and fibre content in a collection of European winter oilseed rape material (Brassica napus L.) and development of NIRS calibrations. Plant Breed 131:361–368

    Article  Google Scholar 

  • Ecke W, Uzunova M, Weissleder K (1995) Mapping the genome of rapeseed (Brassica napus L.). II. Localization of genes controlling erucic acid synthesis and seed oil content. Theor Appl Genet 91:972–977

    CAS  PubMed  Google Scholar 

  • Fleddermann M, Fechner A, Rößler A, Bähr M, Pastor A, Liebert F, Jahreis G (2013) Nutritional evaluation of rapeseed protein compared to soy protein for quality, plasma amino acids, and nitrogen balance—a randomized cross-over intervention study in humans. Clin Nutr 32:519–526

    Article  CAS  Google Scholar 

  • Jiang C, Shi J, Li R, Long Y, Wang H, Li D, Zhao J, Meng J (2014) Quantitative trait loci that control the oil content variation of rapeseed (Brassica napus L.). Theor Appl Genet 127:957–968

    Article  CAS  Google Scholar 

  • Jung HG, Mertens DR, Payne AJ (1997) Correlation of acid detergent lignin and Klason lignin with digestibility of forage dry matter and neutral detergent fiber. J Dairy Sci 80:1622–1628

    Article  CAS  Google Scholar 

  • Liu J, Osbourn A, Ma P (2015) MYB transcription factors as regulators of phenylpropanoid metabolism in plants. Mol Plant 8:689–708

    Article  CAS  Google Scholar 

  • Marles MA, Gruber MY (2004) Histochemical characterisation of unextractable seed coat pigments and quantification of extractable lignin in the Brassicaceae. J Sci Food Agric 84:251–262

    Article  CAS  Google Scholar 

  • Nagel M, Rosenhauer M, Willner E, Snowdon RJ, Friedt W, Börner A (2011) Seed longevity in oilseed rape (Brassica napus L.)—genetic variation and QTL mapping. Plant Genet Res 9:260–263. https://doi.org/10.1017/S1479262111000372

    Article  CAS  Google Scholar 

  • Nesi N, Delourme R, Bregeon M, Falentin C, Renard M (2008) Genetic and molecular approaches to improve nutritional value of Brassica napus L. seed. CR Biol 331:763–771. https://doi.org/10.1016/j.crvi.2008.07.018

    Article  CAS  Google Scholar 

  • Price AH (2006) Believe it or not, QTLs are accurate! Trends Plant Sci 11:213–216

    Article  CAS  Google Scholar 

  • Pucker B, Holtgräwe D, Sörensen TR, Stracke R, Viehöver P, Weisshaar B (2016) A de novo genome sequence assembly of the Arabidopsis thaliana accession Niederzenz-1 displays presence/absence variation and strong synteny. PLoS ONE 11:e0164321

    Article  Google Scholar 

  • Pucker B, Holtgräwe D, Weisshaar B (2017) Consideration of non-canonical splice sites improves gene prediction on the Arabidopsis thaliana Niederzenz-1 genome sequence. BMC Res Notes 10:667

    Article  Google Scholar 

  • Qiu D, Morgan C, Shi J et al (2006) A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content. Theor Appl Genet 114:67–80. https://doi.org/10.1007/s00122-006-0411-2

    Article  CAS  PubMed  Google Scholar 

  • Rahman M, McVetty P (2011) A review of Brassica seed color. Can J Plant Sci 91:437–446. https://doi.org/10.4141/CJPS10124

    Article  Google Scholar 

  • Ravi K, Vadez V, Isobe S et al (2011) Identification of several small main-effect QTLs and a large number of epistatic QTLs for drought tolerance related traits in groundnut (Arachis hypogaea L.). Theor Appl Genet 122:1119–1132. https://doi.org/10.1007/s00122-010-1517-0

    Article  CAS  Google Scholar 

  • Rücker B, Röbbelen G (1996) Impact of low linolenic acid content on seed yield of winter oilseed rape (Brassica napus L.). Plant Breed 115:226–230

    Article  Google Scholar 

  • Schatzki J, Schoo B, Ecke W, Herrfurth C, Feussner I, Becker HC, Möllers C (2013) Mapping of QTL for seed dormancy in a winter oilseed rape doubled haploid population. Theor Appl Genet 126:2405–2415

    Article  Google Scholar 

  • Simbaya J, Slominski BA, Rakow G, Campbell LD, Downey RK, Bell JM (1995) Quality characteristics of yellow-seeded Brassica seed meals: protein, carbohydrates, and dietary fiber components. J Agr Food Chem 43:2062–2066

    Article  CAS  Google Scholar 

  • Stam P (1993) Construction of integrated genetic linkage maps by means of a new computer package: JoinMap. Plant J 3:739–744

    Article  CAS  Google Scholar 

  • Sun F, Fan G, Hu Q, Zhou Y, Guan M, Tong C et al (2017) The high-quality genome of Brassica napus cultivar ‘ZS11’ reveals the introgression history in semi-winter morphotype. Plant J 92:452–468

    Article  CAS  Google Scholar 

  • Taylor-Teeples M, Lin L, De Lucas M, Turco G, Toal TW, Gaudinier A et al (2015) An Arabidopsis gene regulatory network for secondary cell wall synthesis. Nature 517(7536):571

    Article  CAS  Google Scholar 

  • Teh L, Möllers C (2015) Genetic variation and inheritance of phytosterol and oil content in a doubled haploid population derived from the winter oilseed rape Sansibar × Oase cross. Theor Appl Genet 129:181–199. https://doi.org/10.1007/s00122-015-2621-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Utz HF (2011) PLABSTAT, Computerprogramm zur statistischen Analyse von pflanzenzüchterischen Experimenten, Version 3Awin 14. Juni 2011. Institut für Pflanzenzüchtung, Saatgutforschung und Populationsgenetik der Universität Hohenheim

  • Van Ooijen JW (2011) Multipoint maximum likelihood mapping in a full-sib family of an outbreeding species. Genet Res 93:343–349

    Article  Google Scholar 

  • Van Soest PJ, Robertson JB, Lewis BA (1991) Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 74:3583–3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2

    Article  Google Scholar 

  • Wanasundara JP, McIntosh TC, Perera SP, Withana-Gamage TS, Mitra P (2016) Canola/rapeseed protein-functionality and nutrition. OCL 23:D407

    Article  Google Scholar 

  • Wang S, Basten, CJ, Zeng Z-B (2012) Windows QTL cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC. http://statgen.ncsu.edu/qtlcart/WQTLCart.htm. Accessed 23 Aug 2018

  • Wang J, Jian H, Wei L, Qu C, Xu X, Lu K, Qian W, Li J, Li M, Liu L (2015) Genome-wide analysis of seed acid detergent lignin (ADL) and hull content in rapeseed (Brassica napus L.). PLoS ONE 10(12):e0145045. https://doi.org/10.1371/journal.pone.0145045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Xian X, Xu X, Qu C, Lu K, Li J, Liu L (2017) Genome-wide association mapping of seed coat color in Brassica napus. J Sci Food Agric 65:5229–5237. https://doi.org/10.1021/acs.jafc.7b01226

    Article  CAS  Google Scholar 

  • Wittkop B, Snowdon RJ, Friedt W (2012) New NIRS calibrations for fiber fractions reveal broad genetic variation in Brassica napus seed quality. J Agri Food Chem 60:2248–2256

    Article  CAS  Google Scholar 

  • Yan XY, Li JN, Fu FY et al (2009) Co-location of seed oil content, seed hull content and seed coat color QTL in three different environments in Brassica napus L. Euphytica 170:355–364. https://doi.org/10.1007/s10681-009-0006-5

    Article  CAS  Google Scholar 

  • Yang J, Zhu J, Williams RW (2007) Mapping the genetic architecture of complex traits in experimental populations. Bioinformatics 23:1527–1536

    Article  CAS  Google Scholar 

  • Yang J, Hu C, Hu H, Yu R, Xia Z, Ye X, Zhu J (2008) QTLNetwork: mapping and visualizing genetic architecture of complex traits in experimental populations. Bioinformatics 24:721–723

    Article  Google Scholar 

  • Zhao J, Becker HC, Zhang D, Zhang Y, Ecke W (2005) Oil content in a European × Chinese rapeseed population: QTL with additive and epistatic effects and their genotype-environment interactions. Crop Sci 45:51–59

    Article  CAS  Google Scholar 

  • Zhao J, Becker HC, Zhang D et al (2006) Conditional QTL mapping of oil content in rapeseed with respect to protein content and traits related to plant development and grain yield. Theor Appl Genet 113:33–38. https://doi.org/10.1007/s00122-006-0267-5

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Huang J, Chen F et al (2012) Molecular mapping of Arabidopsis thaliana lipid-related orthologous genes in Brassica napus. Theor Appl Genet 124:407–421. https://doi.org/10.1007/s00122-011-1716-3

    Article  CAS  PubMed  Google Scholar 

  • Zhu J (1995) Analysis of conditional genetic effects and variance components in developmental genetics. Genetics 141:1633–1639

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was funded by the Fachagentur für Nachwachsende Rohstoffe (FNR e.V.) on behalf of the German Federal Ministry of Food and Agriculture and by the GFPi e.V. (FKZ 22008009). Special thanks to the oilseed rape breeding companies of the GFPi e.V. for performing field experiments and to Gunda Asselmeyer, Carmen Mensch, Rosemarie Clemens, and Uwe Ammermann for their excellent technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Möllers.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Communicated by Isobel AP Parkin.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behnke, N., Suprianto, E. & Möllers, C. A major QTL on chromosome C05 significantly reduces acid detergent lignin (ADL) content and increases seed oil and protein content in oilseed rape (Brassica napus L.). Theor Appl Genet 131, 2477–2492 (2018). https://doi.org/10.1007/s00122-018-3167-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-018-3167-6

Navigation